
Scientific Computation

Vinh Phu Nguyen
Alban de Vaucorbeil
Stephane Bordas

The Material
Point
Method
Theory, Implementations and
Applications

The Material Point Method

Scientific Computation

Series Editors

Jean-Jacques Chattot, University of California, Davis, CA, USA

Phillip Colella, University of California at Berkeley, Berkeley, CA, USA

M. Yousuff Hussaini, Florida State University, Tallahassee, FL, USA

Patrick Joly, Applied Mathematics department of l’ENSTA Paris (UMA),
Le Chesnay, France

Olivier Pironneau, Université Paris VI, Paris, France

Alfio Quarteroni, École Polytechnique Fédérale de Lausanne, Lausanne,
Switzerland

Jacques Rappaz, École Polytechnique Fédérale de Lausanne, Lausanne,
Switzerland

Robert Rosner, University of Chicago, Chicago, IL, USA

P. Sagaut, Université Pierre et Marie Curie, Paris, France

John H. Seinfeld, California Institute of Technology, Pasadena, CA, USA

Anders Szepessy, Royal Institute of Technology (KTH), Stockholm, Sweden

Mary F. Wheeler, University of Texas, Austin, TX, USA

Vinh Phu Nguyen · Alban de Vaucorbeil ·
Stephane Bordas

The Material Point Method
Theory, Implementations and Applications

Vinh Phu Nguyen
Department of Civil Engineering
Monash University
Clayton, VIC, Australia

Stephane Bordas
University of Luxembourg Campus
Kirchberg
Luxembourg, Luxembourg

Alban de Vaucorbeil
Institute for Frontier Materials
Deakin University
Geelong, VIC, Australia

ISSN 1434-8322 ISSN 2198-2589 (electronic)
Scientific Computation
ISBN 978-3-031-24069-0 ISBN 978-3-031-24070-6 (eBook)
https://doi.org/10.1007/978-3-031-24070-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-24070-6

Preface

Computer simulations have become an integral tool in engineering, ranging fromcivil
andmechanical engineering tomaterial sciences and beyond.While the finite element
method (FEM) has long been the standard framework for simulations, it reaches its
limits when dealing with problems involving large deformation and fractures. To
overcome these limitations, meshless methods (MMs) such as smoothed-particle
hydrodynamics (SPH) and the material point method (MPM) have emerged as a
promising alternative. MPM, in particular, combines the advantages of FEM and
MMs, representing the material by a set of particles overlaid on a background mesh.
This approach has been successful in simulating a wide variety of large-deformation
and complicated engineering problems.

The book not only re-examines previous contributions but also organizes them
in a coherent fashion and anticipates new advancements. Sample algorithms for
benchmark problems are available on the book’s website, allowing researchers and
graduate students to modify them and develop their own solution algorithms for
specific problems. The goal of this book is to provide students and researchers with a
theoretical and practical knowledge of the material point method for the simulation
of engineering problems, and to promote further in-depth studies in the field.

This book aims at being a comprehensive guide to the Material Point Method
that focuses on its use in solving problems in mechanics, physics and engineering.
The book contains nine main chapters that build on each other to provide a detailed
understanding of the MPM.

Chapter 1 provides an introduction to theMaterial PointMethod and its advantages
over other numerical methods. It also gives an overview of the topics covered in the
book.

Chapter 2 covers the mathematical foundations of the MPM. It discusses the
principles of continuum mechanics, the kinematic description of motion and the
integration algorithms used in the MPM.

Chapter 3 presents different MPM versions that basically adopt different shape
functions, e.g. hat functions, B-splines, Bernstein, GIMP and CPDI. Also treated is a
new formulation called generalized particle in cell (GPIC) which combines the FEM
and MPM that takes advantages of both methods.

v

vi Preface

Chapter 4 covers the constitutive models used in the MPM. This includes linear
elastic isotropic materials, hyperelastic solids and elasto-plastic materials. The
chapter also discusses the Johnson-Cook flow model and the algorithm used to
compute damage.

Chapter 5 provides some implementation details such as particle generation for
simple geometries and for images, initial and boundary conditions, MPM with
unstructured grids and visualization of MPM results.

Chapter 6 presents a tutorial MPM code written in MATLAB. This code serves
to illustrate the MPM algorithms discussed in the book and it can be used to solve
one, two and three dimensional problems.

Chapter 7 describes Karamelo—an open-source parallel C++ package for the
material point method. This code can be used to solve large-scale problems as it can
be run on multiple processors using MPI. With such an efficient code, we present
three dimensional simulations to demonstrate the capability of the MPM in solving
large deformation solid mechanics problems.

Chapter 8 presents some advanced topics such as contacts and fracture. Both
frictionless and frictional contact are discussed. One notable application of these
contact algorithms is the simulation of scratch test—a popular mechanical test to
measure a solid’s hardness. We then discuss fracture modeling in the framework of
the MPM. Application of the MPM to model large strain ductile fracture of metals
is then provided.

Chapter 9 discusses the mathematical analysis of the MPM regarding its stability
and accuracy. We discuss the conservation of energy and momenta in various MPM
variants. We study the convergence behavior of all MPM variants discussed in this
book for a problem involving only compression/tension deformation and another
problem involving simple shear with superimposed rotation.

Chapter 10 discusses fluid/gasesmodeling, membranemodeling and heat conduc-
tion. With the information provided in this chapter, one can carry out fluid-structure
interaction simulations, air-bag simulations and thermo-mechanical simulations.

In addition to the content of themain chapters, the book has several appendices that
provide supplementary information. Appendix A discusses the strong andweak form
of the momentum equation and their equivalence. Appendix B presents derivation of
variousCPDI basis functions. Some useful utilities such as how to use an open-source
computer algebra system (SageMath and SymPy) to derive CPDI functions, how to
use remote machines to run large-scale simulations and consistent units are given
in Appendix C. Appendix D gives a short but practical presentation of updated and
total Lagrangian, explicit dynamics FEM for nonlinear solid mechanics. Appendix
E treats implicit dynamics FEM so that it is easier to understand implicit MPM (even
though this is not discussed in this book). Finally, we describe another MPM code in
Appendix F, nowwritten in Julia—a new high-level dynamic programming language
which is easy to use as Python and as fast as C.

The book also includes several simulations related to these topics. The book
provides sample algorithms for benchmark problems, which are available on the

Preface vii

book’s website. These algorithms can be modified and used to develop custom solu-
tion algorithms for specific problems. The book includes MATLAB, Julia and C++
codes, derivations, and references to other studies in the field.

We would like to thank Prof. Deborah Sulsky at University of New Mexico for
reading through the first draft and giving comments. Also, the first author acknowl-
edges the fruitful discussions with Dr. Rebecca Brannon at University of Utah when
he started working on the MPM.

Clayton, Australia
Geelong, Australia
Luxembourg, Luxembourg

Vinh Phu Nguyen
Alban de Vaucorbeil

Stephane Bordas

Reference

Zhang, X., Chen, Z., Liu, Y.: The Material Point Method-A Continuum-Based Particle Method for
Extreme Loading Cases. Academic Press, Cambridge (2016a)

Contents

1 Introduction . 1
1.1 Computational Sciences and Engineering . 1
1.2 The Role of Experiments in CSE . 3
1.3 One Dimensional Wave Equation . 3
1.4 Mesh-Based and Meshfree Methods . 9

1.4.1 Mesh-Based Methods . 9
1.4.2 Meshless Methods . 12

1.5 A Brief Introduction to the MPM . 14
1.5.1 Lagrangian Particles and Eulerian Grid 14
1.5.2 The Basic MPM Algorithm . 16
1.5.3 Advantages and Disadvantages of the MPM 18
1.5.4 Existing MPM Formulations . 19
1.5.5 Multiphysics MPM . 24
1.5.6 Contacts . 24
1.5.7 Fracture . 27
1.5.8 Fluids and Gases . 30
1.5.9 The MPM Versus Other Methods 31
1.5.10 Coupling the MPM with Other Methods 33

1.6 Applications of the MPM . 34
1.6.1 Large Strain Geo-Technical Engineering 34
1.6.2 Fluid-Structure Interaction . 35
1.6.3 Image-Based Simulations . 37
1.6.4 Computer Graphics . 38
1.6.5 Other Applications . 38

1.7 Open Source and Commercial MPM Codes 39
1.8 Layout . 40
1.9 Notations . 42
References . 44

ix

x Contents

2 A General MPM for Solid Mechanics . 57
2.1 Basic Concepts of Continuum Mechanics . 58

2.1.1 Motion and Deformation . 58
2.1.2 Strain Measures . 60
2.1.3 Stress Measures . 61
2.1.4 Objective Stress Rates . 62
2.1.5 Conservation Equations . 62
2.1.6 Constitutive Models . 63

2.2 Strong Form . 63
2.3 Weak Form and Spatial Discretization . 65
2.4 MPM as FEM with Particles as Integration Points 69
2.5 Temporal Discretization and Resulting MPM Algorithms 70

2.5.1 Lumped Mass Matrix . 71
2.5.2 Calculation of Nodal Velocities (Momenta) 72
2.5.3 Standard Formulation (USL) . 73
2.5.4 Modified Update Stress Last (MUSL) 79
2.5.5 Update Stress First (USF) . 81

2.6 Total Lagrangian MPM (TLMPM) . 82
2.6.1 Motivation: Numerical Fracture . 82
2.6.2 Derivation of TLMPM . 83

2.7 Axi-Symmetric MPM . 86
2.7.1 Axi-Symmetric ULMPM . 87
2.7.2 Axi-Symmetric TLMPM . 88

2.8 Adaptive Time Step . 89
2.9 Particle/Element Inversion . 90
2.10 Adaptivity . 91

2.10.1 Grid Adaptive Refinement . 91
2.10.2 Particle Splitting and Merging . 92

References . 92

3 Various MPM Formulations . 95
3.1 Properties of Weighting Functions . 95
3.2 Standard Linear Basis Functions . 96
3.3 Generalized Interpolation Material Point (GIMP) 99

3.3.1 uGIMP . 101
3.3.2 cpGIMP . 102

3.4 B-Splines Basis Functions . 104
3.4.1 Recursive B-Splines . 104
3.4.2 Boundary Modified B-Splines . 105

3.5 Bernstein Functions . 107
3.6 Convected Particle Domain Interpolation . 109

3.6.1 One Dimensional Linear CPDI (CPDI-L2) 109
3.6.2 Convected Particle Domain Interpolation

(CPDI-R4) . 110

Contents xi

3.6.3 Quadrilateral Convected Particle Domain
Interpolation (CPDI-Q4) . 113

3.6.4 Triangular Convected Particle Domain
Interpolation (CPDI-T3) . 114

3.6.5 Three Dimensional Linear Tetrahedron CPDI
(CPDI-Tet4) . 115

3.6.6 Polygonal and Polyhedral CPDI . 115
3.6.7 Complications in GIMP/CPDIs . 117

3.7 The Generalized Particle in Cell Method . 120
3.7.1 General Algorithms . 121
3.7.2 Computation of Mass and Forces on FE Meshes 123
3.7.3 Finite Element Basis Functions . 125
3.7.4 Equivalence Between CPDI and GPIC 126
3.7.5 Axi-Symmetric GPIC . 127

References . 128

4 Constitutive Models . 131
4.1 Linear Elastic Isotropic Material . 131
4.2 Hyperelastic Solids . 132
4.3 Elasto-Plastic Materials . 132

4.3.1 Equation of State . 133
4.3.2 Johnson-Cook Flow Model . 134
4.3.3 Damage . 135
4.3.4 Algorithm . 136

References . 137

5 Implementation . 139
5.1 Initial Particle Distribution . 139

5.1.1 Regular Particle Distribution . 140
5.1.2 Irregular Particle Distribution . 141
5.1.3 Particle Distribution from CAD . 142
5.1.4 Particle Distribution from Images 143

5.2 Initial and Boundary Conditions . 146
5.2.1 Dirichlet Boundary Conditions . 146
5.2.2 Symmetric Boundary Conditions . 147
5.2.3 Neumann Boundary Conditions . 148
5.2.4 Neumann Boundary Conditions with CPDI 148
5.2.5 Boundary Conditions in GPIC . 149
5.2.6 Rigid Bodies . 151

5.3 Implementation of CPDI . 153
5.4 MPM Using an Unstructured Grid . 154

5.4.1 Shape Functions . 154
5.4.2 Particle Registration . 155
5.4.3 Mixed Integration . 155
5.4.4 uMPM with C1 Shape Functions . 156

5.5 Visualization . 156
References . 157

xii Contents

6 MPMat: A MPM Matlab Code . 161
6.1 Code Structure . 162
6.2 Background Grid . 162
6.3 Particle Data . 165
6.4 Particle Generation . 166

6.4.1 Particle Generation Using a Mesh 166
6.4.2 Particle Generation for Simple Geometries 166

6.5 Solution Algorithm . 168
6.6 Three Dimensions . 170
6.7 Implementation of (u/cp)GIMP . 171
6.8 B-splines MPM . 172

6.8.1 Recursive B-splines MPM . 172
6.8.2 Bézier Extraction B-splines MPM 174

6.9 Implementation of CPDI-R4 . 175
6.9.1 Data Structure for Particles . 175
6.9.2 Evaluation of φI p and ∇φI p . 175
6.9.3 Time Advance . 176

6.10 Implementation of CPDI2s (CPDI-Q4, CPDI-T3) 177
6.11 Implementation of CPDI-Poly . 180
6.12 Visualization Toolkit (VTK) . 181
6.13 Some Efficiency Improvements . 183
6.14 More Improvements Using MEX Files . 184
6.15 Examples . 185

6.15.1 One Dimensional Examples . 186
6.15.2 Impact of Two Elastic Disks . 189
6.15.3 High Velocity Impact . 195
6.15.4 Large Deformation Vibration of a Compliant

Cantilever Beam . 195
6.15.5 Lateral Compression of Thin-Walled Tubes 199

References . 203

7 Karamelo: A Multi-CPU/GPU C++ Parallel MPM Code 205
7.1 Karamelo in a Nutshell . 206
7.2 Hierarchical Class System . 206
7.3 Pre and Post-processing . 207
7.4 Input Files . 208
7.5 Parallelization Using MPI . 210
7.6 Compilation . 211
7.7 Extending Karamelo . 211
7.8 GPU Support . 213
7.9 Some Simulations . 213

7.9.1 Taylor Anvil Test . 214
7.9.2 Upsetting of a Cylindrical Billet . 218
7.9.3 Cold Spraying . 220
7.9.4 Scalability Tests . 222

Contents xiii

7.10 Conclusions . 223
References . 224

8 Contact and Fracture . 227
8.1 Contacts in the ULMPM . 227

8.1.1 Contact Without Friction . 229
8.1.2 Contact with Coulomb Friction . 230
8.1.3 Derivation . 231
8.1.4 Calculation of Normal Vector . 233
8.1.5 Algorithm . 235
8.1.6 Contact Between a Deformable Solid and a Rigid

Wall . 237
8.1.7 Matlab Implementation . 237
8.1.8 Differences of MPM Contacts with Other Contacts 242
8.1.9 Final Remarks . 242

8.2 Contacts in the TLMPM . 242
8.2.1 Enforcing Non-penetration . 244
8.2.2 Complete Algorithm . 245

8.3 Contact in GPIC . 247
8.4 Contact Simulations . 248

8.4.1 Test 1: Collision of Two Compressible
Neo-Hookean Rings . 249

8.4.2 Test 2: High Velocity Impact of a Steel Disk Onto
an Aluminum Target . 254

8.4.3 Test 3: Contact of a Rigid Sphere with a Half Plane 255
8.4.4 Test 4: Cylinder Rolling on an Inclined Plane 259
8.4.5 Test 5: Stress Wave in a Granular Material 262
8.4.6 Test 6: Penetration of a Steel Sphere Into

an Aluminium Cylinder . 265
8.4.7 Test 7: Scratch Test . 267

8.5 Fracture Modeling . 274
8.5.1 Fracture Modeling Within the MPM Framework 276
8.5.2 Variational Fracture Theories . 277
8.5.3 Implementation of Variational Fracture

Phase-Field Model . 281
8.5.4 Nonlocal Johnson-Cook Damage Models 283

8.6 Some Fracture Simulations . 287
8.6.1 Tensile Test Specimen Experiencing Necking

and Damage . 287
8.6.2 Double Circular Notched Specimen 290
8.6.3 Compact Tension Specimen . 291
8.6.4 Machining Simulations . 293
8.6.5 High Velocity Impact of a Bullet Into a Steel Plate 295

References . 299

xiv Contents

9 Stability, Accuracy and Recent Improvements 305
9.1 Energy and Momenta Conservation . 306

9.1.1 Linear Momentum Conservation . 306
9.1.2 Angular Momentum Conservation 307
9.1.3 Total Energy Conservation . 309

9.2 The Method of Manufactured Solutions (MMS) 318
9.2.1 An One Dimensional Manufactured Solution 318
9.2.2 A Two Dimensional MMS . 320
9.2.3 Generalized Vortex Problem . 322
9.2.4 Norms . 324
9.2.5 Convergence Rate . 325
9.2.6 Convergence Rate of the MPM . 326

9.3 Moving Least Square MPM . 327
9.3.1 Least Square Approximations . 328
9.3.2 Velocity Projection . 334
9.3.3 One Point Quadrature . 334
9.3.4 Implementation . 335
9.3.5 Improved Implementation . 338

9.4 The Affine Particle in Cell (APIC) . 338
9.4.1 The Gradient Enhancement Technique 338
9.4.2 Derivation . 340
9.4.3 Implementation . 341
9.4.4 Momenta Conservation . 342
9.4.5 Energy Conservation . 347

9.5 Convergence Tests . 347
9.5.1 One Dimensional Convergence Test 348
9.5.2 Generalized Vortex Problem . 350

9.6 Volumetric Locking . 352
9.6.1 Overview of the F-bar Method . 353
9.6.2 F-bar Method in MPM: Cell Averaging 354
9.6.3 F-bar Method in MPM: Nodal Averaging 355

References . 358

10 Other Topics: Modeling of Fluids, Membranes
and Temperature Effects . 361
10.1 Fluids and Gases . 361

10.1.1 Fluids . 361
10.1.2 Gases . 362
10.1.3 Some Examples . 363

10.2 Modeling Membranes . 366
10.2.1 York’s MPM Algorithm for Membranes 367
10.2.2 A Coupled FEM-MPM for Modeling Membranes 370

10.3 Thermo-Mechanical Problems . 375
10.3.1 Thermal Problem . 376
10.3.2 Coupled Thermo-Mechanical MPM 378

Contents xv

10.3.3 Verification Tests . 380
10.4 Fluid-Structure Interaction . 388
References . 389

Appendix A: Strong Form, Weak Form and Completeness 391

Appendix B: Derivation of CPDI Basis Functions . 395

Appendix C: Utilities . 403

Appendix D: Explicit Lagrangian Finite Elements . 415

Appendix E: Implicit Lagrangian Finite Elements . 427

Appendix F: Implementing the Material Point Method Using Julia 435

Index . 465

Chapter 1
Introduction

The aim of this introductory chapter is to provide an overview of what is the material
point method—the topic of the book—and its application domains. We start with a
brief introduction to thefield of computational sciences and engineering to explain the
role of computer simulations using a computational model (Sect. 1.1). The MPM is
one of such computationalmodels. The role of experiments cannot be underestimated
even for a computational scientist and engineer (Sect. 1.2). Then, we briefly discuss
initial-boundary value problems and numerical methods in Sect. 1.3. Next, we talk
about mesh-based and mesh-free methods in Sect. 1.4 as the MPM adopts tools from
these two classes. This is followed by Sect. 1.5 where we will present a picture of the
MPM. Applications of the MPM in various engineering and sciences fields are given
in Sect. 1.6. Open source and commercial MPM codes are presented in Sect. 1.7.
The layout of the book is given in Sect. 1.8. Finally, our notations are explained in
Sect. 1.9.

1.1 Computational Sciences and Engineering

The topic of this book falls within the scope of computational sciences and engineer-
ing (CSE). CSE is a relatively new discipline that deals with the development and
application of computational models, often coupled with high-performance comput-
ing, to solve complex problems arising in engineering analysis and design (computa-
tional engineering) aswell as in natural phenomena (computational science). CSEhas
been described as the “third mode of discovery” next to theory and experimentation.

Within the realm of CSE these are steps to solve a problem. First, a mathematical
model that best describes the problem is selected or developed. This step of model
development is donemanually bypeoplewith sufficientmathematical skills.Amajor-
ity of mathematical model is developed using calculus (see Remark 1 for a history
account) and thus they are continuous models not suitable for digital computers.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. P. Nguyen et al., The Material Point Method, Scientific Computation,
https://doi.org/10.1007/978-3-031-24070-6_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24070-6_1&domain=pdf
https://doi.org/10.1007/978-3-031-24070-6_1

2 1 Introduction

Fig. 1.1 Computer
experiments: experiments
done with computational
models on a digital computer

Second, a computational model of this mathematical model is derived. A computa-
tional model is an approximation to the mathematical model and is in a discrete form
which can be solved using computers. Third, this discrete model is implemented
in a programming language (Fortran in the past and C++ and Python nowadays) to
have a computational code or platform. For solid mechanics, popular computational
platforms are Abaqus and LS-Dyna. Finally, these computational platforms are used
to perform computer simulations or computer experiments (Fig. 1.1).

Computer simulations are not only useful to solve problems too complex to be
resolved analytically, but are also increasingly replacing costly and time consum-
ing experiments. Furthermore, they can provide tremendous information at scales
of space and time where experimental visualization is difficult or impossible. And
finally, simulations also have a value in their ability to predict the behavior of mate-
rials and structures that are yet to be created; experiments are limited to materials
and structures that have already been created.

This book presents MPMmodels i.e., discrete models based on the material point
method for the problem of understanding and prediction of the deformation of solids
and fluids that undergo very large deformation. The mathematical model for this
problem is based on the theory of continuummechanics, see e.g. Malvern (1969).We
also discuss computer implementation of these MPM models and provide tutorial
MPM codes written in Matlab and Julia and an efficient MPM platform named
Karamelo which can replace contemporary FE packages such as LS-Dyna and
Abaqus for certain problems.

Remark 1 Wewould like to discuss briefly why calculus is so dominant in sciences
and engineering. It all started with the works of Galilei and Newton who discov-
ered that the laws of nature can be unreasonably well described by mathematics,
particularly calculus. If the motion of heavenly bodies can be modeled using mathe-
matics, then it is logical to apply it to humanity problems. This was exactly what the
geniuses like Bernoulli brothers, Euler, Lagrange, Cauchy had done some 300years
ago. These men developed partial differential equations that can model a wide range
of phenomena such as the deformation of fluids, gases and solids. It is the models
described by these PDEs that put men on the moon, give us cell phones, computers,
radio. Or television. Or ultrasound for expectant mothers, or GPS for lost travelers.

1.3 One Dimensional Wave Equation 3

Remark 2 Calculus has two parts: differential calculus and integral calculus. The
latter is interesting as we go from finiteness to infinitum. And to solve it numerically,
we do the reverse: from infinitum back to finiteness. We replace a solid with infinite
number of degrees of freedom by a mesh consisting of just a finite number of degrees
of freedom.

1.2 The Role of Experiments in CSE

It is certain that a computational model requires experiments to obtain parameters
used in the model. To emphasize the vital role of experiments in sciences and engi-
neering, we consider the interesting article of Boyce et al. (2016) that presents the
Sandia fracture challenge to the computational fracture community. The challenge
involves the simulation of the fracture of a steel sample of complex geometry. Only a
minimum experimental data (tensile test of a steel coupon) was provided to the anal-
ysist. Different research groups, who participated in the challenge, used all existing
fracture models and none provided a match with the experiment.

Therefore simulations are simply insufficient and thus a combined experiment-
simulation programme should be pursued for any problem. It is interesting to know
that R. W. Clough, the exact man who coined the term ‘finite element method’ some
70years ago, stopped working on the method and switched to experiments (Clough
1980).

1.3 One Dimensional Wave Equation

In science and engineering, one commonly seeks the response to some excitations of
a certain kind of system. This system can be mechanical, chemical, biological …To
this end, it is common practice to adopt a mathematical model for the system and
try to solve it. Usually the model equations are partial differential equations (PDE);
for example, the Navier-Stokes equations in fluid mechanics, or the momentum
conservation equations in solidmechanics. These differential equations togetherwith
both the initial and boundary conditions constitute an initial-boundary value problem
(IBVP). In general, solving a boundary value problemby classical analyticalmethods
is almost impossible. Therefore, an approximate solution to the IBVP is sought.

Approximate solutions to an IBVP are obtained by transforming the PDE into a set
of algebraic equations. This is achieved by discretizing the space and time domain.
Common spatial discretization methods include mesh-based methods such as the
finite element method (FEM), the finite volume method (FVM), the finite difference
method (FDM) and meshless or meshfree methods (MMs). Time discretization is
mostly based on finite differences e.g. the forward Euler method and the leaf-frog
method.

4 1 Introduction

In this section, we provide an overview of how to use a numerical method to
obtain approximate solutions to IBVPs. This discussion is not meant to be rigorous,
but rather to present the basic concepts of numerical methods and a general procedure
to go from PDEs, which are difficult to solve, to algebraic equations, which can be
handled quite well by nowadays computers. We have decided to present methods
using a weak form as the MPM follows this so-called Galerkin method.

For a simple demonstration of the basic concepts in numerical methods, let’s
consider the one dimensional momentum equation, that governs the deformation of
a solid object due to applied external forces:

ρ
∂2u

∂t2
= E

∂2u

∂x2
+ ρb (1.1)

where u(x, t) is the displacement field, E the Young modulus of the material, ρ the
density and b the body force. The spatial domain is 0 ≤ x ≤ L and the time domain
is 0 ≤ t ≤ T .

For the case of zero body force (i.e. b = 0) the above equation becomes the well
known one dimensional wave equation written as:

∂2u

∂t2
= c2

∂2u

∂x2
, c =

√
E

ρ
(1.2)

Remark 3 Solving Eq. (1.2) for u(x, t) with a given c is called a forward problem.
Inversely, determining c so that Eq. (1.2) has a solutionmatching a predefined ū(x, t)
is coined an inverse problem.

In order for a PDE to have unique solutions, initial and boundary conditions have
to be provided. For example, the so-called Dirichlet boundary conditions read

u(0, t) = a, u(L , t) = b, t > 0 (1.3)

where a, b are some constants. Note that there exists other types of boundary condi-
tions such as Neumann condition and Robin condition. As Eq. (1.2) involves second
derivative with respect to t , two initial conditions are required which are given by

u(x, 0) = f (x), u̇(x, 0) = g(x) (1.4)

where u̇ := du/dt and f, g are some functions.
Putting all the above together we come up with the following initial-boundary

value problem

∂2u

∂t2
= c2

∂2u

∂x2
(wave equation)

u(0, t) = a, u(L , t) = b, t > 0 (boundary conditions)

u(x, 0) = f (x), u̇(x, 0) = g(x) (initial conditions)

(1.5)

1.3 One Dimensional Wave Equation 5

of which approximate solutions are sought for using a numerical method. Equation
(1.5) is called a strong form of the wave equation. Some numerical methods such
as FDM or collocation methods work directly with this strong form even though
they are often less accurate compared with Galerkin methods—those that employ a
weak formulation—and unstable. However, these methods are quite efficient as no
numerical integration is needed.

The finite element methods (or generally Galerkin based methods) adopt a weak
formulation where the partial differential equations are restated in an integral form
called the weak form. A weak form of the differential equations is equivalent to the
strong form. Inmany disciplines, theweak form has a physicalmeaning; for example,
the weak form of the momentum equation is called the principle of virtual work in
solid/structural mechanics.

To obtain the weak form, one multiplies the PDE i.e., the wave equation in this
particular context, with an arbitrary function w(x), called the weight function, and
integrate the resulting equation over the entire domain. That is

∫ L

0

[
∂2u

∂t2
− c2

∂2u

∂x2

]
w(x)dx = 0, ∀w(x) with w(0) = w(L) = 0 (1.6)

The arbitrariness of the weight function is crucial, as otherwise a weak form is not
equivalent to the strong form. In this way, the weight function can be thought of as
an enforcer: whatever it multiplies is enforced to be zero by its arbitrariness.

Using the integration by parts for the second term, the above equation becomes∫ L

0

∂2u

∂t2
w(x)dx + c2

∫ L

0

∂u

∂x

∂w

∂x
dx = 0 (1.7)

where the spatial derivative of the unknown field, u(x, t), was lowered from two
to one. It is a great achievement by a simple derivation as constructing high order
approximations of u, so that second derivatives are computable, is much more dif-
ficult than constructing linear approximations. Furthermore, the second term is now
symmetric, this is significant as the resulting matrix will be symmetric. Symmetric
matrices possess nice properties e.g. less storage and real eigenvalues.

The weak form of the wave equation is thus given by: find the smooth function
u(x, t) such that

∫ L

0

∂2u

∂t2
w(x)dx + c2

∫ L

0

∂u

∂x

∂w

∂x
dx = 0

u(0, t) = a, u(L , t) = b

u(x, 0) = f (x), u(x, 0) = g(x)

(1.8)

for all w(x) with w(0) = w(L) = 0.

6 1 Introduction

Fig. 1.2 Spatial
discretization in one
dimension

The basic idea of numerical methods in solving PDEs is to discretize the spatial
and temporal domain i.e., instead ofworkingwith infinite number of points (or nodes)
within the domain of interest [0, L] × [0, T], one first discretize the spatial domain
into afinite number of points xI , I = 1, 2, . . . , n.Next, the unknown functionu(x, t)
is approximated using the values of u evaluated at those discrete points xI (Fig. 1.2),
and this approximation is then substituted into the weak form i.e., Eq. (1.8) to obtain
a set of ordinary differential equations (ODEs). Finally using any time integration
methods of ODEs to advance in time. At this stage, the PDE has been completely
transformed into a discrete form—a system of algebraic equations—which can be
easily solved by digital computers. This is known as the method of lines. There exists
methods which involve full discretization in both space and time, but they are less
popular and not further discussed in this book.

The approximation of the unknown field u(x, t) is written as

u(x, t) ≈ uh(x, t) =
n∑
I

NI (x)uI (t) (1.9)

where NI (x) are the approximation functions or shape functions in the FEM context
and uI (t) denotes the value of u at point I at time instant t and constitutes the
unknowns to be solved. The support of node I is defined as the set of points where
NI (x) �= 0. Usually, only a few points are within the support of a given node and
thus the shape function is said to have a compact support. And this compact support
is crucial to the computational efficiency of the method: the resulting matrices are
sparse not full. If the support of NI (x) is the whole domain, the method is called a
spectral method. After having obtained uI , Eq. (1.9) is used to compute the function
at any other points.

Even though there are many choices for the weight functions w, in the Bubnov-
Galerkinmethod,which is themost commonly usedmethod at least for solidmechan-
ics applications, the weight function is approximated using the same shape functions
as u. That is

w(x, t) =
n∑
I

NI (x)wI (1.10)

where wI are the nodal values of the weight function; they are not functions of time.

1.3 One Dimensional Wave Equation 7

Now, the numerical solution of the weak form of the wave equation i.e., Eq. (1.8)
is thus given by: find uJ such that

∫ L

0
(NI (x)ü I) (NJ (x)wJ) dx + c2

∫ L

0

(
∂NI

∂x
uI

) (
∂NJ

∂x
wJ

)
dx = 0 (1.11)

for all wJ . Note that we have used the Einstein summation rule: indices which are
repeated twice in a term are summed, see Sect. 1.9 for detail.

The arbitrariness of wJ results in the following system of ordinary differential
equations

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ L

0
N1N1dx

∫ L

0
N1N2dx . . .

∫ L

0
N1Nndx

∫ L

0
N2N1dx

∫ L

0
N2N2dx . . .

∫ L

0
N2Nndx

...
...

...
...∫ L

0
NnN1dx

∫ L

0
NnN2dx . . .

∫ L

0
NnNndx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ü1

ü2

...

ün

⎤
⎥⎥⎥⎥⎥⎥⎦

+ c2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ L

0
dN1dN1dx

∫ L

0
dN1dN2dx . . .

∫ L

0
dN1dNndx

∫ L

0
dN2dN1dx

∫ L

0
dN2dN2dx . . .

∫ L

0
dN2dNndx

...
...

...
...∫ L

0
dNndN1dx

∫ L

0
dNndN2dx . . .

∫ L

0
dNndNndx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

u1

u2

...

un

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎦

(1.12)

where dNI = dNI /dx is the first spatial derivative of the shape function NI . The
integrals in the above equation are called weak form integrals. For this simple 1D
problem, they can be exactly computed, but generally, numerical integration is used
to evaluate these integrals. We refer to Sect. 2.4 for a discussion on numerical inte-
gration.

And Eq. (1.12) can be cast in the following compact equation using a matrix
notation

Mü + Ku = 0 (1.13)

8 1 Introduction

whereu and ü are the vector of displacements and accelerations of thewhole problem,
respectively. They are one dimensional array of length n;M andK are the mass and
stiffness matrix—matrices of dimension n × n.

Equation (1.13) is referred to as the semi-discrete equation as the time has not been
yet discretized. Any time integration methods for ODEs can be used to discretize
Eq. (1.13) in time. A time integration scheme is called implicit if one has to solve a
system of algebraic equations to obtain u at a time instant t . This system of algebraic
equations is very large for practical problems: it is not uncommon to encounter a
systemofmillions of unknowns.On the other hand, it is called explicit if one can getu
without solving any system of algebraic equations. Implicit time integration schemes
allow large time increments i.e., there are fewer time steps to resolve whereas explicit
schemes require small time increments. Generally, explicit schemes are preferred for
fast transient problems such as impact simulations.

For time discretization, the time interval [0, T] is partitioned into a number of
time steps Δt i.e., the semi-discrete equation is evaluated at discrete time instants
tm = (m − 1)Δt . Assuming that we are at time t and need to advance to time t + Δt .
By using the central difference scheme, which is the most commonly used explicit
time integration method, we have

ut+Δt = Δt2üt + 2ut − ut−Δt (1.14)

which allows us to obtain the displacements at t + Δt upon substitution of Eq. (1.13)
for üt

ut+Δt = −Δt2M−1Kut + 2ut − ut−Δt (1.15)

To avoid inversion of the mass matrix, a technique known as mass lumping is often
adopted to make M diagonal.

The final step is to impose Dirichlet boundary conditions e.g. u(0, t) = a. If the
shape functions NI have been constructed such that they satisfy the Kronecker delta
property then it is pretty straightforward to impose Dirichlet conditions: one simply
override the displacements computed in Eq. (1.15) by the prescribed values. In this
specific case, simply setting u1 = a and un = b does the job. Shape functions are
said to satisfy the Kronecker delta property when they fulfill the following equation

NI (xJ) = δI J , δI J =
{
1 if I = J

0 otherwise
(1.16)

Therefore, condition u(0) = a becomes u(0) = ∑
I NI (0)uI = u1 = a.

What value should be assigned for n or in other words, how many nodes/points
should we use? That is the eternal question of computational engineer. There is
no theorem which says n should be such and such. A rule of thump is n should
be big to have accuracy and not so big to reduce the cost. Practically, one pick an
n, do the simulation and evaluate a certain quantity of interest (e.g. the maximum
displacement ormaximumstress) against analytical solutions (if any) or experimental

1.4 Mesh-Based and Meshfree Methods 9

data. If a large difference exists, then double n and repeat until a convergence has
been obtained. If no solution is available, then one needs to compare the numerical
solutions of at least two resolutions (two different n) and they should be close to each
other.

Up to this point, how the shape functions NI are constructed is not yet discussed.
In the next section, we discuss this construction of shape functions.

1.4 Mesh-Based and Meshfree Methods

Spatial discretization methods can generally be divided into groups: mesh-based
methods (Sect. 1.4.1) and meshless or meshfree methods (Sect. 1.4.2). The three
most common mesh-based methods are finite element method (FEM), finite volume
method (FVM) and finite difference method (FDM). Herein we focus on FEM since
it is the most widely used and commercially available method to date for solid
mechanics. Furthermore, the material point method can be considered a variant of
FEM.

1.4.1 Mesh-Based Methods

Since its inception about 70years ago (Courant 1943; Clough 1960),1 the finite ele-
ment method has been used with great success in many fields with both academic and
industrial applications. They have been the primary computational methodologies in
engineering computations for more than half a century. The basic idea is to divide
the domain of interest (generally with a complex shape) into a (finite) number of
sub-domains called elements (Fig. 1.3). These elements have simple geometry e.g.
triangles or quadrilaterals in two dimensions and tetrahedra in three dimensions. The
elements are connected at nodes. A field quantity, such as the displacement field, is
interpolated by a polynomial defined over the elements. Integrals in the weak form
e.g. the stiffness matrix or force vectors are evaluated over individual elements using
a quadrature rule (e.g. Gauss quadrature). For deformable solids of which behavior is
history dependent (inelastic solids) it is the quadrature points where stresses, strains,
history variables (such as equivalent plastic strain, damage variables) are stored.

As a simplest description of the FE shape functions we plot in Fig. 1.4 one dimen-
sional linear and quadratic shape functions. The spatial domain is [0, 4] which is
divided into four equidistant elements. In the first case of linear elements, each ele-
ment has two nodes. There are thus five nodes. For the case of quadratic elements,
each element has three nodes–two nodes at the extremities and one mid-side node.

1 For an interesting discount on the history of FEM, we refer to Clough (1980), Gander andWanner
(2012).

10 1 Introduction

(a) FE mesh (b) element and nodes

nodes

element

(c) bad element

quadrature points

Fig. 1.3 The finite element method: domain is discretized into a number of elements

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.5

0

0.5

1

Fig. 1.4 Finite element shape functions in one dimension: linear elements (top) and quadratic
elements (bottom). FE shape functions are polynomials defined in the so-called parent domain
which is [−1, 1] in one dimension. These shape functions satisfy the Kronecker delta property

Note that even though quadratic functions are smooth they are only C0 across the
element boundaries.

Remark 4 C0 means that only the functions are continuous across element bound-
aries but their derivatives are not. This property poses a great challenge in solving
PDEswith high order spatial derivativeswhich occur frequently in structuralmechan-
ics (i.e., PDEs that govern the behaviour of beams/plates/shells often involve fourth
order derivatives of the primary unknown field).

1.4 Mesh-Based and Meshfree Methods 11

Fig. 1.5 Element distortion
in the FEM: simulation of
material scratch

The availability of the elements provides a natural way to evaluate the weak form
integrals. For example, consider a function f in two dimensions, one can write∫

Ω

f (x, y)dΩ =
∑
e

∫
Ωe

f (x, y)dΩ =
∑
e

∑
g

f (xg, yg)wg (1.17)

where subscript e denotes the elements and subscript g denotes the integration points.
The fact that FE shape functions are polynomials and the element domains Ωe align
with the support of the shape functions leads to a very accurate computation of the
weak form integrals. This is in sharp contrast to meshfree methods (and also to the
material point method) to be discussed shortly.

For problems exhibiting large deformation (precisely large strain) e.g. simulation
of manufacturing processes such as extrusion and molding operations, the elements
inevitably become distorted which leads to higher errors and even premature termi-
nation of the program (Fig. 1.5). This issue of element distortion is often solved using
a technique called remeshing in which a new mesh with quality elements replaces
the old mesh with distorted elements. There are twomajor problems with remeshing.
First, it is a time and human labour consuming task, which is not guaranteed to be
feasible in finite time for complex three-dimensional geometries. Second, remesh-
ing requires mapping or projection of information from the old to the new mesh,
a step that inevitably introduces error, particularly for inelastic materials involving
history variables. The more history variables a material model has the more error
this remeshing step will induce.

Another difficulty of FEM is the conversion of a continuum (Fig. 1.6a) into a
finite element mesh of good quality (Fig. 1.6b), in a reasonable amount of time and
involves least user intervention. This is because solid geometries are created in a
CAD (Computer Aided Design) software, and FE simulations are carried out in a FE
software that accepts only FE meshes. Meshfree methods were born to remove the
remeshing burden of FEM. But it can alleviate the mesh burden as well; even though
isogeometric analysis pioneered by Hughes et al. (2005) is probably better for this
issue.

12 1 Introduction

Fig. 1.6 Conversion from a
CAD (a) to a FE mesh (b)

(a) A solid in a CAD system (b) Corresponding FE mesh

1.4.2 Meshless Methods

Meshless methods are so named as the space is discretized into a number of points,
or particles, in which each point interacts with its neighboring points in a flexible
manner: not via a rigid mesh as in the FEM. It should be noted that up to now,
there is no unified framework for meshfree methods. This is reflected by the plethora
of existing methods2 in the literature. The oldest developed method is Smoothed
Particle Hydrodynamics (SPH) introduced by Gingold and Monaghan (1977), Lucy
(1977) which was used for modeling astrophysical phenomena without boundaries
such as exploding stars and dust clouds. Nowadays, the SPH is a popular simulation
technique in various engineering and science fields. Next, the Generalized Finite
DifferenceMethodofLiszka andOrkisz (1980)was proposed followedby theDiffuse
Element Method (DEM) by Nayroles et al. (1992), the Element Free Galerkin (EFG)
by Belytschko et al. (1994); the Material Point Method (Sulsky et al. 1994), the
Reproducing Kernel Particle Method (RKPM) by Liu et al. (1995); the h − p cloud
method (Duarte andOden 1996); the Natural ElementMethod (Sukumar et al. 1998);
theMeshlessLocal PetrovGalerkin (MLPG)byAtluri andZhu (1998); theMaximum
entropy (Arroyo and Ortiz 2006); the Particle Finite Element Method (PFEM) of
Idelsohn et al. (2006), Sabel et al. (2014), the optimal transport meshfree method
(OTM) of Li et al. (2010), just to name but the most popular meshfree methods.

In general, all meshless methods share the same characteristic: the domain of
interest is completely discretized by nodes (or points or particles) as illustrated by
Fig. 1.7. The concept of connectivity in mesh-based methods is replaced by domain
of influencewhich indicates nodes fall within the support of a given node. Ameshfree
method is characterized by the following items

Collocation or Galerkin formulation DEM, EFG, RKPM, MLPG, NEM are
Galerkin meshfree methods i.e., weak form based methods. Galerkin MMs are
stable, accurate but computationally expensive. Collocation MMs are ones that
approximate the strong form of a PDE (i.e., the PDE itself). One notable collo-
cation MM is the SPH.3 SPH is classified as a meshfree particle method or more

2 The wikipedia page on meshfree methods lists about 30 methods and new methods are being
created, https://en.wikipedia.org/wiki/Meshfree_methods.
3 Note that since there are different SPH approximation rules, there thus exists different forms of
discrete SPH equations. All of them are used in practice.

https://en.wikipedia.org/wiki/Meshfree_methods

1.4 Mesh-Based and Meshfree Methods 13

Fig. 1.7 Meshless
discretization by a cloud of
points

Fig. 1.8 Typical smooth
meshfree basis functions:
one dimensional MLS
functions defined for a set of
5 nodes equally spaced. The
highlighted function is the
one of the middle node

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

precisely meshfree Lagrangian particle method because the particles are endowed
with physical quantities such as density and volumes. In otherwords, interpolation
points and particles coincide;

Interpolation method Different MMs adopt different high order interpolation
techniques: EFG/DEM/MLPGutilizes theMLS (MovingLeast Square), inRKPM
and SPH kernel estimates are the interpolations. Generally meshfree function-
s/derivatives are smooth, cf. Fig. 1.8, but computationally expensive than FE func-
tions;

Numerical integration For Galerkin meshfree methods a numerical integration
scheme is needed of which one can mention background element/cell technique,
nodal integration etc.;

Imposition of essential boundary conditions Most meshfree basis functions do
not satisfy the Kronecker delta property thus making enforcement of essential
boundary conditions a daunting task.

For a comprehensive consideration of MMs, we refer to various review articles,
for instance Belytschko et al. (1996), Babuška et al. (2002), and Nguyen et al. (2008)

14 1 Introduction

which provide computer implementation details including enrichment for weak and
strong discontinuities, Hsieh and Pan (2014) for an essential software framework
for MMs, Doblaré et al. (2005) (focused on the applications of meshfree methods
in biomechanics) and the textbook of Liu and Liu (2003), Liu (2002), Li and Liu
(2007), Fasshauer (2007). The last textbook gave a historical account of meshfree
approximation theories such as moving least square, radial basis functions etc.

Some MMs have been incorporated into commercial FEA packages such as
Abaqus (SPH), LS-Dyna (SPH and EFG), ANSYS (SPH). There exists also purely
meshless packages such as NoGrid that implements the finite pointset method for
applications in fluid dynamics.

1.5 A Brief Introduction to the MPM

TheMaterial Point Method is one of the latest developments in particle-in-cell (PIC)
methods. The first PIC techniquewas developed in the early 1950s byHarlow (1964),
Harlow (2004) at Los Alamos National Laboratory and was used primarily in fluid
mechanics. The first PICs suffered from excessive energy dissipation which was
overcome in 1986, by Brackbill and Ruppel with the introduction of FLIP-the Fluid
Implicit Particle method (Brackbill and Ruppel 1986; Brackbill et al. 1988). In com-
puter graphics, PIC/FLIP has become the de facto standard method for fluid sim-
ulations (Zhu and Bridson 2005). The FLIP was later modified and tailored for
applications in solid mechanics by Sulsky and her co-workers (Sulsky et al. 1994,
1995b) at University of New Mexico and has since been referred to as the Material
Point Method (Sulsky and Schreyer 1996).

In FLIP, the strain and stresses are stored at the cell centers. Yet, in the MPM,
they are carried by the particles themselves. Thus, the MPM particles carry the
full physical state of the material including position, mass, velocity, volume, stress,
temperature etc.. Note that in PIC, the particles carry only position and mass.

The MPM is built on the two main concepts already used in PIC that are the
use of Lagrangian material points that carry physical information, and a background
Eulerian grid used for the discretization of continuous fields (i.e., displacement field).
For a short description of the Lagrangian and Eulerian descriptions, see Fig. 1.9.

1.5.1 Lagrangian Particles and Eulerian Grid

In theMPM, a continuum body is discretized by a finite set of np Lagrangianmaterial
points (or particles) that are tracked throughout the deformation process. The terms
particle andmaterial point will be used interchangeably throughout this book. In the
original MPM, the subregions represented by the particles are not explicitly defined.
Only their mass and volume are tracked. In advanced MPM formulations such as
GIMP or CPDI, the shape of these subregions is tracked though. Each material point

1.5 A Brief Introduction to the MPM 15

Fig. 1.9 Lagrangian description (top) versus Eulerian description (bottom). In a Lagrangian
description, the grid is attached to the solid and thus it deforms during the deformation process
of the solid. Each point in the grid is always associated to just one single material point, thus mak-
ing modeling history-dependent materials easy. The solid boundary is also well defined. However,
the grid can become distorted. On the other hand, the Eulerian grid is fixed in space and material
flows through the mesh. Mesh distortion never happens

has an associated position xtp (p = 1, 2, . . . , np), mass mp, density ρp, velocity
vp, deformation gradient Fp, Cauchy stress tensor σ p, temperature Tp, and any
other internal state variables necessary for the constitutive model. Collectively, these
material points provide a Lagrangian description of the continuum body. As each
material point contains a fixed amount of mass at all time, mass conservation is
automatically satisfied.

The original MPM developed by Sulsky is effectively an updated Lagrangian
scheme. For this MPM, the space that the simulated body occupies and will occupy
during deformation is discretized by a grid, called background grid where the equa-
tion of balance of momentum is solved. On the other hand, in the Total Lagrangian
MPM (de Vaucorbeil et al. 2020), the background grid covers only the space occu-
pied by the body in its reference configuration. We refer to Fig. 1.10 for a graphical
illustration of material points overlaying on a Cartesian grid for both ULMPM and
TLMPM. The grid is fixed and the particles are moving over it (Fig. 1.11).

The use of a grid has the following benefits. First, it allows the method to be quite
scalable by eliminating the need for directly computing particle-particle interactions.
Second, collision is treated easily through this background Eulerian grid (in fact, a
non-slip, non-penetration contact is inherent in the method). Third, the momentum
equation is solved on the grid, and as there are many fewer grid points than particles,
this is a very efficient substitution. Most often, a fixed regular Cartesian grid is used
throughout the simulation for efficiency reasons.

16 1 Introduction

Fig. 1.10 TheMPMdiscretization: the space is discretized by a background gridwhich can be either
a Cartesian grid or an unstructured grid (not shown), while a solid is discretized using particles. The
updated Lagrangian MPM grid covers the entire deformation space whereas the total Lagrangian
MPM grid only covers the initial configuration

Fig. 1.11 The MPM discretization: the grid is fixed and over which the particles are moving

1.5.2 The Basic MPM Algorithm

The MPM was originally developed to solve fast transient impact solid mechanics
problems (Sulsky et al. 1994). Therefore, the MPM has been developed using an
explicit solver which is more efficient than an implicit solver for such problems. The
method was then applied to other applications in which the loading rates are low. For
these problems, implicit solvers are more suitable. As the explicit MPM algorithm
is simpler than the implicit, in what follows, the updated Lagrangian MPM algo-
rithm is presented using an explicit solver. Implicit MPM formulations are discussed
in Remark22. From the updated Lagrangian MPM, the total Lagrangian MPM is
obtained by making only slight modifications.

1.5 A Brief Introduction to the MPM 17

Fig. 1.12 Material point method: a computational step consists of four steps: (1) P2G (Particle
to Grid) in which information is mapped from particles to nodes, (2) Grid Updating in which
momentum equations are solved for the nodes, (3) G2P (Grid to Particles) where the updated nodes
are then mapped back to the particles to update their positions and velocities and (4) Grid resetting
where the grid is reset. The operations in dashed boxes are not present in the ULFEM

Table 1.1 Overall characteristics of common MPM variants

MPM variant Efficiency Quad. error Cell cross. Num. frac. Grid type Contacts

MPM � � � � � � Yes Yes Cart./unstr. �
GIMP � � � � No Yes Cartesian �
CPDI � � � No No Cartesian �
TLMPM � � � � � No No Cart./unstr. �
iMPM � � No n/a n/a n/a

GPIC � � � � � No No Cart./unstr. �

A typical explicit ULMPM computational cycle is given in Fig. 1.12. We refer to
Table1.1 for a list (not exhaustive) of notations and Table1.3 for abbreviations. This
algorithm is somewhat premature in the sense that some terms have not yet been
precisely defined, but it is presented at this stage to give some perspective. The first
step is mapping information from the particles to the grid (P2G) as the grid is reset at
every cycle. Next, the discrete equations of momentum are solved on the grid nodes
(Grid updating). Then, the particles’ position, velocity, volume, density, deformation
gradient, stresses and all relevant internal variables are updated (G2P). These last
two steps are equivalent to updated Lagrangian FEM. Therefore, it is incorrect to
state that the MPM uses a Eulerian kernel as in Gupta et al. (2011). Finally, the grid
is reset to its original state. Due to this grid resetting mesh distortion never occurs
making MPM a good method for large deformation problems. Note that the grid
needs not to be reset at every time step. For instance, reset can be done every N time
steps. N could be as large as one wants. The grid can also never be reset (Guilkey

18 1 Introduction

et al. 2006). Moreover, a completely new grid can be used. But to the best of our
knowledge, this is not yet implemented in any code.

It is quite difficult to precisely categorize the MPM due to the combination of
Lagrangian particles and a background grid. In our view, as the MPM solves the
momentum equations in their weak form, it can be seen as a Galerkin meshfree
method, similar to EFG, the RKPM, the OTM. What differentiates the MPM from
other Galerkin MMs is the ease with which the shape functions are constructed.
Indeed, they are simple and efficient polynomials defined on a fixed Eulerian grid.
Note that most of meshfree shape functions are computationally expensive rational
functions defined on a cloud of nodes. When the grid is not fixed, the MPM is very
similar to the OTM (or vice versa). The difference being that the OTM adopts the
max-ent approximation (Iaconeta et al. 2017). Contrary to OTM, the MPM uses a
background grid which if not fixed would generate mesh entanglement problems,
similarly to updated Lagrangian FEM.

1.5.3 Advantages and Disadvantages of the MPM

Advantages of the MPM include:

• the absence of mesh-entanglement problems;
• error-free advection of material properties via the motion of the material points;
• a no-slip, no-penetration contact algorithm is automatic to the method. That is, it
comes at no additional computational expense;

• a straightforward and efficient treatment of frictional contacts of multi-bodies
thanks to the background Eulerian grid;

• suitability for image-based simulations, as it is easy to convert images into an
MPM model;

• an easy computer implementation of the MPM compared to existing meshfree
methods. The MPM algorithm is easily programmed for parallel, distributed-
memory computers through decomposition of the computational domain;

• the leverage of existing well-studied FEM algorithms due to the similarity of the
MPM with the FEM.

• suitability for problems with very complex geometries which are difficult to be
converted into good quality FE meshes. In this regard, the MPM bears similarities
with immersed boundary methods (Mittal and Iaccarino 2005; Schillinger et al.
2012) and its recent variants such as finite cell method (Parvizian et al. 2007), and
cut FEM (Burman et al. 2015). All these methods, regardless the names, embed
a solid of any shape into a cube (3D) which is larger than the solid. The cube is
meshed by a regular structured grid equipped with smooth Ck basis functions be
it B-splines or T-splines.

1.5 A Brief Introduction to the MPM 19

In addition to these advantages that theMPMoffers, aswith anynumericalmethod,
it has its own set of shortcomings:

• large memory footprint as the grid has to cover the entire region that the bodies
occupy;

• formal analysis (convergence, error and stability) of the MPM is extremely diffi-
cult;

• enforcement of boundary conditions is difficult compared with the FEM;
• lower accuracy than the FEM as the material points do not generally lie at the
optimal positions for numerical integration.

The first item applies only to the ULMPM not the TLMPM as in the later the grid
covers only the initial undeformed configuration. The formal analysis of the MPM
is extremely difficult due to the irregular distribution of the particles but also due
to their relative motion with respect to the grid. If such an analysis is to be carried
out, many assumptions are required to make the analysis manageable i.e., 1D, linear
elastic materials, particles do not move from one cell to another (York et al. 1999).
The difficult enforcement of boundary conditions is due to the lack of an explicit
representation of the boundaries. But, it is still easier than some other methods (e.g.
SPH) (Raymond et al. 2018). The generalized particle in cell (GPIC) is, however,
free from this issue (Nguyen et al. 2021). Finally, the low accuracy only applies to
small and moderately large deformation problems.

1.5.4 Existing MPM Formulations

The main differences between different MPM variants available in the literature
emerge from the use of (i) different grid basis functions, (ii) different time integration
schemes, (iii) different types of the grid (Cartesian or unstructured) and (iv) an
updated Lagrangian or a total Lagrangian formulation. The discussion herein limits
to the ULMPM.

Use of different grid basis functions. In the original MPM, dubbed herein as the
standard/conventional MPM, the grid basis functions φI (x) are linear hat functions.
Because these functions are only C0, the standard MPM suffers from the so-called
cell-crossing instability when particles cross the cell boundaries. In an attempt to
remedy this issue, Bardenhagen and Kober (2004) introduced the generalized inter-
polation material point (GIMP) method. In GIMP, contrary to the original MPM,
particles are not point like, but rather have finite extent, see Fig. 1.15. The resulting
grid basis functions of GIMP are C1 smooth functions which resemble B-splines
functions used by Steffen et al. (2008b). The MPMwith B-splines, named BSMPM,
is now quite popular (Stomakhin et al. 2014a; Tielen et al. 2017; Gan et al. 2018).

Another issue related to particles moving from one cell to another is numerical
fracture—unphysical separation of the solid (Fig. 1.13). This happens when two
originally adjacent particles are separated by a distance high enough such that they

20 1 Introduction

(a) before fracture (b) fracture

Fig. 1.13 Numerical fracture due to instability in the MPM. This is simulation of a collision of
two rubber rings with the standard MPM (linear basis). No fracture model is included in the model

Fig. 1.14 Spherical
projectile penetrates a steel
plate: local Johnson-Cook
damage model. ULMPM
with linear weighting
functions

no longer interact with each other. This distance depends on the type of the grid
function used. Because of this numerical fracture, it is difficult to make sure the
predicted fracture is physical or numerical, see Fig. 1.14.

Even though in GIMP, particle domains are tracked to some extent, gaps between
them remain leading to low accuracy under arbitrary deformations. The Convected
ParticleDomain Interpolation (CPDI), the latest development inGIMPper our under-
standing, proposed in Sadeghirad et al. (2011), Sadeghirad et al. (2013) solves this
problem. In CPDI, particles are modeled as quadrilaterals and tetrahedrons, in 2D
and 3D, respectively. Therefore, the deformed solid is tiled without gap for arbitrary
loadings, see Fig. 1.15c. CPDI is very good at handling extreme tensile deformations
without exhibiting numerical fracture and is able to faithfully represent complex
geometries. However, it is not exempt from issues. First, CPDI suffers from mesh-
distortion problems that go against the spirit of the conventional MPM, see Wang
et al. (2019). Second, parallelization is more complicated in CPDI (Homel et al.
2016) as particles might have a domain of influence large enough to span over many
different CPU domains.

One of the latest developments in the MPM is the Generalized Particle in Cell
of Nguyen et al. (2021). It extends the CPDI to any element types and background
grid and it does not suffer from the mesh distortion of CPDI as it adopts a Total

1.5 A Brief Introduction to the MPM 21

(a) MPM (b) GIMP (c) CPDI

Fig. 1.15 Particles in the standardMPM (MPMwith hat and B-splines functions), GIMP and CPDI

Lagrangian formulation for the calculation of forces. We present some applications
of GPIC in Fig. 1.16.

Use of different time integration schemes. The most common implementation
of the MPM uses an explicit backward Euler integration scheme. Other explicit
integrations schemes have also been used with varying success. Sulsky et al. (2007)
adopted a staggered central difference integration scheme for the simulation of sea
ice dynamics which was later compared with the most common implementation
by Wallstedt and Guilkey (2008). Their conclusions are that there is only small
differences between these two schemes.

Implicit MPM also exists. Explicit time integration schemes are easy to imple-
ment, efficient and stable for short-duration dynamic problems. However, they are
required to adhere to the Courant stability condition dt < dx/c where dx is the grid
spacing and c is the speed of sound in thematerial. For low strain rate and quasi-static
problems e.g. manufacturing problems like metal rolling, upsetting, and machining,
this condition is severe and it is more efficient to use an implicit time integration
scheme then. In an implicit MPM, one can either form explicitly the Jacobian matrix
or adopt a matrix-free solver. In the following, we review the implicit MPM for both
dynamics and quasi-static problems.

The first to use an implicit scheme for the MPM were Cummins and Brackbill
(2002). They applied it to the simulation of quasi-static loading of granular materials
involving frictional contacts. Implicit integration schemes are known to be com-
putationally expensive. Therefore, to reduce computational time (by avoiding the
construction of the tangent matrix), they adopted the matrix-free Newton-Krylov
algorithm. Sulsky and Kaul (2004) reported a similar method and Love and Sul-
sky (2006b), Love and Sulsky (2006a) extended it for hyperelastic-plastic materials.
These papers adopted a three-field formulation to avoid volumetric locking (Sect. 9.6
provides a discussion on volumetric locking). Conservation of linear and angular
momentum of the MPM was discussed in detail in these references. Nair and Roy
(2012) implemented this matrix-free implicit dynamics for GIMP. This matrix-free
approach was extended to quasi-static problems in Sanchez et al. (2015) where it

22 1 Introduction

0 25 50 75 100 125 150 175 200

time (micro seconds)

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

di
sp
la
ce
m
en

t
[m

m
]

current
FEM

Fig. 1.16 Generalized particle in cell (GPIC) method: TL finite element meshes embedded in an
Eulerian grid. GPIC solves many problems of a particle-based MPM: (i) better representation of
solid boundaries, (ii) seamless enforcement of Dirichlet and Neumann boundary conditions, (iii)
seamless treatment of material interfaces, (iii) higher efficiency and (iv) better stress fields (Nguyen
et al. 2021)

showcased the advantage that a consistent material tangent, which is usually hard to
obtain for complex constitutive models, is not required.

In contrast, Guilkey and Weiss (2003), Wang et al. (2016) explicitly formed the
tangent stiffness matrix and used the Newton-Raphson method together with the
well known Newmark integration scheme to solve the equilibrium equations in time.
They reported that time steps hundreds of times larger than those used in explicit
MPMs. Moreover, the use of a consistent tangent allows time steps to be much larger
than those for the matrix-free formulation of Cummins and Brackbill (2002), Sulsky
and Kaul (2004). We refer to Iaconeta et al. (2017) for a detailed presentation of the
algorithm of Guilkey and Weiss (2003).

1.5 A Brief Introduction to the MPM 23

Cartesian grid versus unstructured grid. In the MPM a uniform Cartesian grid is
usually used. This eliminates the need for computationally expensive neighborhood
searches during particle-mesh interaction (i.e., to which nodes a particle maps its
data and vice versa). Furthermore, it is easier to develop smooth Ck (k ≥ 1) basis
functions with a Cartesian than with an unstructured grid.

On the other hand, in the geo-technical engineering community, unstructured grids
are usually adopted. Wieçkowski et al. (1999), Wieçkowski (2004) were the first to
use an unstructured grid for silo discharging applications. Since then, unstructured
meshes have been used in later works of related research groups in University of
Stuttgart, Germany and Delft University of Technology, The Netherlands e.g. Beuth
et al. (2011), Jassim et al. (2013). In contrast to a Cartesian grid, the search for which
element contains a given particle in an unstructured mesh is not trivial and is very
time-consuming. However, the use of an unstructured grid facilitates the enforcement
of complex boundary conditions (i.e., boundary conditions on curved surfaces).

In a line of research parallel to that of GIMP and CPDI, Zhang et al. (2011)
proposed the dual domain MPM (DDMPM) for unstructured grids. DDMPM was
motivated by the difficulty to developC1 functions for an unstructured grid tomitigate
the cell-crossing issue. The basic idea is to map the particle stresses to the grid
nodes and then interpolate them to obtain a continuous stress field at any point of
the domain. This dual mapping process makes a smoother gradient emerge. More
recently de Koster et al. (2019) developed C1 basis functions over unstructured grids
using Powell-Sabin functions (Powell and Sabin 1977). We refer to Sect. 5.4 for a
presentation of the MPM using unstructured grids.

High order MPMs. Even though impressive simulations have been done with the
MPM and its previously presented variants, rigorous analyses of the method for
simple problems show that the convergence rate is poor (rarely of second order) as
explained further in Chap. 9. Aiming to improve the order of convergence, Wallstedt
and Guilkey (2011) presented a weighted least square MPM for solids and Edwards
and Bridson (2012) proposed a moving least square (MLS) MPM for fluids. An
improved MPM (iMPM) was presented by Sulsky and Gong (2016). In the iMPM,
the hat functions are used for all the mapping except the velocity mapping from
particle to node for which MLS is used. Additionally, one point quadrature is used
i.e., the quadrature points are the cell centers. This removes cell-crossing instability.
They demonstrated second-order convergence for iMPM, but only for moderately
fined meshes. No convergence was observed for very fine meshes. Similar ideas
can be found in Wobbes et al. (2019). This high order of convergence were only
demonstrated for 1D problems. Very recently, Liang et al. (2019) also use one-point
quadrature but the cell center data are reconstructed, not via MLS, but with an extra
staggered grid. A presentation of the iMPM is given in Chap. 9.

Another stability issue of MPM is the so-called null space issue—the mapping
of non-zero particle values can result in zero nodal values. This problem arises from
the difference between the number of particles and the number of the nodal grid
points. Null space issue might be the culprit to the non convergence of iMPMs when

24 1 Introduction

used with very fine meshes. Methods to solve this issue are presented in Gritton and
Berzins (2017), Tran and Sołowski (2019).

A table presenting the characteristics of common MPM variants is given in
Table1.1. Note that even though the iMPM was applied to the standard MPM only,
it can be used with other MPM formulations.

1.5.5 Multiphysics MPM

Although the MPM was originally developed for mechanical problems, it also has
been extended to the simulation of multi-physics problems. Such simulations involve
solving a coupled systemofmore than one partial differential equations. For example,
for thermo-mechanical processes, the equation of motion is coupled with the energy
balance equation (or heat diffusion equation) as presented in Chen et al. (2008), Nairn
and Guilkey (2015), Fagan et al. (2016), Tao et al. (2016), Gritton et al. (2017), Tao
et al. (2018), Leroch et al. (2018). They show that when the explicit MPM solver is
used, incorporating the heat diffusion is straightforward using an staggered solver.
Among these works, Fagan et al. (2016) demonstrated that the MPM is able to simu-
late friction stir welding (FSW). FSW is a recent and complicated thermo-mechanical
process used to join different materials which is still not well understood. And Grit-
ton et al. (2017) reported first coupled chemical/mechanical MPM simulations of the
deformation of a silicon anode. As these are important developments in the MPM,
the algorithms used to solve thermo-mechanical coupling is presented in Sect. 10.3.

1.5.6 Contacts

A contact happens when two deformable solids touch each other. It is a key element
to understand many engineering problems such as pile-soil interaction, wear, metal
forming processes, etc.. The simulation of contacts remains challenging and various
algorithms (e.g. note-to-segment contact, segment-to-segment contact, penalty and
Lagrange multiplier methods) have been developed (Benson 1992). However, it is
much easier in theMPMdue to the use of a background grid. Indeed, it was developed
mainly to handle contact problems.

A no-slip no-penetration contact is inherent in the MPM i.e., contact of solids
is automatically handled without any extra numerical treatment. This is due to the
use of a single-valued velocity field for updating the positions of the material points.
This automatic no-slip contact ability of the MPM has been used in many works
that involve complex contacts. For example, Bardenhagen et al. (2005), Brydon
et al. (2005) used GIMP to simulate the compression of foam microstructures to
full densification. This is a challenging problem which involves the combination
of discretizing complex microstructures, simulating large deformations and multi-
ple contacts. This work demonstrated that particle methods are well suited for the

1.5 A Brief Introduction to the MPM 25

simulations of solids with complex geometries because body-fitted meshes are not
needed. Nairn (2006)4 applied the MPM to study the transverse compression and
densification of wood. Liu et al. (2015a) studies honeycomb sandwich panel sub-
jected to high-velocity impact. And more recently Sinaie et al. (2019) simulated the
large deformation response of cellular structures which involve many contacts.

In contrast, frictional contact between different bodies or self contact within a
single solid requires a modification of the standard MPM algorithm.

Multi-body frictional contacts. The first Coulomb frictional contact algorithm in
the MPM was probably presented by Wieçkowski et al. (1999) to model contact
between a deformable body and a rigid wall in silo discharging simulations. At the
same time, York et al. (1999), York et al. (2000) observed that, in MPM simulations,
two bodies sometimes “stick” to one another unphysicallywhen they should separate.
To alleviate this problem, they proposed the first contact algorithm for the MPM that
allows the contacting bodies to release from one another. But the contact is still no-
slip. Bardenhagen et al. (2000), Bardenhagen et al. (2001) extended York’s contact
algorithm to frictional contact and used it to model interaction between grains in
granular materials. Bardenhagen’s algorithm, known asmulti-material ormulti-body
contact, is very efficient as it is linear in the number of grains and allows separation,
sliding and rolling. The algorithm’s basic idea is to modify the velocities of contact
nodes (i.e., those receive contributions frommore than onematerial/body) to account
for the collision. This algorithm is very popular. For instance, Nairn (2013) used it
with modifications to model imperfect (debonding) interfaces. An improved version
of Bardenhagen’s algorithm was given in Lemiale et al. (2010) to model a metal
forming process called the equal channel angular pressing technique. This work
emphasized on the treatment of contact at interfaces between rigid and deformable
bodies. All prior applications have been limited to Coulomb friction. Most recently,
Nairn et al. (2018) generalizes the MPM approach for contact to handle any friction
law with examples given for friction with adhesion or with a velocity-dependent
coefficient of friction. The Bardenhagen’s algorithm will be presented in Sect. 8.1.

In the field of geotechnical engineering, a first contact algorithm for the quasi-
static MPM was presented in Beuth (2012). They adapted zero-thickness interface
elements, commonly used in FEM, to model contact between soil and rigid surfaces.
This technique applies only to the case where the contact surface is known prior the
start of the simulation. Bardenhagen’s algorithm was modified in Al-Kafaji (2013)
for adhesive contact using an explicit dynamicsMPM code. Yet another modification
of Bardenhagen’s contact model suitable for geotechnical engineering (that involves
contact between stiff structural elements and soil) was presented in Ma et al. (2014).

As most of MPM variants provide a noisy stress field, de Vaucorbeil and Nguyen
(2021b) presented a contact model for the TLMPM. The method produces smoother
stress fields which are crucial for e.g. damage/fracture problems. We illustrate this in

4 This work received the George Marra Award for paper of the year from the Society of Wood
Science and Technology.

26 1 Introduction

Fig. 1.17 Comparison of the equivalent stress field due to the contact between a rigid indenter and
an elastic half plane using ULMPM and TLMPM. These results were obtained using linear shape
functions and one particle per cell with a cellsize of 0.0025mm mm when the indentation force
equals 120N. One can clearly see that with ULMPM, the stress is not smooth (de Vaucorbeil and
Nguyen 2021b)

Fig. 1.18 Stress wave in a
granular material using the
TLMPM (de Vaucorbeil and
Nguyen 2021b)

Fig. 1.17 for a contact between a sphere and a rigid plane. And Fig. 1.18 for multiple
contacts. Liu and Sun (2020) presented an implicit MPM that adopts the level set
method to represent the solid boundary and the iMPM to have better quadrature
accuracy.

Frictional self contact. Homel and Herbold (2017) was the first to propose an algo-
rithm for frictional self contact. Its basic idea is to automatically and dynamically
detect contact nodes. This is achieved with a scalar field (actually its gradient) that
defines potential contact surfaces. The same idea (named DFG) was applied to frac-
ture and resulted in a first model for fracture and post-fracture frictional contacts i.e.,
contacts between crack faces.

1.5 A Brief Introduction to the MPM 27

1.5.7 Fracture

Fracture is defined as the separation of a solid into two or many pieces. This phe-
nomenon has been extensively studied since the pioneering works of Griffith (1920),
Irwin (1957). Theydeveloped thefield of fracturemechanicswhichhas found tremen-
dous applications in many engineering disciplines notably aerospace engineering.

Modeling the initiation and propagation of cracks in a solid is a challenging
problem as one needs to track a set of evolving internal surfaces across which the
displacement field is discontinuous. Basically, there are three approaches tomodeling
fracture: discontinuous, continuous andmixed continuous-discontinuous approaches
(Rabczuk 2013). We also refer to the interesting article of Boyce et al. (2016) that
presents an analysis of the predictability of a number of different techniques in
simulating ductile fracture.

In the discontinuous approach, the cracks are explicitly represented (following
a fracture mechanics theory). In the continuous approach, a crack is, however, not
explicitly modeled (adopting a damagemechanics theory (Kachanov 1958; Lemaitre
and Chaboche 1994)). In the later approach, the presence of cracks is treated via dam-
age variables used to degrade the stresses. Figure1.19 presents fracture simulations
using these two methods.

There exists yet another approach–the combined continuous-discontinuous
approach. The combined continuous-discontinuous approach to fracture combines
the two approaches, as its name implies. It was developed mainly to overcome the
shortcoming of continuous fracture models that a true material separation cannot be
captured.

Discontinuous approach. In the MPM, explicit cracks have been modeled as strong
discontinuities by allowing multiple velocity fields at nodes whose supports are cut

(a) Continuous approach (b) Discontinuous approach

Fig. 1.19 Continuous versus discontinuous approaches to fracture modeling. In a, fracture of a
cylinder under internal pressure impulse is given. The red color denotes the damage variable close
to onewhich corresponds to failed elements (Mandal et al. 2020a). Inb, cracking of afiber-reinforced
composite material is shown (Nguyen 2014)

28 1 Introduction

by the cracks. This is similar to duplicated nodes in the FEM. The crack can be
modeled using either the LEFM (Linear Elastic Fracture Mechanics) (Nairn 2003;
Tan and Nairn 2002; Nairn 2007a; Guo and Nairn 2004; Gilabert et al. 2011; Wang
et al. 2005) or cohesive zone models (Daphalapurkar et al. 2007; Nairn 2007b) or a
combination of both (Nairn 2009; Bardenhagen et al. 2011). Explicit fracture sim-
ulation is computationally expensive (as one needs to track evolving surfaces) and
prohibitive for large scale simulations. Furthermore, the implementation is intricate
particularly for complex crack patterns. The latest development in this direction is the
work of Moutsanidis et al. (2019a) that introduces a single velocity field for cracks
by modifying the grid basis functions.

Remark 5 Although a majority of these works involve simulations involving small
deformation, we don’t see any limitations for the discontinuous approach to be used
for large deformations.We do not think that theMPM is better than the FEM for small
(or moderately large) deformation fracture mechanics problems. This observation is
backed up by the outcome of the first Sandia fracture challenge (Boyce et al. 2014)
where the MPM was used by one team (Yang et al. 2014) and the MPM was not
giving the best solution.

Continuous approach. In the MPM, fracture has been modeled using various con-
tinuous methods. They all share one common feature: no need to explicitly represent
the crack surfaces as in the discontinuous approach. For penetration problems, frac-
ture is usually treated using a strain-based failure criterion and particle erosion. That
is, a particle is set to be failed when it satisfies a certain strain-based fracture con-
dition. When that happens, its deviatoric stress is set to zero, but it remains part of
the simulation, and its mass contributes to the overall inertia of the material. Thus
mass conservation is enforced. Strain-based failure combined with particle erosion
was also used in Ionescu et al. (2006) to study failure of soft tissues penetrated
by a low-velocity projectile. They reported convergent results for fine grids, but no
quantitative evidence was provided. An elastic-plastic material with particle erosion
was employed in Huang et al. (2011) to model penetration of thin steel plates and
perforation of thick aluminum plates. Sensitivity of the results with respect to grid
size and number of particles were studied, and some quantities showed convergence.
A constitutive model belongs to this category is given in Sect. 4.3.

For low strain rate and quasi-static problems, standard constitutive models are
often used. For example, a softening Mohr-Coulomb plasticity model was used in
Alonso and Zabala (2011) tomodel the failure of theAznalcóllar dam.More recently,
a softening Drucker-Prager plasticity coupled to the Grady Kipp damage model was
presented in Raymond et al. (2019) to model failure of aggregate materials. They
reported mesh-convergent results even though no special treatment was done to deal
with softening. Homel and Herbold (2017) adopted a Rankine damage model with
linear strain-softening.

Also for static and low strain rate dynamic problems, Schreyer et al. (2002), Sulsky
and Schreyer (2004) used a smeared crack model (they referred it as a decohesion

1.5 A Brief Introduction to the MPM 29

model), see e.g. Rots et al. (1985), Rots (1991). Chen et al. (2002) improved this
model by using a strain-based damage diffusion equation combined with a tensile
damage model. Similar works include Shen and Chen (2005), Shen (2009), Yang
et al. (2012), Yang et al. (2014). Implementation details of this decohesion model in
the MPM are given only recently in Sanchez (2011) and he demonstrated the results
are mesh biased. That is, accurate solutions are achieved only for cases in which the
crack orientation coincides with the orientation of the grid cell lines. Sanchez went
even further to comment that research on smeared crack models in the MPM would
be a waste of time.

In the original damage mechanics framework, damage is determined using local
variables such as stress and strains. This has proven to create mesh-dependent soften-
ing. To alleviate this issue, non-local models can be used. By non-local, wemean that
damage is determined using non-local variables such as averaged stress and strains
in the vicinity. The idea is to introduce a length scale in the equation. Burghardt et al.
(2012) were the first ones to implement a non-local plastic model in the MPM.

Non-local damage can also be simulated using a phase field variational dam-
age/fracture (PFF) theory see e.g. Bourdin et al. (2008), Miehe et al. (2010), Wu
(2017), Wu and Nguyen (2018) and the most recent review of Wu et al. (2019). PFF
was implemented in an MPM code for the first time by Kakouris and Triantafyl-
lou (2017a, b). Unfortunately only problems involving small deformation without
contact were demonstrated then. Recently, Cheon and Kim (2019) also presents a
similar method. They use adaptive grid refinement and particle splitting to capture
the gradients of the phase field. In the computer graphics community, a similar idea
has been recently proposed in Wolper et al. (2019) with impressive fracture sim-
ulations typically seen in this community. Another variational fracture model, the
eigen-erosion model of Schmidt et al. (2009) was used by Zhang et al. (2020) to
model small deformation brittle fracture.

Figure1.20 shows an application of theTLMPMcoupledwith a nonlocal Johnson-
Cook damage model to simulate ductile fracture due to bullet penetration into aWel-
dox steel plate.

Continuous-discontinuous approach. The first continuous-discontinuous brittle
fracture model in the MPM (precisely CPDI) is presented in Homel and Herbold
(2017). In this model, fracture is first treated with a continuum damage model and
then a self-contact algorithm is applied to the cracked nodes to separate the materials
on the two sides of the crack. The damage model is enhanced with random material
properties to mitigate mesh bias and the fracture energy is scaled with the grid size.
Post-failure contact between the faces of a crack is allowed using the DFG algorithm.
Recently, Homel and Herbold (2018) applied their model for mesoscale simulations
of porous materials.

Remark 6 With the development of variational approaches to fracture (or phase-
field fracture models), the modeling of the initiation and propagation of complex
crack networks in solids on a fixedmeshwith conventional continuumfinite elements
can be done. Therefore, the statement that meshfree methods are better suitable for

30 1 Introduction

Fig. 1.20 Time evolution of impact between the projectile and the target for an initial velocity of
250m/s (with particle erosion). The colors show the amount of damage present in each particles.
For ease of visualisation, only a small part of the simulated domain focused around the impact area
is shown (de Vaucorbeil et al. 2022b)

fracture seems no longer convincing. Nevertheless, it is very attractive to have a
method that can handle large deformation, contact, fracture and post-failure contacts
between fragments. The MPM might be such a method even though more works
must be done before this goal is achieved.

1.5.8 Fluids and Gases

Although the MPM was developed for applications in solid mechanics and its main
application area is still solid mechanics, it has also been applied to fluid mechanics
problems. This probably arises from the need to simulate fluid-structure interactions
(FSI) using just the MPM—to avoid coupling the MPM solid solver with a fluid
solver which is not an easy job. Herein, we only discuss MPM algorithms for fluids.
For works where the MPM used for solids is coupled to a fluid solver, we refer to
Sect. 1.6.2.

There are basically two ways to handle fluids (and gases) using the MPM. The
first is the so-called weakly compressible MPM. This way is almost identical to the
solid MPM solver except that a constitutive model for fluids is used. This is done
by describing the relation between the fluid pressure and density using an artificial
equation of state (EOS). This fluid MPM solver was first presented in York et al.
(1999), and it has been used for gas dynamics problems in York et al. (2000), Tran
et al. (2010), Ma et al. (2009b). It has also been used for fluid flow problems (Li
et al. 2014; Mast et al. 2012). Using this fluid MPM solver, comparative studies of
SPH and the MPM for fluid mechanics are presented in Zhao et al. (2017), Vargas
et al. (2018), Sun et al. (2018). Overall, it has been shown that both MPM and SPH
predictions are quite similar but theMPMcomputational time is smaller. This weakly
compressible fluid/gas MPM solver is presented in Sect. 10.1.

There are twomain issueswith theweakly compressible fluidMPM. First, if using
an explicit time solver, very small time step is needed owing to the need to use a very

1.5 A Brief Introduction to the MPM 31

large bulk modulus. Second, pressure oscillation occurs. To solve these problems,
the second way is the truly incompressible MPM. Stomakhin et al. (2014b) in the
computer graphics community were the first to present this formulation. They used
the Chorin’s operator splittingmethod (Chorin 1968). In the engineering community,
Zhang et al. (2017), Kularathna and Soga (2017) presented similar formulations.

1.5.9 The MPM Versus Other Methods

Which meshfree method should I use? This is the constant question facing every
person new to MMs every time they need to solve a large deformation problem, if
they are not forced to use any particular method. It is rather certain that no one is able
to answer this question and neither arewe.Nevertheless, to these beginners, hereinwe
discuss the comparison between the FEM, SPH, the discrete element method (DEM),
Galerkin MMs, immersed boundarymethods (Mittal and Iaccarino 2005; Schillinger
et al. 2012), and the MPM based on the literature. By based on the literature, we
meant that this section is merely based on results reported by other researchers. We
synthesize their result and give a picture of common MMs.

SPH is probably the most popular meshfree method as it has been used in engi-
neering and computer graphics and incorporated into many commercial softwares
such as AUTODYN, PAM-CRASH, LS-DYNA and ABAQUS. Even though not a
continuum-based numerical method, the ability to deal with large deformation and
fracture makes the DEM a very popular technique particularly in geo-technical engi-
neering (Cundall and Strack 1979; Scholtès and Donzé 2012; Sinaie et al. 2018a).
One can attach the popularity of these two methods to their simplicity in implemen-
tation and they work in 2D and 3D.

The first comparative study of SPH and the MPM for hypervelocity impact prob-
lems was conducted by Ma et al. (2009a), Ma et al. (2009b). For the simulations
considered, they showed that the MPM is faster and more accurate than SPH (pre-
cisely SPH in LS-DYNA). This can be explained by the fact that, the critical time
step size in the MPM depends on the cell size of the background grid, rather than the
particle space as in SPH, so that the time step used in the MPM is much larger than
that of SPH. Furthermore, there is no neighboring particles search which is very time
consuming. Note, however, that this conclusion is rather superficial as it was based
on only a few numerical tests. It is certain that a working MPM simulation requires
less tricky ad hoc parameters than SPH. A typical MPM simulation requires only
data such as mesh spacing and time steps in the same manner with the FEM.

Interestingly, explicit MPM is faster than LS-DYNA explicit FEM for the well
known Taylor impact problem, see Ma et al. (2009b). This superior efficiency was
also reported in Leroch et al. (2018) for micro-milling simulations. The reason is the
same: the critical time step size in the MPM is very much larger than the one in the
FEM as the FEM mesh deforms and the element sizes become very small.

Within the context of implicit dynamics, Iaconeta et al. (2017) carried out a com-
parative study of the standard MPM and the so-called Galerkin meshfree method

32 1 Introduction

Fig. 1.21 The optimal transport meshfree (OTM) method: beside the optimal transport theory
which is new to the computational solid mechanics community, the OTM method employs classic
concepts for the discretization: nodes and material points. The material points play the role of
integration points and move in the velocity field of the nodes. As there is no grid, nodal shape
functions are more involved. There is no mapping from material points to the grid as in the MPM

(GMM) proposed in Espluga (2014). This GMM is very similar to the OTM of Li
et al. (2010), except that a forward Euler is used for time integration (Fig. 1.21). The
authors find that the GMM using the max-ent and MLS lack robustness for very
large deformation problems. This lack of robustness is due to the meshfree nature
of these shape functions i.e., one has to ensure that there are always sufficient nodes
surrounding a given material point. A stabilized OTM was presented in Weißenfels
and Wriggers (2018). Wobbes et al. (2020) presented a comparative study of the
MPM and the OTM where they found that despite being quite different, these two
methods bear similarities.

Remark 7 Recent works combine theMPM and SPH. For example, Raymond et al.
(2018) coupled SPH to an MPM. They used SPH in the bulk and MPM around the
surfaces for an easy enforcement of boundary conditions. He et al. (2019) developed
the so-called SMPM where the particle velocities and stresses are smoothed using
the SPH functions. The SMPM is shown, for impact simulations, to perform better
than the traditional MPM and SPH and more efficient than the latter. See also He
and Chen (2019) for an application of the SMPM to strain localization.

For granular flow, some studies on the performance of the DEM and MPM have
been reported in Coetzee (2003), Coetzee et al. (2007), Ceccato et al. (2018), Gracia
et al. (2019). Basically, the MPM can capture the DEM accuracy if a proper consti-
tutive model is adopted. One might argue that MPM should be used for large scale
simulations using constitutive models derived fromDEM simulations. In Dunatunga
and Kamrin (2015), a constitutive framework for granular media was presented that
is able to simulate in one setting a wide range of granular behaviors spanning several
phases: solid-like static behavior, plastic flow (up to very large strains), as well as

1.5 A Brief Introduction to the MPM 33

Fig. 1.22 Boundary
conforming methods (left)
versus immersed boundary
methods (right)

separation and re-consolidation of the material. A recent work of Jiang et al. (2019)
presented a combined MPM-DEM method.

Although the background Eulerian grid originally used in the MPM is to handle
collision, recent trends of using the finite element quadrature, see Liu and Sun (2020),
for evaluating the weak form integrals (this trend started from the work of Sulsky
and Gong (2016) with the iMPM as discussed previously) make the MPM similar
to immersed boundary methods or vice versa. In immersed boundary methods, the
solid under consideration is immersed in a grid which is larger than it and does
not conform to the solid boundary, see Fig. 1.22. Some popular immersed boundary
methods are the finite cell method (Parvizian et al. 2007), and cut FEM (Burman
et al. 2015). The tricky part of these methods is the quadrature for the cells cut by the
solid boundary. Recently, Liu and Sun (2020) used material points to represent the
solid domain, level sets to capture the boundary and information of material points
are mapped to the standard quadrature points for numerical integration.

1.5.10 Coupling the MPM with Other Methods

As no method is without shortcomings, it is natural to want to couple two (or even
more than two)methods together to take advantages of their best features. Herein, we
review works that present the coupling of the MPM with other numerical methods
be it the FEM or molecular dynamics. Section1.6.2 discusses the coupling of the
MPM with other methods for fluid-structure interaction problems.

It is reasonable to employ the efficient and accurate FEM in regions where the
deformation is moderate and a particle method such as SPH or the MPM in domains
featuring high deformation. Zhang et al. (2006) developed an explicit material point
finite element method (MPFEM) to take advantages of both FEM and the MPM.
The basic ideas is that the solid is discretized by a mesh of finite elements, and a
computational grid is additionally predefined in the potential large deformation zone.
The nodes covered by the grid are treated asMPM particles, and the remaining nodes
are treated as FE nodes. TheMPFEMwas improved later by Lian et al. (2011a), Lian
et al. (2012), Chen et al. (2015). These algorithms are not presented here, and we

34 1 Introduction

refer to the textbook of Zhang et al. (2016b) for details. Results reported in these
papers show that the coupled MPFEM is indeed faster than the pure MPM.

The MPM has been coupled with molecular dynamics to achieve a multiscale
atomistic-to-continuum method (Ayton et al. 2001; Lu et al. 2006; Chen et al. 2012;
Liu et al. 2013). It is the particle nature of MPM that makes the coupling straightfor-
ward. As we lack experiences in this area, our discussion is merely for completeness.
We refer the reader to the textbook of Zhang et al. (2016b) for details.

1.6 Applications of the MPM

The MPM has been applied to a wide range of problems involving solids, fluids
and gases undergoing very large deformation. This section attempts to present an
extensive overview ofMPMapplications. The idea is to give an outline of the types of
simulation that can be done with the MPM. By no means it is exhaustive. Therefore,
we apologize to those authors whose works were not mentioned here due to our
negligence.

This section is organized as follows. Sections1.6.1 presents works done in the
geo-technical engineering field. Fluid-structure interactions are given in Sects. 1.6.2.
Image-based simulations are discussed in Sects. 1.6.3. Sections1.6.4 covers the
works done by computer graphics researchers. Finally, Sects. 1.6.5 summarizes
important works from other fields. As contact and fracture problems were detailed
earlier (see Sects. 1.5.6 and 1.5.7), they are not covered specifically in this section.

1.6.1 Large Strain Geo-Technical Engineering

The MPM has been adopted in large strain geo-technical engineering problems
including landslide (Andersen and Andersen 2010b; Llano-Serna et al. 2016; Soga
et al. 2015; Yerro et al. 2018), silo discharging (Wieçkowski et al. 1999;Wieçkowski
2004; Mühlhaus et al. 2001), anchor pull-out (Coetzee et al. 2005), excavator bucket
filling (Coetzee et al. 2007), pile driving (Lim et al. 2013; Nguyen et al. 2016; Galavi
et al. 2017), problem of subsidence of landfill covers (Zhou et al. 1999), shaped-
charge jet penetration in wellbore completion (Burghardt et al. 2010; Homel et al.
2015) and installation of geosynthetics materials (Hamad et al. 2015). The MPM
was also used to model large deformation of saturated porous media, see for instance
Zhang et al. (2009), Beuth et al. (2011), Jassim et al. (2013), Zheng et al. (2013), Abe
et al. (2014), Ma et al. (2014), Yerro et al. (2015), Pinyol et al. (2017). More recently,
the MPM has been successfully used in the field of terramechanics (Agarwal et al.
2019) to simulate the interaction of rigid wheels with dry granular media. We refer
to the book of Fern et al. (2019) for a more complete coverage of MPM applications
in geo-engineering.

1.6 Applications of the MPM 35

All the above works adopted the conventional theory of continuum mechanics to
the exception ofMühlhaus et al. (2001) who used the Cosserat continuum framework
in the MPM. The Cosserat theory is different as it also involves rotational velocities
and the balance of angular momentum results in a non-symmetrical Cauchy stress
tensor.

Remark 8 People who are familiar with FLAC (Fast Lagrangian Analysis of Con-
tinua)5 developed their ownMPMformulations. For exampleKonagai and Johansson
(2001) made the Lagrangian Particle finite difference method (LPFDM) for geome-
chanics. Differences with the standard MPM lie in the fact that stresses are smeared
over the background grid i.e., internal forces are computed using the averaged stress
tensor6 stored at the element center.

1.6.2 Fluid-Structure Interaction

Fluid-structure interaction (FSI) is the interaction of a rigid or deformable structure
with an internal or surrounding fluid flow. Fluid-structure interactions are a crucial
consideration in the design of many engineering systems, e.g. aircraft, spacecraft,
engines and bridges. Two main approaches exist for the simulation of fluid-structure
interaction problems: (1) the monolithic approach where the equations governing
the flow and the displacement of the structure are solved simultaneously—with a
single solver—and (2) the partitioned approach where the equations governing the
flow and the displacement of the structure are solved separately—with two distinct
solvers. We refer to Bazilevs and Takizawa (2017) for a comprehensive account on
this very challenging topic. The following of this section reviews works on FSI using
the MPM.

Monolithic FSI MPM. The first FSI using the MPM was presented in York et al.
(1999), York et al. (2000). The structures studied in this work are two dimensional
membranes. In this formulation, a membrane is represented by a set of material
points and the fluids/gases by a another set of particles, see Fig. 1.23a. Both types of
particles interact with each other via the background grid. The constitutive model for
the membranes is such that they only sustains axial stress. The algorithmwas applied
to airbag impact simulations and the results were found to be in good agreement with
experiments.

This model was improved later by other researchers e.g. Gan et al. (2011), Lian
et al. (2011c), Lian et al. (2014), Nguyen et al. (2017). Particularly, Lian et al. (2011c)
treat the membrane (actually reinforcement bars) as 1D two-node bar elements. They
now connect the membrane particles together, see Fig. 1.23b. By doing this, the
number of particles necessary to discretize the membrane is significantly reduced

5 FLAC is a two-dimensional explicit finite difference program for engineering mechanics compu-
tation, and a product of Itasca: http://www.itascacg.com/software/flac.
6 Averaged means a volume weighted sum of particle stresses.

http://www.itascacg.com/software/flac

36 1 Introduction

Fig. 1.23 Monolithic FSI
solver using the MPM. If the
solid part is a structure, it can
be discretized by just a set of
particles as in a or it is
modeled as a set of finite
elements (bar elements in 2D
and membrane elements in
3D)

(Nguyen et al. 2017). In this model, the membrane is discretized by a set of two-
node bar finite elements. For these elements, their mass and their internal forces are
calculated the FEM way. Then, instead of solving the movement of these elements’
nodes the FEM way, the mass and internal forces are projected onto the background
grid. Then, the motion of the membrane particles and the fluid particles are updated
the standard MPM way.

Based on the work of Lian et al. (2011c), Hamad et al. (2015) developed a new
3D solid-membrane coupling method. It is essentially a coupling of an MPM for the
solid and a FEM (three-node triangular elements) for the membrane. The method
was applied to simulate the installation process and the behavior of geosynthetics
systems for geotechnical applications. In the computer graphics community, similar
work has been done. For example Guo et al. (2018) presented anMPM for thin shells
with frictional contact where the shells are represented by Catmull-Clark subdivision
surfaces of which control points are treated as particles in an MPM method. In a
related work, but for bird strike simulations, Wu et al. (2018) presented a coupling
of shell finite elements with the MPM (to model the large deformation of the poor
birds).

The algorithm of York et al. (1999), York et al. (2000) was applied to fluid-
structure interaction problems in Hu et al. (2009), Mao (2013), Yang et al. (2018),
Su et al. (2019), Sun et al. (2019). In Su et al. (2019), temperature effects were
considered. Sun et al. (2019) presented a set of benchmark tests for FSI problems
and verified MPM results against experiments and other numerical methods. All
these works only consider no-slip condition on the fluid-structure interface, to the
exception of Hu et al. (2009, 2011) who considered slip boundary conditions. Hu
and coworkers’ works introduced many techniques for a robust MPM-based fluid-
structure interaction simulator: (i) interfacematerial points to track thefluid- structure
interface, (ii) fluid particle regularization (or redistribution) to alleviate large particle
distortion which is typical of fluid motion, (iii) adaptive mesh refinement, using
GIMP, to reduce computational cost that is inherent in traditional uniform grids.

PartitionedFSIMPM. There also exist hybrid approaches or partitioned approaches
where a fluid flow solver is coupled with an MPM solid solver for FSI problems e.g.

1.6 Applications of the MPM 37

Guilkey et al. (2007), Gilmanov and Acharya (2008b), Sun et al. (2010). This was
motivated by the fact that the MPM is not the best solver for fluids.

In Gilmanov and Acharya (2008b), Gilmanov and Acharya (2008a) the hybrid
immersed boundary method (HIBM) for fluids is combined with the MPM for solids
and is presented as an effective strategy for solving 3D fluid-structure interaction
problems. The idea is based on the immersed boundary method of Peskin et al.
(2002) where the fluid is treated using a Cartesian grid (with finite difference solver)
and the fluid-structure interface is immersed in this grid. In Gilmanov and Acharya
(2008b), the structure is a 3D soft membrane (for example a capsule moving in a
blood) which is discretized by an unstructured mesh made of three-node triangular
finite elements. The deformation of themembrane was, however, not treated by using
the FEM but the MPM. That is, the membrane mass and internal forces (calculated
the FEM way) are projected to an MPM grid. Therefore, there are the grids in this
method: one Cartesian grid for the fluid, one unstructured grid for themembrane, and
one Cartesian background grid to solve for the membrane deformation. As one can
see, the work of Lian et al. (2011c), Hamad et al. (2015) reinvented this algorithm
(without knowing its existence).

1.6.3 Image-Based Simulations

The MPM (or any meshfree methods) is better suited for image-based simulations
involving large deformations than the FEM. This is because the MPM requires only
a set of particles, not a body-fitted mesh. It is easier to transform an image into a set
of points (particles in the MPM) rather than a finite element mesh. The algorithm
used for this is as simple as reading the image voxel by voxel, converting each voxel
into a material point. This idea has been exploited in a couple of works such as
Bardenhagen et al. (2005), Brydon et al. (2005), Lelong and Rochais (2019) for the
simulation of foam microstructures, Nairn (2006) for woods, Lee and Huang (2010)
for low-density snow, and Xue et al. (2006b), Xue et al. (2006a) for highly filled
composites and nanoparticle-polymer composite membranes.

Image-based simulations find natural applications in biomechanics, see for
instance Guilkey et al. (2006), Liu et al. (2015b). A recent work in this direction
is that of Liu and Sun (2019) in which a shift boundary method to apply boundary
conditions on surfaces not aligned with the grid nodes is introduced.

There are two points warrant further discussions on this. First, all meshless meth-
ods, not just the MPM, are suitable for image-based numerical simulations. Second,
when images of very high resolution are involved, the resulting numerical model can
be very large. Therefore converting each voxel to a particle might not be the most
efficient way to do image-based simulations. In spite of that, as of today and to the
best of our knowledge, nobody has published more efficient algorithms.

Remark 9 It should be noted that there are many contact events in the simulations
of foam densification reported in Bardenhagen et al. (2005), Brydon et al. (2005) but

38 1 Introduction

they are just no-slip contacts. If needed, frictional contacts of these complex foam
materials can be treated using the self-contact method of Homel and Herbold (2017).
But this has yet to be done.

1.6.4 Computer Graphics

Why discussing works done by the computer graphics community? Because inno-
vative MPM algorithms have been developed by this community. Their computer
science knowledge helped them to write efficient MPM codes that can run in real-
time (Hu et al. 2019). We, engineers, can definitely benefit from their contributions.
Being aware of the advances made by the computer graphics community would
prevent people from reinventing the wheel.

TheMPM is now popular in computer graphics. It is integrated into the production
framework of Walt Disney Animation Studios and has been used in featured anima-
tions including Frozen, Big Hero 6 and Zootopia (Jiang et al. 2016). The power of
the MPM has been demonstrated in a number of papers for simulating various mate-
rials including elastic objects, sand, cloth, hair, snow, lava, and viscoelastic fluids
(Daviet and Bertails-Descoubes 2016; Fu et al. 2017; Jiang et al. 2017; Hu et al.
2018; Wolper et al. 2019; Han et al. 2019). It all started with the pioneering work
of Stomakhin et al. (2014a) who developed an semi-implicit MPM technique and
constitutive model to animate the unique behavior of snow. The snow is treated as
a continuum avoiding the need to model every snow grain. Jiang et al. (2015a) sub-
sequently extended this MPM to incorporate phase changes due to heat flow. Yue
et al. (2015) presented a method to simulate dense foams that exhibit nonlinear, vis-
coplastic behaviors using the highly flexible Herschel-Bulkley constitutive model.
To robustly treat large shearing effects characteristic of dense foams, the authors
developed a particle resampling technique, based on the Poisson disk sampling, for
the MPM to prevent the formation of nonphysical voids. Topology optimization Li
et al. (2020b).

The computer graphics community focuses on the efficiency and visual effects of
simulators, but not so much on the physics. So, if engineers want to use advances
made by this community, they need to make sure that the physics relevant for the
considered problems are well modeled.

1.6.5 Other Applications

In the context of geophysical simulation, Moresi et al. (2003), Moresi et al. (2007)
reinterpreted the MPM as a type of FEM with the particles as integration points.
They coined the method FEM with Lagrange integration points (FEMLIP). They
computed quadratureweights such that affine functions can be exactly re-constructed,
giving a second-order accurate reconstruction. Their entire algorithm does, however,

1.7 Open Source and Commercial MPM Codes 39

not achieve second-order accuracy, due to other low-order approximations as in
the standard MPM. Later, they proposed a multiscale MPM in the sense of FE2

methods (reviews of which are given in Geers et al. (2010), Nguyen et al. (2012))
using computational homogenization to obtain on-the-flymicromechanically derived
constitutive behaviors.

The MPMwas used in sea ice models for climate simulation (Sulsky et al. 2007),
snow avalanche (Gaume et al. 2018, 2019; Li et al. 2020a, 2021) as well as more
traditional explosive-related simulations e.g. explosive welding (Wang et al. 2011),
high explosive explosion (Ma et al. 2009b), explosively driven metals (Lian et al.
2011b), cutting processes (Ambati et al. 2012), high melting explosive with cavities
(Pan et al. 2008), blast and fragmentation (Banerjee 2004; Hu and Chen 2006), and
wear (Mishra et al. 2019). Different low and high velocity impact problems were
studied in Li et al. (2011), Zhou et al. (2013), Zhiping Ye et al. (2018).

1.7 Open Source and Commercial MPM Codes

Open source codes play an enormous role in the development of any numerical
method. In the context of the MPM, there are various open source codes written in
high-level and low-level programming languages. We discuss these codes herein.
The aim is to help the readers to find the MPM implementation that suits their needs
best.

MPM codes written in a high level, dynamic language such as Matlab or Julia
can be found in Sinaie et al. (2017), Coombs and Augarde (2020). Julia is a high-
level programming language designed for high-performance numerical analysis and
computational science, similar toMatlab but much faster. These codes are best suited
for education and implementation of new ideas. However, they are quite slow for
computationally intensive simulations.

On the other hand, to solve large scale problems, one would need a more efficient
MPM code, usually implemented in a low-level language such as Fortran or C++.
This need can probably be covered by existing efficient open source codes:

• Uintah, http://www.uintah.utah.edu
• Mechsys, http://mechsys.nongnu.org/index.shtml
• MPM-GIMP, http://sourceforge.net/p/mpmgimp/home/Home/
• NairnMPM, http://osupdocs.forestry.oregonstate.edu/index.php/Main_Page
• CB-Geo, https://www.cb-geo.com/research/mpm/
• MPM3D, http://comdyn.hy.tsinghua.edu.cn/english/mpm3d.

All are written in C++. CB-Geo is an MPM code for geomechanics problems.
Uintah implements probably the most efficient MPM to date: it uses blocked struc-
tured adaptive mesh refinement (BSAMR) grids running on hundreds to thousands
of processors. It is not easy for people new to this code to modify it though.

http://www.uintah.utah.edu
http://mechsys.nongnu.org/index.shtml
http://sourceforge.net/p/mpmgimp/home/Home/
http://osupdocs.forestry.oregonstate.edu/index.php/Main_Page
https://www.cb-geo.com/research/mpm/
http://comdyn.hy.tsinghua.edu.cn/english/mpm3d

40 1 Introduction

For engineers and scientists who just want to use existingMPMpackages for their
research, open source MPM codes are as useful as commercial FE packages such
as Abaqus. To researchers whose work involves developing new MPM techniques,
these codes are also useful as it is not an easy task to develop an efficient, scalable
and extensible MPM code from scratch.

A commercial MPM package is MPMsim, found at http://www.mpmsim.com.
The core is written in C++ and it has a user friendly interface written in Matlab. It
can convert CAD files to material points.

1.8 Layout

Theprevious discussion has painted an overall picture about theMPM.The remaining
of the book is to fill in the details. Eleven ready-to-code algorithms are provided
such that everyone can implement the MPM and carry out the simulations given
in Fig. 1.24. The implementation can be done either in easy-to-use programming
languages such as Matlab and Julia or in the static language C++.

The remaining of the book is organized as follows.

Fig. 1.24 Representative simulations that can be done using MPM algorithms presented in this
book. These simulations involve very large deformation, contacts and fracture. And one simulation
is a fluid-structure interaction problem

http://www.mpmsim.com

1.8 Layout 41

Chapter 2 describes the general basic MPM for solids. By general, we mean
that no specification of the shape functions is given. And by basic, we mean that
collisions/contacts are not discussed. Both the updated Lagrangian and total
Lagrangian MPM are covered. Plane stress/strain, axi-symmetric and 3D formu-
lations are all discussed.

Chapter 3 presents different MPM versions that basically adopt different shape
functions e.g. hat functions, B-splines, Bernstein, GIMP and CPDI. They provide
specific formulae for φI (x) in the MPM algorithm, cf. Fig. 1.12. Also treated is a
new formulation called generalized particle in cell (GPIC) which combines the FEM
and MPM that takes advantages of both methods.

Chapter 4 provides some common constitutive models such as linear elastic,
hyperelastic and elasto-viscoplastic models. These models furnish a way to com-
pute the stress σ in Fig. 1.12. All the components of a material point method for
solid mechanics are now ready. We move to implementation details.

Chapter 5 discusses some implementation details such as particle generation
for simple geometries and for images, initial and boundary conditions, MPM with
unstructured grids and visualization of MPM results. These implementation details
will be used in our different codes discussed in the next two chapters.

Chapter 6 presents a tutorial MPM code written in Matlab. This code serves to
illustrate the MPM algorithms discussed in the book and it can be used to solve
one, two and three dimensional problems. However, only small problems should be
solved using this code. The chapter prodives some MPM simulations involving a
collision of elastic solids, high velocity impact of a steel disk into a plastic solid
and lateral compression of thin-walled steel tubes. This last simulation is validated
against available experiments and the involved validation process is given.

Chapter 7 describes Karamelo—an open source parallel C++ package for the
material point method. This code can be used to solve large-scale problems as it
can be run on multiple processors using MPI. Simulations shown in Fig. 1.24 were
solved using this code. With such an efficient code, we present three dimensional
simulations to demonstrate the capability of the MPM in solving large deformation
solid mechanics problems.

Chapter 8 presents some advanced topics such as contacts and fracture. For mod-
eling contacts, we present updated Lagrangian MPM, total Lagrangian MPM and
GPIC contact formulations. Both frictionless and frictional contact are discussed.
One notable application of these contact algorithms is the simulation of scratch test–
a popular mechanical test to measure a solid’s hardness. We then discuss fracture
modeling in the framework of the MPM. We present different nonlocal fracture/-
damage theories including the variational phase-field fracture and nonlocal gradient
enhanced Johnson-Cook damage model. Application of the MPM to model large
strain ductile fracture of metals is then provided.

Chapter 9 discusses the mathematical analysis of the MPM regarding its stability
and accuracy. We discuss the conservation of energy and momenta in various MPM
variants. We then present the method of manufactured solutions—a method suitable
for testing convergence of nonlinear codes.We describe the improvedMPM (iMPM)
that uses MLS (moving least square) data construction in a MPM framework to

42 1 Introduction

enhance the convergence rate of the MPM.We study the convergence behavior of all
MPM variants discussed in this book for a problem involving only compression/ten-
sion deformation and another problem involving simple shear with superimposed
rotation. Convergence tests reveal shortcomings (if any) of any method and thus
provide guidelines for improvements.

Chapter 10 discusses fluid/gasesmodeling, membranemodeling and heat conduc-
tion. With the information provided in this chapter, one can carry out fluid-structure
interaction simulations, air-bag simulations and thermo-mechanical simulations.

The book contains some appendices. Appendix A discusses the strong and weak
form of the momentum equation and their equivalence. Appendix B presents deriva-
tion of various CPDI basis functions. Some useful utilities such as how to use an open
source computer algebra system (SageMath and SymPy) to derive CPDI functions,
how to use remote machines to run large-scale simulations and consistent units are
given in Appendix C. Appendix D gives a short but practical presentation of updated
and total Lagrangian, explicit dynamics FEM for nonlinear solid mechanics. This is
useful to see the difference and similarities of the MPM and the FEM. Appendix E
treats implicit dynamics FEM so that it is easier to understand implicit MPM (even
though this is not discussed in this book). Finally, we describe yet another MPM
code in Appendix F, now written in Julia—a new high level dynamic programming
language which is easy to use as Python and as fast as C.

1.9 Notations

Three notations are adopted in this work namely indicial notation, tensor notation and
matrix notation (also known as engineering notation). The squared magnitude of a
three-dimensional vector expressed in these three notations is given in the following
equation

r2 = xi xi︸︷︷︸
indicial notation

= x · x︸︷︷︸
tensor notation

= xTx︸︷︷︸
matrix notation

(1.18)

Any vectors and tensors in this book is defined in a rectangular Cartesian coordi-
nate system. Therefore a vector x can be written as

x =
⎡
⎣x1
x2
x3

⎤
⎦ , or x =

⎡
⎣x
y
z

⎤
⎦ (1.19)

In indicial notation, the components of tensors are explicitly specified e.g. a vector
in indicial notation is hence given by xi in which the index i ranges from one to
the number of spatial dimensions. Indices which are repeated twice in a term are

1.9 Notations 43

Table 1.2 Important notations used in this contribution. Subscript I denotes the value of grid nodes,
and subscript p denotes the value of particles

Variable Type Meaning

xp Vector Particle position (time-dependent)

Xp Vector Particle initial position

vp Vector Particle velocity

mp Scalar Particle mass

Vp Scalar Particle volume

ρp Scalar Particle density

Tp Scalar Particle temperature

σ p Tensor/Matrix Particle Cauchy stress

Pp Tensor/Matrix Particle 1st Piola-Kirchoff stress

Fp Tensor/Matrix Particle deformation gradient

Lp Tensor/Matrix Particle velocity gradient

Dp or ε̇ p Tensor/Matrix Particle rate of deformation

vI Vector Node velocity

ṽt+Δt
I Vector Temporary updated node velocity

vt+Δt
I Vector Final updated node velocity

mI Scalar Node mass

φI (xp) or φI p Scalar Weighting function of node I evaluated at
particle p

NI (xp) Scalar Hat functions of node I evaluated at p

∇φI (xp) or ∇φI p Vector Gradient of weighting function of node I
evaluated at particle p

∇0φI (xp) or ∇0φI p Vector Gradient (w.r.t X) of weighting function
of node I evaluated at p

summed, a rule known as the Einstein summation, an example ofwhich is the squared
magnitude of a vector:

r2 = xi xi = x21 + x22 + x23 (1.20)

Scalars are written using a normal font whereas tensors of order one or greater are
expressed in boldface. Table1.2 provides a list of important notations used in this
contribution. And Table1.3 presents abbreviations.

44 1 Introduction

Table 1.3 A list of abbreviations used in this book

Abbreviation Full name

MPM Material Point Method

ULMPM Updated Lagrangian Material Point Method

TLMPM Total Lagrangian Material Point Method

PIC Particle in Cell

FLIP Fluid Implicit Particle method

FEM Finite Element Method

ULFEM Updated Lagrangian Finite Element Method

TLFEM Total Lagrangian Finite Element Method

CPDI Convected Particle Domain Integrator

GIMP Generalized Interpolation Material Point

BSMPM B-splines Material Point Method

DDMPM Dual Domain Material Point Method

SPH Smoothed Particle Hydrodynamics

iMPM improved Material Point Method

GPIC Generalized Particle in Cell Method

References

Abe, K., Soga, K., Bandara, S.: Material point method for coupled hydromechanical problems. J.
Geotech. Geoenviron. Eng. 140(3), 04013033 (2014)

Agarwal, S., Senatore, C., Zhang, T., Kingsbury, M., Iagnemma, K., Goldman, D.I., Kamrin, K.:
Modeling of the interaction of rigid wheels with dry granular media. J. Terramech. 85, 1–14
(2019)

Al-Kafaji, I.K.J.: Formulation of a Dynamic Material Point Method (MPM) for Geomechanical
Problems. Ph.D. thesis, University of Stuttgart (2013)

Alonso, E.E., Zabala, F.: Progressive failure of Aznalcóllar dam using the material point method.
Géotechnique 61(9), 795–808 (2011)

Ambati, R., Pan, X., Yuan, H., Zhang, X.: Application of material point methods for cutting process
simulations. Comput. Mater. Sci. 57, 102–110 (2012)

Andersen, S., Andersen, L.: Modelling of landslides with the material-point method. Comput.
Geosci. 14(1), 137–147 (2010)

Arroyo,M., Ortiz,M.: Localmaximum-entropy approximation schemes: a seamless bridge between
finite elements and meshfree methods. Int. J. Numer. Meth. Eng. 65(13), 2167–2202 (2006)

Atluri, S.N., Zhu, T.: A new meshless local Petrov-Galerkin (MLPG) approach in computational
mechanics. Comput. Mech. 22, 117–127 (1998)

Ayton, G., Bardenhagen, S.G., McMurtry, P., Sulsky, D., Voth, G.A.: Interfacing continuum and
molecular dynamics: an application to lipid bilayers. J. Chem. Phys. 114(15), 6913–6924 (2001)

Babuška, I., Banerjee, U., Osborn, J.E.: Meshless and generalized finite element methods: a survey
of some major results. In: Griebel, M., Schweitzer, M.A. (eds.) Meshfree Methods for Partial
Differential Equations. Lecture Notes in Computational Science and Engineering, vol. 26, pp.
1–20. Springer, Berlin (2002)

References 45

Banerjee, B.: Material point method simulations of fragmenting cylinders. In: 17th ASCE Engi-
neering Mechanics Conference, University of Delaware, Newark, DE (2004)

Bardenhagen, S.G., Kober, E.M.: The generalized interpolation material point method. Comput.
Model. Eng. Sci. 5(6), 477–495 (2004)

Bardenhagen, S.G., Brackbill, J.U., Sulsky, D.: The material-point method for granular materials.
Comput. Methods Appl. Mech. Eng. 187(3–4), 529–541 (2000)

Bardenhagen, S.G., Guilkey, J.E., Roessig, K.M., Brackbill, J.U., Witzel, W.M., Foster, J.C.: An
improved contact algorithm for the material point method and application to stress propagation
in granular material. Comput. Model. Eng. Sci. 2(4), 509–522 (2001)

Bardenhagen, S.G., Brydon, A.D., Guilkey, J.E.: Insight into the physics of foam densification via
numerical simulation. J. Mech. Phys. Solids 53(3), 597–617 (2005)

Bardenhagen, S.G., Nairn, J.A., Lu, H.: Simulation of dynamic fracture with the Material Point
Method using a mixed J-integral and cohesive law approach. Int. J. Fract. 170(1), 49–66 (2011)

Bazilevs, Y., Takizawa, K.: Advances in Computational Fluid-Structure Interaction and Flow Sim-
ulation. Springer (2017)

Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37,
229–256 (1994)

Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., Krysl, P.: Meshless methods: an overview
and recent developments. Comput. Methods Appl. Mech. Eng. 139, 3–47 (1996)

Benson, D.J.: Computational methods in Lagrangian and Eulerian hydrocodes. Comput. Methods
Appl. Mech. Eng. 99(2–3), 235–394 (1992)

Beuth, L.: Formulation and Application of a Quasi-Static Material Point Method. Ph.D. thesis,
University of Stuttgart (2012)

Beuth, L., Wieckowski, Z., Vermeer, P.A.: Solution of quasi-static large-strain problems by the
material point method. Int. J. Numer. Anal. Meth. Geomech. 35(13), 1451–1465 (2011)

Bo, W.,: Chen, Z., Zhang, X., Liu, Y., Lian, Y.: Coupled shell-material point method for bird strike
simulation. Acta Mech. Solida Sin. 31(1), 1–18 (2018)

Bourdin, B., Francfort, G.A., Marigo, J.J.: The variational approach to fracture. J. Elast. 91(1–3),
5–148 (2008)

Boyce,B.L.,Kramer, S.L.B., Eliot Fang,H.,Cordova, T.E.,Neilsen,M.K.,Dion,K.,Kaczmarowski,
A.K., Karasz, E., Xue, L., Gross, A.J., et al.: The sandia fracture challenge: blind round robin
predictions of ductile tearing. Int. J. Fract. 186(1–2), 5–68 (2014)

Boyce, B.L., Kramer, S.L.B., Bosiljevac, T.R., Corona, E., Moore, J.A., Elkhodary, K., Simha,
C.H.M., Williams, B.W., Cerrone, A.R., Nonn, A., et al.: The second sandia fracture challenge:
predictions of ductile failure under quasi-static and moderate-rate dynamic loading. Int. J. Fract.
198(1–2), 5–100 (2016)

Brackbill, J.U., Ruppel, H.M.: FLIP: a method for adaptively zoned, particle-in-cell calculations of
fluid flows in two dimensions. J. Comput. Phys. 65(2), 314–343 (1986)

Brackbill, J.U., Kothe, D.B., Ruppel, H.M.: Flip: a low-dissipation, particle-in-cell method for fluid
flow. Comput. Phys. Commun. 48(1), 25–38 (1988)

Brydon, A.D., Bardenhagen, S.G., Miller, E.A., Seidler, G.T.: Simulation of the densification of
real open-celled foam microstructures. J. Mech. Phys. Solids 53(12), 2638–2660 (2005)

Burghardt, J., Leavy, B., Guilkey, J., Xue, Z., Brannon, R.: Application of Uintah-MPM to shaped
charge jet penetration of aluminum. IOP Conf. Ser.: Mater. Sci. Eng. 10(1), 012223 (2010)

Burghardt, J., Brannon, R., Guilkey, J.: A nonlocal plasticity formulation for the material point
method. Comput. Methods Appl. Mech. Eng. 225–228, 55–64 (2012)

Burman, E., Claus, S., Hansbo, P., Larson, M.G., Massing, A.: Cutfem: discretizing geometry and
partial differential equations. Int. J. Numer. Methods Eng. 104(7), 472–501 (2015)

Ceccato, F., Redaelli, I., di Prisco, C., Simonini, P.: Impact forces of granular flows on rigid struc-
tures: comparison between discontinuous (DEM) and continuous (MPM) numerical approaches.
Comput. Geotech. 103, 201–217 (2018)

Chen, Z., Hu,W., Shen, L., Xin, X., Brannon, R.: An evaluation of theMPM for simulating dynamic
failure with damage diffusion. Eng. Fract. Mech. 69(17), 1873–1890 (2002)

46 1 Introduction

Chen, Z., Gan, Y., Chen, J.K.: A coupled thermo-mechanical model for simulating the material
failure evolution due to localized heating. Comput. Model. Eng. Sci. 26(2), 123 (2008)

Chen, Z., Han, Y., Jiang, S., Gan, Y., Sewell, T.D.: A multiscale material point method for impact
simulation. Theor. Appl. Mech. Lett. 2(5), 051003 (2012)

Chen, Z.P., Qiu, X.M., Zhang, X., Lian, Y.P.: Improved coupling of finite element method with
material point method based on a particle-to-surface contact algorithm. Comput. Methods Appl.
Mech. Eng. 293, 1–19 (2015)

Cheon, Y-J., Kim, H.G.: An adaptive material point method coupled with a phase-field fracture
model for brittle materials. Int. J. Numer. Methods Eng. (2019)

Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Comput. 22(104), 745–762
(1968)

Clough, R.W.: The finite element method in plane stress analysis. In: Proceedings of 2nd ASCE
Conference on Electronic Computation, Pittsburgh Pa., Sept. 8 and 9, 1960 (1960)

Clough, R.W.: The finite element method after twenty-five years: a personal view. Comput. Struct.
12(4), 361–370 (1980)

Coetzee, C.J.: The Modelling of Granular Flow Using the Particle-in-Cell Method. Ph.D. thesis,
University of Stellenbosch (2003)

Coetzee, C.J., Vermeer, P.A., Basson, A.H.: The modelling of anchors using the material point
method. Int. J. Numer. Anal. Meth. Geomech. 29(9), 879–895 (2005)

Coetzee, C.J., Basson, A.H., Vermeer, P.A.: Discrete and continuum modelling of excavator bucket
filling. J. Terrramech. 44(2), 177–186 (2007)

Coombs, W.M., Augarde, C.E.: Ample: a material point learning environment. Adv. Eng. Softw.
139, 102748 (2020)

Courant, R.: Variational methods for the solution of problems of equilibrium and vibrations. Bull.
Am. Math. Soc. 49(1), 1–23 (1943)

Cummins, S.J., Brackbill, J.U.:An implicit particle-in-cellmethod for granularmaterials. J.Comput.
Phys. 180(2), 506–548 (2002)

Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique
29(1), 47–65 (1979)

Daphalapurkar, N.P., Lu, H., Coker, D., Komanduri, R.: Simulation of dynamic crack growth using
the generalized interpolation material point (GIMP) method. Int. J. Fract. 143(1), 79–102 (2007)

Daviet, G., Bertails-Descoubes, F.: A semi-implicit material point method for the continuum sim-
ulation of granular materials. ACM Trans. Graph. (TOG) 35(4), 102 (2016)

de Vaucorbeil, A., Nguyen:, V.P.: Modeling contacts with a total lagrangian matertial point method.
Comput. Methods Appl. Mech. Eng. 360, 112783 (2021). https://doi.org/10.1016/j.cma.2019.
112783

de Vaucorbeil, A., Nguyen, V.P., Mandal, T.K.: Mesh objective simulations of large strain ductile
fracture: a new nonlocal Johnson-cook damage formulation for the total lagrangian material point
method. Comput. Methods Appl. Mech. Eng. 389, 114388 (2022b)

de Koster, P., Tielen, R., Wobbes, E., Moller, M.: Extension of B-spline material point method for
unstructured triangular grids using powell-sabin splines. Comput. Mech. (2019)

de Vaucorbeil, A., Nguyen, V.P., Hutchinson, C.R.: A Total-Lagrangian Material Point Method for
solid mechanics problems involving large deformations. Comput. Methods Appl. Mech. Eng.
360, 112783 (2020). https://doi.org/10.1016/j.cma.2019.11278

Doblaré, M., Cueto, E., Calvo, B., Martínez, M.A., Garcia, J.M., Cegonino, J.: On the employ
of meshless methods in biomechanics. Comput. Methods Appl. Mech. Eng. 194(6–8), 801–821
(2005)

Duarte, C.A.M., Oden, J.T.: H-p clouds- an h-p meshless method. Numer, Methods Partial Differ-
ential Equations (1996)

Dunatunga, S., Kamrin, K.: Continuum modeling and simulation of granular flows through their
many phases. J. Fluids Mech. (2015)

Edwards, E., Bridson, R.: A high-order accurate particle-in-cell method. Int. J. Numer. Meth. Eng.
90(9), 1073–1088 (2012)

https://doi.org/10.1016/j.cma.2019.112783
https://doi.org/10.1016/j.cma.2019.112783
https://doi.org/10.1016/j.cma.2019.11278

References 47

Espluga, M.U.: Analysis of Meshfree Methods for Lagrangian Fluid-Structure Interaction. Ph.D.
thesis, Universidad Politécnica de Madrid (2014)

Fagan, T., Lemiale, V., Nairn, J., Ahuja, Y., Ibrahim, R., Estrin, Y.: Detailed thermal and material
flow analyses of friction stir forming using a three-dimensional particle based model. J. Mater.
Process. Technol. 231, 422–430 (2016)

Fasshauer,G.E.:MeshfreeApproximationMethodswithMATLAB. InterdisciplinaryMathematical
Sciences (Book 6). World Scientific Publishing Company (2007)

Fern, J., Rohe, A., Soga, K., Alonso, E.: The Material Point Method for Geotechnical Engineering:
A Practical Guide. CRC Press (2019)

Fu, C., Guo, Q., Gast, T., Jiang, C., Teran, J.: A polynomial particle-in-cell method. ACM Trans.
Graph. 36(6), 222:1-222:12 (2017)

Galavi, V., Beuth, L., Coelho, B.Z., Tehrani, F.S., Hölscher, P., Van Tol, F.: Numerical simulation
of pile installation in saturated sand using material point method. Proc. Eng. 175, 72–79 (2017)

Gan, Y., Chen, Z., Montgomery-Smith, S.: Improved material point method for simulating the zona
failure response in piezo-assisted intracytoplasmic sperm injection. Comput. Model. Eng. Sci.
1–24 (2011)

Gan, Y., Sun, Z., Chen, Z., Zhang, X., Liu, Y..: Enhancement of the material point method using
B-spline basis functions. Int. J. Numer. Methods Eng. 113(3), 411–431 (2018)

Gander, M.J., Wanner, G.: From Euler, Ritz, and Galerkin to modern computing. Siam Rev. 54(4),
627–666 (2012)

Gaume, J., van Herwijnen, A., Gast, T., Teran, J., Jiang, C.: Investigating the release and flow of
snow avalanches at the slope-scale using a unified model based on the material point method.
Cold Reg. Sci. Technol. 168, 102847 (2019)

Gaume, J., Gast, T., Teran, J., van Herwijnen, A., Jiang, C.: Dynamic anticrack propagation in snow.
Nat. Commun. 9(1), 3047 (2018)

Geers, M.G.D., Kouznetsova, V.G., Brekelmans, W.A.M.: Multi-scale computational homogeniza-
tion: trends and challenges. J. Comput. Appl. Math. 234(7), 2175–2182 (2010)

Gilabert, F.A., Cantavella, V., Sánchez, E., Mallol, G.: Modelling fracture process in ceramic mate-
rials using the material point method. EPL (Europhys. Lett.) 96(2), 24002 (2011)

Gilmanov, A., Acharya, S.: A computational strategy for simulating heat transfer and flow past
deformable objects. Int. J. Heat Mass Transf. 51(17–18), 4415–4426 (2008)

Gilmanov, A., Acharya, S.: A hybrid immersed boundary and material point method for simulating
3D fluid-structure interaction problems. Int. J. Numer. Meth. Fluids 56(12), 2151–2177 (2008)

Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-
spherical stars. Mon. Notices Royal Astro. Soc. 181, 375–389 (1977)

Gracia, F., Villard, P., Richefeu, V.: Comparison of two numerical approaches (DEM and MPM)
applied to unsteady flow. Comput. Part. Mech. 1–19 (2019)

Griffith, A.A.: The phenomena of rupture and flow in solids. Phil. Trans. Roy. Soc. Lond. 221,
163–198 (1920)

Gritton, C., Berzins, M.: Improving accuracy in the MPMmethod using a null space filter. Comput.
Part. Mech. 4(1), 131–142 (2017)

Gritton, C., Guilkey, J., Hooper, J., Bedrov, D., Kirby, R.M., Berzins, M.: Using the material point
method to model chemical/mechanical coupling in the deformation of a silicon anode. Model.
Simul. Mater. Sci. Eng. 25(4), 045005 (2017)

Guilkey, J.E., Weiss, J.A.: Implicit time integration for the material point method: quantitative
and algorithmic comparisons with the finite element method. Int. J. Numer. Meth. Eng. 57(9),
1323–1338 (2003)

Guilkey, James E., Hoying, James B., Weiss, Jeffrey A.: Computational modeling of multicellular
constructs with the material point method. J. Biomech. 39(11), 2074–2086 (2006)

Guilkey, J.E., Harman, T.B., Banerjee, B.: An Eulerian-Lagrangian approach for simulating explo-
sions of energetic devices. Comput. Struct. 85(11–14), 660–674 (2007)

Guo, Q., Han, X., Chuyuan, F., Gast, T., Tamstorf, R., Teran, J.: A material point method for thin
shells with frictional contact. ACM Trans. Graph. (TOG) 37(4), 147 (2018)

48 1 Introduction

Guo, Y., Nairn, J.A.: Calculation of j-integral and stress intensity factors using the material point
method. Comput. Model. Eng. Sci. 6, 295–308 (2004)

Gupta, V., Rajagopal, S., Gupta, N.: A comparative study of meshfree methods for fracture. Int. J.
Damage Mech 20(5), 729–751 (2011)

Hamad, F., Stolle, D., Vermeer, P.: Modelling of membranes in the material point method with
applications. Int. J. Numer. Anal. Meth. Geomech. 39(8), 833–853 (2015)

Han, X., Gast, T.F., Guo, Q., Wang, S., Jiang, C., Teran, J.: A hybrid material point method for
frictional contact with diverse materials. Proc. ACM Comput. Graphics Interact. Tech. 2(2), 17
(2019)

Harlow, F.H.: The particle-in-cell computing method for fluid dynamics. Methods Comput. Phys.
3, 319–343 (1964)

Harlow, F.H.: Fluid dynamics in Group T-3 Los Alamos National Laboratory: (LA-UR-03-3852).
J. Comput. Phys. 195(2), 414–433 (2004)

He, L., Chen, Z.: Study on one-dimensional softening with localization via integrated MPM and
SPH. Comput. Part. Mech. 1–8 (2019)

He, L., Gan, Y., Chen, Z.: Preliminary effort in developing the smoothed material point method for
impact. Comput. Part. Mech. 6(1), 45–53 (2019)

Homel,M.A., Guilkey, J.E., Brannon, R.M.: Continuum effective-stress approach for high-rate plas-
tic deformation of fluid-saturated geomaterials with application to shaped-charge jet penetration.
Acta Mech. 1–32 (2015)

Homel, M.A., Herbold, E.B.: Mesoscale modeling of porous materials using new methodology for
fracture and frictional contact in the material point method. In: Dynamic Behavior of Materials,
vol. 1, pp. 97–102. Springer (2018)

Homel, M.A., Herbold, E.B.: Field-gradient partitioning for fracture and frictional contact in the
material point method. Int. J. Numer. Meth. Eng. 109(7), 1013–1044 (2017)

Homel, M.A., Brannon, R.M., Guilkey, J.: Controlling the onset of numerical fracture in paral-
lelized implementations of the material point method (MPM) with convective particle domain
interpolation (CPDI) domain scaling. Int. J. Numer. Meth. Eng. 107(1), 31–48 (2016)

Hsieh, Y-M., Pan, M-S.: Esfm: an essential software framework for meshfree methods. Adv. Eng.
Softw. 76, 133–147 (2014)

Hu, Y., Liu, J., Spielberg, A., Tenenbaum, J.B., Freeman, W.T., Wu, J., Rus, D., Matusik, W.:
Chainqueen: A real-time differentiable physical simulator for soft robotics. In: 2019 International
Conference on Robotics and Automation (ICRA), p. 6265–6271. IEEE (2019)

Hu, P., Xue, L., Kamakoti, R., Li, Q., Wang, Z., Brenner, M.: Particle-based methods with least
squares technique for nonlinear aeroelasticity and fluid-structure interactions in aste-p toolset. In:
52ndAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics andMaterials Conference
19th AIAA/ASME/AHS Adaptive Structures Conference 13t, p. 2062 (2011)

Hu, P., Xue, L., Qu, K., Ni, K., Brenner, M.: Unified Solver for Modeling and Simulation of
Nonlinear Aeroelasticity and Fluid-Structure Interactions. American Institute of Aeronautics and
Astronautics (2009)

Hu, W., Chen, Z.: Model-based simulation of the synergistic effects of blast and fragmentation on
a concrete wall using the MPM. Int. J. Impact Eng 32(12), 2066–2096 (2006)

Huang, P., Zhang, X.,Ma, S., Huang, X.: Contact algorithms for thematerial point method in impact
and penetration simulation. Int. J. Numer. Meth. Eng. 85(4), 498–517 (2011)

Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS,
exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39–41), 4135–
4195 (2005)

Iaconeta, I., Larese, A., Rossi, R., Guo, Z.: Comparison of a material point method and a Galerkin
meshfree method for the simulation of cohesive-frictional materials. Materials 10(10), 1150
(2017)

Idelsohn, S.R., Onate, E., Del Pin, F., Calvo, N.: Fluid-structure interaction using the particle finite
element method. Comput. Methods Appl. Mech. Eng. 195(17–18), 2100–2123 (2006)

References 49

Ionescu, I., Guilkey, J.E., Berzins, M., Kirby, R.M., Weiss, J.A.: Simulation of soft tissue failure
using the Material Point Method. J. Biomech. Eng. 128(6), 917–924 (2006)

Irwin, G.R.: Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl.
Mech. 24, 361–364 (1957)

Jassim, I., Stolle, D., Vermeer, P.: Two-phase dynamic analysis by material point method. Int. J.
Numer. Anal. Meth. Geomech. 37(15), 2502–2522 (2013)

Jiang, C., Gast, T., Teran, J.: Anisotropic elastoplasticity for cloth, knit and hair frictional contact.
ACM Trans. Graph. (TOG) 36(4), 152 (2017)

Jiang, Y., Li, M., Jiang, C., Alonso-marroquin, F.: A hybrid material-point spheropolygon-element
method for solid and granular material interaction (2019). arXiv:1909.13655

Jiang, C., Schroeder, C., Selle, A., Teran, J., Stomakhin, A.: The affine particle-in-cell method.
ACM Trans. Graph. 34(4): 51:1–51:10 (2015a)

Jiang,C., Schroeder,C., Teran, J., Stomakhin,A., Selle,A.: Thematerial pointmethod for simulating
continuum materials. In: ACM SIGGRAPH 2016 Courses, p. 24. ACM (2016)

Joshuah Wolper, Y., Fang, M.L., Jiecong, L., Gao, M., Jiang, C.: Cd-MPM: continuum damage
material point methods for dynamic fracture animation. ACM Trans. Graph. (TOG) 38(4), 119
(2019)

Kachanov, L.M.: Time rupture process under creep conditions. Izv. A Rad. Nauk. SSSR otd Tekh.
Nauk 8, 26–31 (1958)

Kakouris, E.G., Triantafyllou, S.P.: Material point method for crack propagation in anisotropic
media: a phase field approach. Arch. Appl. Mech. (2017a)

Kakouris, E.G., Triantafyllou, S.P.: Phase-field material point method for brittle fracture. Int. J.
Numer. Methods Eng. 112(12), 1750–1776 (2017b)

Konagai, K., Johansson, J.: Two dimensional lagrangian particle finite-difference method for mod-
eling large soil deformations. Struct. Eng./Earthq. Eng. JSCE 18(2), 105s–110s (2001)

Kularathna, S., Soga, K.: Comparison of two projectionmethods for modeling incompressible flows
in MPM. J. Hydrodyn. Ser. B 29(3), 405–412 (2017)

Lee, J.H., Huang, D.: Material point method modeling of porous semi-brittle materials. IOP Conf.
Seri.: Mater. Sci. Eng. 10(1), 012093 (2010)

Lelong, N., Rochais, D.: Influence of microstructure on the dynamic behavior of a polyurethane
foam with the material point method. Materialia 5, 100199 (2019)

Lemaitre. J., Chaboche, J.-L.: Mechanics of Solid Materials. Cambridge University Press (1994)
Lemiale, V., Nairn, J., Hurmane, A.: Material point method simulation of equal channel angular
pressing involving large plastic strain and contact through sharp corners. Comput. Model. Eng.
Sci. 70(1), 41–66 (2010)

Leroch, S., Eder, S.J., Ganzenmüller, G., Murillo, L.J.S., Rodríguez Ripoll, M.: Development and
validation of a meshless 3D material point method for simulating the micro-milling process. J.
Mater. Process. Technol. 262, 449–458 (2018)

Li, B., Habbal, F., Ortiz, M.: Optimal transportation meshfree approximation schemes for fluid and
plastic flows. Int. J. Numer. Methods Eng. 83(12), 1541–1579 (2010)

Li, Y., Li, X., Li, M., Zhu, Y., Zhu, B., Jiang, C.: A hybrid lagrangian-eulerian method for topology
optimization (2020b). arXiv:2003.01215

Li, S., Liu, W.K.: Meshfree Particle Methods [Hardcover]. Springer (2007). ISBN 3540222561
Li, X., Sovilla, B., Jiang, C., Gaume, J.: Three-dimensional and real-scale modeling of flow regimes
in dense snow avalanches. Landslides 18(10), 3393–3406 (2021)

Li, X., Sovilla, B.,Wang, S., Jiang, C., Gaume, J.: Numerical modeling of snow avalanche dynamics
based on the material point method. In: tEGU General Assembly Conference Abstracts, p. 2153
(2020a)

Li, F., Pan, J., Sinka, C.: Modelling brittle impact failure of disc particles using material point
method. Int. J. Impact Eng. 38(7), 653–660 (2011)

Li, J.G., Hamamoto, Y., Liu, Y., Zhang, X.: Sloshing impact simulation with material point method
and its experimental validations. Comput. Fluids 103, 86–99 (2014)

http://arxiv.org/abs/1909.13655
http://arxiv.org/abs/2003.01215

50 1 Introduction

Lian, Y.-P., Liu, Y., Zhang, X.: Coupling of membrane element with material point method for
fluid-membrane interaction problems. Int. J. Mech. Mater. Des. 1–13 (2014)

Lian, Y.P., Zhang, X., Liu, Y.: Coupling of finite element method with material point method by
local multi-mesh contact method. Comput. Methods Appl. Mech. Eng. 200(47–48), 3482–3494
(2011)

Lian, Y.P., Zhang, X., Zhou, X., Ma, Z.T.: A FEMPmethod and its application in modeling dynamic
response of reinforced concrete subjected to impact loading. Comput. Methods Appl. Mech. Eng.
200(17–20), 1659–1670 (2011)

Lian, Y.P., Zhang, X., Zhou, X., Ma, S., Zhao, Y.L.: Numerical simulation of explosively driven
metal by material point method. Int. J. Impact Eng. 38(4), 238–246 (2011)

Lian, Y., Zhang, X., Liu, Y.: Coupling between finite element method and material point method
for problems with extreme deformation. Theor. Appl. Mech. Lett. 021003, 2–5 (2012)

Liang,Y., Zhang,X., Liu, Yan.: An efficient staggered gridmaterial pointmethod. Comput.Methods
Appl. Mech. Eng. 352, 85–109 (2019)

Lim, L.J., Andreykiv, A., Brinkgreve, R.B.J.: Pile penetration simulation with Material Point
Method. In: Installation Effects in Geotechnical Engineering, pp. 24–30. CRC Press (2013)

Liszka, T., Orkisz, J.: The finite difference method at arbitrary irregular grids and its application in
applied mechanics. Comput. Struct. 11, 83–95 (1980)

Liu, G.R., Liu, M.B.: Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World
Scientific (2003)

Liu, C., Sun,W.: ILS-MPM: an implicit level-set-based material point method for frictional particu-
late contact mechanics of deformable particles. Comput.MethodsAppl.Mech. Eng. 369(113168)
(2020)

Liu, C., Sun,W.: Shift boundary material point method: an image-to-simulation workflow for solids
of complex geometries undergoing large deformation. Computational Particle Mechanics, pp. 1–
18 (2019)

Liu, Y., Wang, H-K., Zhang, X.: A multiscale framework for high-velocity impact process with
combined material point method and molecular dynamics. Int. J. Mech. Mater. Des. 9(2), 127–
139 (2013)

Liu, G.R.: Mesh Free Methods: Moving Beyond the Finite Element Method. CRC Press (2002)
Liu, W.K., Jun, S., Zhang, Y.F.: Reproducing kernel particle methods. Int. J. Numer. Methods Eng.
20, 1081–1106 (1995)

Liu, P., Liu,Y., Zhang,X.: Internal-structure-model based simulation researchof shieldingproperties
of honeycomb sandwich panel subjected to high-velocity impact. Int. J. Impact Eng 77, 120–133
(2015)

Liu, Y., Qiu, X., Zhang, X., Yu, T.X.: Response of woodpecker’s head during pecking process
simulated by material point method. PloS One 10(4), e0122677 (2015b)

Llano-Serna, M.A., Farias, M.M., Pedroso, D.M.: An assessment of the material point method for
modelling large scale run-out processes in landslides. Landslides 13(5), 1057–1066 (2016)

Love, E., Sulsky, D.L.: An unconditionally stable, energy-momentum consistent implementation of
the material-point method. Comput. Methods Appl. Mech. Eng. 195(33–36), 3903–3925 (2006)

Love, E., Sulsky, D.L.: An energy-consistent material-point method for dynamic finite deformation
plasticity. Int. J. Numer. Meth. Eng. 65(10), 1608–1638 (2006)

Lu,H.,Daphalapurkar,N.P.,Wang,B.,Roy, S.,Komanduri,R.:Multiscale simulation fromatomistic
to continuum-coupling molecular dynamics (MD) with the material point method (MPM). Phil.
Mag. 86(20), 2971–2994 (2006)

Lucy, L.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013–1024
(1977)

Ma, S., Zhang,X., Lian,Y., Zhou,X.: Simulation of high explosive explosion using adaptivematerial
point method. Comput. Model. Eng. Sci. (CMES) 39(2), 101 (2009)

Ma, S., Zhang, X., Qiu, X.M.: Comparison study of MPM and SPH in modeling hypervelocity
impact problems. Int. J. Impact Eng 36(2), 272–282 (2009)

References 51

Ma, J., Wang, D., Randolph, M.F.: A new contact algorithm in the material point method for
geotechnical simulations. Int. J. Numer. Anal. Meth. Geomech. 38(11), 1197–1210 (2014)

Malvern, L.E.: Introduction to theMechanics of a ContinuousMedium. Prentice-Hall International,
Englewood Cliffs, New Jersey (1969)

Mandal, T.K., Nguyen, V.P., Wu, J.-Y.: Evaluation of variational phase-field models for dynamic
brittle fracture. Eng. Fract. Mech. 345, 618–643 (2020a)

Mao, S.: Material point method and adaptive meshing applied to fluid-structure interaction (FSI)
problems. In: ASME 2013 Fluids Engineering Division Summer Meeting, pp. V01BT13A004–
V01BT13A004. American Society of Mechanical Engineers (2013)

Mast, C.M., Mackenzie-Helnwein, P., Arduino, P., Miller, G.R., Shin, W.: Mitigating kinematic
locking in the material point method. J. Comput. Phys. 231(16), 5351–5373 (2012)

Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of
fracture: variational principles and multi-field fe implementations. Int. J. Numer. Meth. Engng.
83, 1273–1311 (2010)

Mishra, T., Ganzenmüller, G.C., de Rooij, M., Shisode, M., Hazrati, J., Schipper, D.J.: Modelling
of ploughing in a single-asperity sliding contact using material point method.Wear 418, 180–190
(2019)

Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. FluidMech. 37, 239–261 (2005)
Moresi, L., Dufour, F., Mühlhaus, H.-B.: A Lagrangian integration point finite element method
for large deformation modeling of viscoelastic geomaterials. J. Comput. Phys. 184(2), 476–497
(2003)

Moresi, L., Quenette, S., Lemiale, V., Mériaux, C., Appelbe, B., Mühlhaus, H.-B.: Computational
approaches to studying nonlinear dynamics of the crust and mantle. Phys. Earth Planet. Inter.
163(1–4), 69–82 (2007)

Moutsanidis, G., Kamensky, D., Zhang, D.Z., Bazilevs, Y., Long, C.C.: Modeling strong disconti-
nuities in the material point method using a single velocity field. Comput. Methods Appl. Mech.
Eng. 345, 584–601 (2019a)

Mühlhaus, H.-B., Sakaguchi, H., Moresi, L., Fahey, M.: Discrete and continuum modelling of
granular materials. In: Vermeer, P.A., Herrmann, H.J., Luding, S., Ehlers, W., Diebels, S., Ramm,
E. (eds.) Continuous and Discontinuous Modelling of Cohesive-Frictional Materials. Lecture
Notes in Physics, vol. 568, pp. 185–204. Springer, Berlin, Heidelberg (2001)

Nair, A., Roy, S.: Implicit time integration in the generalized interpolation material point method
for finite deformation hyperelasticity. Mech. Adv. Mater. Struct. 19(6), 465–473 (2012)

Nairn, J.A.:Material point method calculations with explicit cracks. Comput.Model. Eng. Sci. 4(6),
649–663 (2003)

Nairn, J.A.: Numerical simulations of transverse compression and densification in wood. Wood
Fiber Sci. 38(4), 576–591 (2006)

Nairn, J.A.: Material point method simulations of transverse fracture in wood with realistic mor-
phologies. Holzforschung 61(4), 375–381 (2007)

Nairn, John A.: Numerical implementation of imperfect interfaces. Comput. Mater. Sci. 40(4),
525–536 (2007)

Nairn, J.A.: Analytical and numerical modeling of R curves for cracks with bridging zones. Int. J.
Fract. 155(2), 167–181 (2009)

Nairn, J.A.: Modeling imperfect interfaces in the material point method using multimaterial meth-
ods. Comput. Methods Appl. Mech. Eng. 1(1), 1–15 (2013)

Nairn, J.A., Guilkey, J.E.: Axisymmetric form of the generalized interpolation material point
method. Int. J. Numer. Meth. Eng. 101(2), 127–147 (2015)

Nairn, J.A., Bardenhagen, S.G., Smith, G.D.: Generalized contact and improved frictional heating
in the material point method. Comput. Part. Mech. 5(3), 285–296 (2018)

Nayroles, B., Touzot, G., Villon, P.: Generalizing the finite element method: diffuse approximation
and diffuse elements. Comput. Mech. 10, 307–318 (1992)

Nguyen, V.P.: Discontinuous Galerkin/Extrinsic cohesive zone modeling: implementation caveats
and applications in computational fracture mechanics. Eng. Fract. Mech. 128, 37–68 (2014)

52 1 Introduction

Nguyen, V.P., Rabczuk, T., Bordas, S., Duflot, M.: Meshless methods: a review and computer
implementation aspects. Math. Comput. Simul. 79(3), 763–813 (2008). ISSN 0378-4754

Nguyen, V.P., Stroeven, M., Sluys, L.J.: Multiscale continuous and discontinuous modelling of
heterogeneousmaterials: a reviewon recent developments. J.MultiscaleModel. 3(4), 1–42 (2012)

Nguyen, T.V.P., Van Tol, A.F., Elkadi, A.S.K., Rohe, A.: Numerical investigation of pile installation
effects in sand using material point method. Comput. Geotech. 73, 58–71 (2016)

Nguyen, V.P., Nguyen, C.T., Rabczuk, T., Natarajan, S.: On a family of convicted particle domain
interpolations in the material point method. Finite Elements Anal. Des. 126, 50–64 (2017)

Nguyen,V.P., deVaucorbeil, A., Nguyen-Thanh, C.,Mandal, T.K., Kindal, T.: A generalized particle
in cell method for explicit solid dynamics. Comput. Methods Appl. Mech. Eng. 360, 112783
(2021). https://doi.org/10.1016/j.cma.2019.112783

Pan, X.F., Xu, A., Zhang, G., Zhu, J.: Generalized interpolation material point approach to high
melting explosive with cavities under shock. J. Phys. D Appl. Phys. 41(1), 015401 (2008)

Parvizian, Jamshid, Düster, Alexander, Rank, Ernst: Finite cell method. Comput. Mech. 41(1),
121–133 (2007)

Peskin, C.S.: The immersed boundary method. Acta Numer. 11: 479–517 (2002)
Pinyol,N.M.,Alvarado,M.,Alonso,E.E., Zabala, F.: Thermal effects in landslidemobility.Géotech-
nique 68(6), 528–545 (2017)

Powell, M.J.D., Sabin, M.A.: Piecewise quadratic approximations on triangles. ACM Trans. Math.
Softw. (TOMS) 3(4), 316–325 (1977)

Rabczuk, T.: Computational methods for fracture in brittle and quasi-brittle solids: state-of-the-
art review and future perspectives. ISRN Applied Mathematics (2013). https://doi.org/10.1155/
2013/849231. Article ID 849231, 38 pages

Raymond, S.J., Jones, B.D., Williams, J.R.: Modeling damage and plasticity in aggregates with the
material point method (MPM). Comput. Part. Mech. 6(3), 371–382 (2019)

Raymond, S.J., Jones, B., Williams, J.R.: A strategy to couple the material point method (MPM)
and smoothed particle hydrodynamics (SPH) computational techniques. Comput. Particle Mech.
5(1), 49–58 (2018)

Rots, Jan G.: Smeared and discrete representations of localized fracture. Int. J. Fract. 51(1), 45–59
(1991)

Rots, J.G., Nauta, P., Kusters, G.M.A., Blaauwendraad, J.: Smeared crack approach and fracture
localization in concrete. Heron 30, 1–47 (1985)

Sabel,M., Sator,C.,Müller,R.:Aparticle finite elementmethod formachining simulations.Comput.
Mech. 54(1), 123–131 (2014)

Sadeghirad, A., Brannon, R.M., Burghardt, J.: A convicted particle domain interpolation technique
to extend applicability of thematerial point method for problems involvingmassive deformations.
Int. J. Numer. Meth. Eng. 86(12), 1435–1456 (2011)

Sadeghirad, A., Brannon, R.M., Guilkey, J.E.: Second-order convicted particle domain interpolation
(CPDI2) with enrichment for weak discontinuities at material interfaces. Int. J. Numer. Meth.
Eng. 95(11), 928–952 (2013)

Sanchez, J.: A Critical Evaluation of Computational Fracture Using a Smeared Crack Approach in
MPM. Ph.D. thesis, University of New Mexico (2011)

Sanchez, J., Schreyer, H., Sulsky, D., Wallstedt, P.: Solving quasi-static equations with the material-
point method. Int. J. Numer. Meth. Eng. 103(1), 60–78 (2015)

Schillinger, D., Dede, L., Scott, M.A., Evans, J.A., Borden, M.J., Rank, E., Hughes, T.J.R.: An
isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of
nurbs, immersed boundary methods, and t-spline cad surfaces. Comput. Methods Appl. Mech.
Eng. 249, 116–150 (2012)

Schmidt, B., Fraternali, F., Ortiz, M.: Eigenfracture: an eigendeformation approach to variational
fracture. Multiscale Model. Simul. 7(3), 1237–1266 (2009)

Scholtès, L., Donzé, F.V.:Modelling progressive failure in fractured rockmasses using a 3D discrete
element method. Int. J. Rock Mech. Min. Sci. 52, 18–30 (2012)

https://doi.org/10.1016/j.cma.2019.112783
https://doi.org/10.1155/2013/849231
https://doi.org/10.1155/2013/849231

References 53

Schreyer, H.L., Sulsky, D.L., Zhou, S.-J.: Modeling delamination as a strong discontinuity with the
material point method. Comput. Methods Appl. Mech. Eng. 191(23–24), 2483–2507 (2002)

Shen, L.: A rate-dependent damage/decohesion model for simulating glass fragmentation under
impact using the material point method. Comput. Model. Eng. Sci. 49(1), 23–45 (2009)

Shen, L., Chen, Z.: A multi-scale simulation of tungsten film delamination from silicon substrate.
Int. J. Solids Struct. 42(18–19), 5036–5056 (2005)

Sinaie, S., Nguyen, V.P., Nguyen, C.T., Bordas, S.: Programming the material point method in julia.
Adv. Eng. Softw. 105, 17–29 (2017)

Sinaie, S., Ngo, T.D., Nguyen, V.P.: A discrete element model of concrete for cyclic loading.
Comput. Struct. 196, 173–185 (2018)

Sinaie, S., Ngo, T.D., Kashani, A., Whittaker, A.S.: Simulation of cellular structures under large
deformations using the material point method. Int. J. Impact Eng. 134, 103385 (2019)

Soga, K., Alonso, E., Yerro, A., Kumar, K., Bandara, S.: Trends in large-deformation analysis of
landslide mass movements with particular emphasis on the material point method. Géotechnique
66(3), 248–273 (2015)

Steffen, M., Wallstedt, P.C., Guilkey, J.E., Kirby, R.M., Berzins, M.: Examination and analysis of
implementation choices within the material point method (MPM). Comput. Model. Eng. Sci.
31(2), 107–127 (2008)

Stomakhin, A., Schroeder, C., Jiang, C., Chai, L., Teran, J., Selle, A.: Augmented MPM for phase-
change and varied materials. ACM Trans. Graph. 33(4), 138:1-138:11 (2014a)

Stomakhin, A., Schroeder, C., Jiang, C., Chai, L., Teran, J., Selle, A.: Augmented MPM for phase-
change and varied materials. ACM Trans. Graph. 33(4), 138:1-138:11 (2014b)

Su, Y-C., Tao, J., Jiang, S., Chen, Z., Lu, J-M.: Study on the fully coupled thermodynamic fluid–
structure interaction with the material point method. Computational ParticleMechanics, pp. 1–16
(2019)

Sukumar, N., Moran, B., Belytschko, T.: The natural element method in solid mechanics. Int. J.
Numer. Methods Eng. 43, 839–887 (1998)

Sulsky, D., Gong, M.: Improving the material-point method. In: Innovative Numerical Approaches
for Multi-Field and Multi-Scale Problems, pp. 217–240. Springer (2016)

Sulsky, D., Kaul, A.: Implicit dynamics in the material-point method. Comput. Methods Appl.
Mech. Eng. 193(12–14), 1137–1170 (2004)

Sulsky, D., Schreyer, H.L.: Axisymmetric form of the material point method with applications to
upsetting and Taylor impact problems. Comput. Methods Appl. Mech. Eng. 139, 409–429 (1996)

Sulsky,D., Schreyer, L.:MPMsimulation of dynamicmaterial failurewith a decohesion constitutive
model. Eur. J. Mech. A. Solids 23(3), 423–445 (2004)

Sulsky, D., Chen, Z., Schreyer, H.L.: A particle method for history-dependent materials. Comput.
Methods Appl. Mech. Eng. 5, 179–196 (1994)

Sulsky, D., Zhou, S.J., Schreyer, H.L.: Application of a particle-in-cell method to solid mechanics.
Comput. Phys. Commun. 87(1–2), 236–252 (1995)

Sulsky, D., Schreyer, H.L., Peterson, K., Kwok, R., Coon, M.: Using the material-point method to
model sea ice dynamics. J. Geophys. Res. 112(C2), C02S90 (2007)

Sun, Z., Huang, Z., Zhou, X.: Benchmarking the material point method for interaction problems
between the free surface flow and elastic structure. Prog. Comput. Fluid Dyn. Int. J. 19(1), 1–11
(2019)

Sun, Z., Li, H., Gan, H., Liu, H., Huang, Z., He, L.: Material point method and smoothed particle
hydrodynamics simulations of fluid flow problems: a comparative study. Prog. Comput. Fluid
Dyn. An Int. J. (PCFD) 18(1), 1–18 (2018)

Sun, L., Mathur, S.R., Murthy, J.Y.: An unstructured finite-volumemethod for incompressible flows
with complex immersed boundaries. Numer. Heat Transf. Part B: Fundam. 58(4), 217–241 (2010)

Tan, H., Nairn, J.A.: Hierarchical, adaptive, material point method for dynamic energy release rate
calculations. Comput. Methods Appl. Mech. Eng. 191(19–20), 2123–2137 (2002)

54 1 Introduction

Tao, J., Zhang, H., Zheng, Y., Chen, .Development of generalized interpolation material point
method for simulating fully coupled thermomechanical failure evolution. Comput.MethodsAppl.
Mech. Eng. 332, 325–342 (2018)

Tao, J. Zheng, Y., Chen, Z., Zhang, H.: Generalized interpolation material point method for coupled
thermo-mechanical processes. Int. J. Mech. Mater. Des. 12(4), 577–595 (2016)

Tielen, R., Wobbes, E., Möller, M., Beuth, L.: A high order material point method. Proc. Eng. 175,
265–272 (2017)

Tran, Q-A., Sołowski, W.: Temporal and null-space filter for the material point method. Int. J.
Numer. Methods Eng. (2019)

Tran, L.T., Kim, J., Berzins, M.: Solving time-dependent PDEs using the material point method, a
case study from gas dynamics. Int. J. Numer. Meth. Fluids 62(7), 709–732 (2010)

Vargas, M., Nascimento, E., Nascimento, G., Hotta, M., Almeida, M.: Comparative study of the
material point method and smoothed particle hydrodynamics applied to the numerical simulation
of a dam-break flow in the presence of geometric obstacles. Curr. J. Appl. Sci. Technol. (2018)

Wallstedt, P.C., Guilkey, J.E.: An evaluation of explicit time integration schemes for use with the
generalized interpolation material point method. J. Comput. Phys. 227(22), 9628–9642 (2008)

Wallstedt, P.C., Guilkey, J.E.: A weighted least squares particle-in-cell method for solid mechanics.
Int. J. Numer. Meth. Eng. 85(13), 1687–1704 (2011)

Wang, B., Karuppiah, V., Lu, H., Komanduri, R., Roy, S.: Two-dimensional mixed mode crack
simulation using the material point method. Mech. Adv. Mater. Struct. 12(6), 471–484 (2005)

Wang, Y., Beom, H.G., Sun, M., Lin, S.: Numerical simulation of explosive welding using the
material point method. Int. J. Impact Eng. 38(1), 51–60 (2011)

Wang, B., Vardon, P.J., Hicks, M.A., Chen, Z.: Development of an implicit material point method
for geotechnical applications. Comput. Geotech. 71, 159–167 (2016)

Wang, L., Coombs, W.M., Augarde, C.E., Cortis, M., Charlton, T.J., Brown, M.J., Knappett, J.,
Brennan, A., Davidson, C., Richards, D., et al.: On the use of domain-based material point
methods for problems involving large distortion. Comput. Methods Appl. Mech. Eng. 355, 1003–
1025 (2019)

Weißenfels,C.,Wriggers, P.: Stabilization algorithm for the optimal transportationmeshfree approx-
imation scheme. Comput. Methods Appl. Mech. Eng. 329, 421–443 (2018)

Wie, Z., çkowski, Z., Sung-kie, Y., Jeoung-heum, Y.: A Particle-in-cell solution to the silo discharg-
ing problem. Int. J. Numer. Methods Eng. 45, 1203–1225 (1999)

Wieçkowski, Z.: The material point method in large strain engineering problems. Comput. Methods
Appl. Mech. Eng. 193(39–41), 4417–4438 (2004)

Wobbes, E., Möller, M., Galavi, V., Vuik, C.: Conservative taylor least squares reconstruction with
application to material point methods. Int. J. Numer. Meth. Eng. 117(3), 271–290 (2019)

Wobbes, E., Tielen, R., Möller, M., Vuik, C.: Comparison and unification of material-point and
optimal transportation meshfree methods. Comput. Part. Mech. 1–21 (2020)

Wu, J.Y., Nguyen, V.P., Nguyen, C.T., Sutula, D., Sinaie, S., Bordas, S.: Phase field modeling of
fracture. Adv. Appl. Mech.: Fract. Mech.: Recent Dev. Trends 53, submitted (2019)

Wu, J.Y.: A unified phase-field theory for the mechanics of damage and quasi-brittle failure in
solids. J. Mech. Phys. Solids 103, 72–99 (2017)

Wu, J.Y., Nguyen, V.P.: A length scale insensitive phase-field damage model for brittle fracture. J.
Mech. Phys. Solids 119, 20–42 (2018)

Xue, L., Borodin, O., Smith, G.D., Nairn, J.: Micromechanics simulations of the viscoelastic prop-
erties of highly filled composites by the material point method (MPM). Modell. Simul. Mater.
Sci. Eng. 14(4), 703 (2006)

Xue, L., Borodin, O., Smith, G.D.: Modeling of enhanced penetrant diffusion in nanoparticle-
polymer composite membranes. J. Membr. Sci. 286(1–2), 293–300 (2006)

Yang, P., Liu, Y., Zhang, X., Zhou, X., Zhao, Y.: Simulation of fragmentation with material point
method based on Gurson model and random failure. Comput. Model. Eng. Sci. 85(3), 207–236
(2012)

References 55

Yang, P., Gan, Y., Zhang, X., Chen, Z., Qi, W., Liu, P.: Improved decohesion modeling with the
material point method for simulating crack evolution. Int. J. Fract. 186(1–2), 177–184 (2014)

Yang, W.C., Arduino, P., Miller, G.R., Mackenzie-Helnwein, P.: Smoothing algorithm for stabiliza-
tion of the material point method for fluid–solid interaction problems. Comput. Methods Appl.
Mech. Eng. 342, 177–199 (2018)

Ye, Z., Zhang, X., Zheng, G., Jia, G.: A material point method model and ballistic limit equation
for hyper velocity impact of multi-layer fabric coated aluminum plate. Int. J. Mech. Mater. Des.
14(4), 511–526 (2018)

Yerro, A., Soga, K., Bray, J.: Runout evaluation of oso landslide with the material point method.
Can. Geotech. J. 999, 1–14 (2018)

Yerro, A., Alonso, E.E., Pinyol, N.M.: The material point method for unsaturated soils. Géotech-
nique 65(16), 201–217 (2015)

York, A.R., Sulsky, D., Schreyer, H.L.: Fluid-membrane interaction based on the material point
method. Int. J. Numer. Methods Eng. 901–924 (2000)

York, A.R., Sulsky, D., Schreyer, H.L.: Thematerial pointmethod for simulation of thinmembranes.
Int. J. Numer. Meth. Eng. 44(10), 1429–1456 (1999)

Yuanming, H., Fang, Y., Ge, Z., Ziyin, Q., Zhu, Y., Pradhana, A., Jiang, C.: A moving least squares
material point method with displacement discontinuity and two-way rigid body coupling. ACM
Trans. Graph. (TOG) 37(4), 150 (2018)

Yue, Y., Smith, B., Batty, C., Zheng, C., Grinspun, E.: A material point method for shear-dependent
flows. ACM Trans. Graph. Contin. foam (2015)

Zhang, K., Shen, S-L., Zhou, A.: Dynamic brittle fracture with eigenerosion enhanced material
point method. Int. J. Numer. Methods Eng. (2020)

Zhang, F., Zhang, X., Sze, K.Y., Lian, Y., Liu, Y.: Incompressible material point method for free
surface flow. J. Comput. Phys. 330, 92–110 (2017)

Zhang, X., Sze, K.Y., Ma, S.: An explicit material point finite element method for hyper-velocity
impact. Int. J. Numer. Meth. Eng. 66(4), 689–706 (2006)

Zhang, H.W.,Wang, K.P., Chen, Z.: Material point method for dynamic analysis of saturated porous
media under external contact/impact of solid bodies. Comput.MethodsAppl.Mech. Eng. 198(17–
20), 1456–1472 (2009)

Zhang, D.Z., Ma, X., Giguere, P.T.: Material point method enhanced by modified gradient of shape
function. J. Comput. Phys. 230(16), 6379–6398 (2011)

Zhang, X., Chen, Z., Liu, Y.: The Material Point Method: A Continuum-Based Particle Method for
Extreme Loading Cases. Academic (2016b)

Zhao, X., Liang, D., Martinelli, M.: MPM simulations of dam-break floods. J. Hydrodyn. 29(3),
397–404 (2017)

Zheng, Y., Gao, F., Zhang, H., Lu,M.: Improved convicted particle domain interpolationmethod for
coupled dynamic analysis of fully saturated porous media involving large deformation. Comput.
Methods Appl. Mech. Eng. 257, 150–163 (2013)

Zhou, S., Stormont, J., Chen, Z.: Simulation of geomembrane response to settlement in landfills by
using the material point method. Int. J. Numer. Anal. Meth. Geomech. 23(15), 1977–1994 (1999)

Zhou, S., Zhang, X., Ma, H.: Numerical simulation of human head impact using the material point
method. Int. J. Comput. Methods 10(04), 1350014 (2013)

Zhu, Y., Bridson, R.: Animating sand as a fluid. ACM Trans. Graph. 24(3), 965–972 (2005)

Chapter 2
A General MPM for Solid Mechanics

This chapter presents a general formulation of the MPM for solid mechanics. This
formulation applies to all existing MPM variants such as GIMP, CPDI and BSMPM.
Here, even though only explicit dynamics MPM is presented in great details, we also
touch briefly on implicit dynamics and quasi-static MPM. Moreover, both updated
and total Lagrangian MPM are treated.

We start with a short review of continuum mechanics in Sect. 2.1. Next, govern-
ing equations using the updated Lagrangian description written in a strong form are
stated in Sect. 2.2. The weak form corresponding to the equation of motion is given
in Sect. 2.3. Also, the MPM spatial discretization procedure of this weak form is
treated. The obtained semi-discrete equations can also be derived from the updated
Lagrangian finite element weak form discretization considering the finite elements’
quadrature points as material points as shown in Sect. 2.4. The semi-discrete equa-
tions are ordinary differential equations (ODEs) in which time is still a continuous
variable. One needs to discretize time to get algebraic equations. Time discretization
of the semi-discrete equations is presented in Sect. 2.5. In this section, various MPM
algorithms such as Updated Stress Last (USL) and Modified Updated Stress Last
(MUSL) are also discussed.

In Sect. 2.6, we discuss the algorithm of the total Lagrangian MPM. Axi-
symmetric formulations of ULMPM and TLMPM are given in Sect. 2.7 and adaptive
stable time steps are presented in Sect. 2.8. Regarding the stability of the MPM, we
often encounter the negative Jacobian issue due to element inversion and we examine
this in Sect. 2.9. Finally, grid adaptivity and particle adaptivity are briefly discussed
in Sect. 2.10.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. P. Nguyen et al., The Material Point Method, Scientific Computation,
https://doi.org/10.1007/978-3-031-24070-6_2

57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24070-6_2&domain=pdf
https://doi.org/10.1007/978-3-031-24070-6_2

58 2 A General MPM for Solid Mechanics

2.1 Basic Concepts of Continuum Mechanics

Continuummechanics is a theory that models solids and fluids at a macroscopic scale
which ignores inhomogeneities such as molecular, granular, or crystal structures.
Therefore, within this theory, the behavior of solids and fluids can be characterized
by smooth functions of spatial variables. The subject of continuum mechanics com-
prises the following basic topics: (1) the study of motion and deformation without
considering the causes (kinematics), (2) the study of internal forces (kinetics), (3) the
conservation equations or balance principles that state that there are certain impor-
tant physical properties e.g. mass, momentum and energies that must be conserved,
and (4) constitutive models that furnish the relationship between kinematics and
kinetics variables. It is via a constitutive model that, in continuum mechanics, one
differentiate a solid from a fluid, a rubber from a rock, etc.

This section reviews the key concepts and equations of continuum mechanics.
Good knowledge of continuum mechanics is essential for the understanding of the
MPM as it is a continuum-based numerical method. Derivations are not presented,
but relevant literature is given. For more details, we refer to standard textbooks
such as Malvern (1969), Gurtin (1981), Marsden and Hughes (1983), Ogden (1984),
Holzapfel (2000).

2.1.1 Motion and Deformation

In continuummechanics, a bodyB is considered as being formed by an infinite set of
material points, which are endowed with certain mechanical properties. The position
vector of a material point in the initial, undeformed configuration of the body is
denoted X relative to some coordinate basis. X is named the material or Lagrangian
coordinate. The position of the same material point, in the deformed configuration,
is designated by x called spatial or Eulerian coordinate.

The motion (deformation) of a solid is described by a function φ(X, t). A relation
between spatial coordinates and material coordinates can be established as follows

x = φ(X, t) (2.1)

The displacement, velocity and acceleration fields of a body are the primary
kinematical fields in describing themotionof the body.Thedisplacement of amaterial
point X, denoted by u(X, t), is the difference between its current position φ(X, t)
and its initial position φ(X, 0). So,

u(X, t) := φ(X, t) − φ(X, 0) = x − X (2.2)

The velocity of a material point X, denoted by v(X, t), is defined as the rate of
change of position of this material point, that is

2.1 Basic Concepts of Continuum Mechanics 59

v(X, t) := ∂φ(X, t)

∂t
(2.3)

This is the Lagrangian velocity field. There exists a Eulerian form for this velocity
field but as the MPM adopts a Lagrangian description, it is not discussed here.

The acceleration of a material pointX is the rate of change of its velocity, i.e., the
material time derivative of the velocity,

a(X, t) := ∂v(X, t)

∂t
= ∂2φ(X, t)

∂t2
(2.4)

The deformation gradient tensor F is a key quantity in finite deformation con-
tinuum mechanics as all deformation quantities are derived from it. It is a linear
mapping operator which maps each infinitesimal linear element dX in the reference
configuration into an infinitesimal linear element dx in the current configuration. It
is defined as:

F := ∂φ

∂X
= ∂x

∂X
or Fi j = ∂xi

∂X j
(2.5)

Next, the concept of material time derivative is introduced. To understand this
important concept, consider the following situation. Assume we have a certain field
ϕ (scalar, vectorial or tensorial) defined over the body for which we want to know
the rate of change, at a given material point X. This is known as the material time
derivative of ϕ. There are two definition of this concept, corresponding to material
and spatial descriptions, respectively:

1. Lagrangian description. In the Lagrangian description, the independent variables
are the material coordinatesX and time t . So all we have to do is taking the partial
derivative of the given field ϕ with respect to time. For a material field ϕ(X, t),
its material time derivative is

Dϕ(X, t)

Dt
≡ ϕ̇ = ∂ϕ(X, t)

∂t
(2.6)

where the first two equations indicate standard notation for the material time
derivative. As theMPMadopts a Lagrangian description, thematerial time deriva-
tive is very simple.

2. Eulerian description. The considered field is ϕ(x, t). This case is much more
complicated since not only time changes but also the spatial position x of the
considered particle. We must calculate the partial derivative with respect to time
of the material description of ϕ(x, t), keeping X fixed.

Dϕ(x, t)
Dt

≡ ϕ̇ := lim
Δt→0

ϕ(φ(X, t + Δt), t + Δt) − ϕ(φ(X, t), t)

Δt
(2.7)

Using the chain rule, we obtain the important formula of the material time deriva-
tive for a Eulerian scalar field:

60 2 A General MPM for Solid Mechanics

Dϕ(x, t)
Dt

= ∂ϕ(x, t)
∂t

+ ∇ϕ(x, t) · v(x, t) (2.8)

The term ∂ϕ/∂t is called the spatial time derivative, and the term ϕ, jv j is the
convective term, which is also called the transport term.

2.1.2 Strain Measures

There are manymeasures of strain and strain rate in nonlinear continuummechanics.
A strain measure must vanish for any rigid body motion, and in particular for rigid
body rotation. Herein, we review some strain measures commonly adopted in non-
linear continuum mechanics. They are the right Cauchy-Green deformation tensor
C, the Green strain tensor E, and the rate of deformation tensor D.

The right Cauchy-Green deformation tensor is written as

C := FT · F; Ci j := Fki Fkj (2.9)

where the superscript T denotes the transpose operator. The Green strain tensor is
given by

E := 1

2
(C − I) = 1

2
(FT · F − I), Ei j = 1

2
(Fki Fkj − δi j) (2.10)

This strain tensor measures the difference of the square of the length of dx and dX.
The spatial gradient of velocity or velocity gradient tensor L is defined as the

spatial gradient of the velocity, that is

L(x, t) := ∂v
∂x

, or Li j = ∂vi

∂x j
(2.11)

The velocity gradient L allows the material time derivative of the deformation gra-
dient F to be written as

Ḟ = ∂

∂t

(
∂φ(X, t)

∂X

)
= ∂v

∂X
= ∂v

∂x
· ∂x
∂X

= L · F, ⇒ L = Ḟ · F−1 (2.12)

where in the second equality, we have used the fact that material time derivative of
Lagrangian fields commute with material gradient. Noting that, this fact does not
hold generally for Eulerian fields.

2.1 Basic Concepts of Continuum Mechanics 61

The velocity gradient tensor L can be decomposed into symmetric and skew-
symmetric parts by

L = 1

2
(L + LT) + 1

2
(L − LT) (2.13)

which is a standard decomposition of a second-order tensor. The rate of deformation
tensor D is defined as the symmetric part of L, and the spin tensor as the skew-
symmetric part. Using these definitions, one can write

D := 1

2
(L + LT), W := 1

2
(L − LT) (2.14)

where D describes the rate of stretching and shearing.

2.1.3 Stress Measures

As there are different strain measures there also exist different stress measures which
are work conjugated with them. The most commonly used stress tensors are (1)
Cauchy stress, (2) Kirchhoff stress, (3) first Piola-Kirchhoff stress (1st PK) and (4)
second Piola-Kirchhoff stress (2nd PK). Relation between these stress tensors is
given in Table2.1. The Cauchy stress is the true stress and work conjugate with
the rate of deformation D with respect to the deformed volume, cf. Eq. (2.19). The
Kirchhoff stress—also referred to as the weighted Cauchy stress—is work conjugate
with the rate of deformation tensor with respect to the initial volume. The 1st PK
stress, which is not symmetric, is work conjugate to the rate of deformation gradient.
The 2nd Piola-Kirchhoff stress, a totally material symmetric stress tensor, is work
conjugate to the Green strain rate tensor. Note that, some authors e.g. Belytschko
et al. (2000), prefer to work with the nominal stress, the transpose of which is the 1st
PK stress.

Table 2.1 Relation between different stress measures

Cauchy stress σ Kirchhoff stress τ 1st PK P 2nd PK S

σ – τ J−1 J−1PFT J−1FSFT

τ Jσ – PFT FSFT

P JσF−T τF−T – FS

S JF−1σF−T F−1τF−T F−1P –

62 2 A General MPM for Solid Mechanics

2.1.4 Objective Stress Rates

Constitutive equations are often written in a rate form i.e., a relation between a
stress rate and a deformation rate. Under large rotations, simply using the material
derivatives of the stress tensors e.g. the rate of Cauchy stress Dσ/Dt is wrong as
it does not transform properly as a tensor under a superposed rigid body motion.
We discuss three objective stress rates: the Jaumman rate, the Truesdell rate and the
Green-Naghdi rate which are frequently used in practice. A constitutive model can
be formulated in terms of any one of these objective stress rates, and changing from
one rate to another requires that the constitutive model be reformulated.

They are collectively given in Eq. (2.15).

σ∇T = Dσ

Dt
+ div(v)σ − L · σ − σ · LT Truesdel rate

σ∇ J = Dσ

Dt
− W · σ − σ · WT Jaumman rate

σ∇G = Dσ

Dt
− Ω · σ − σ · ΩT Green-Naghdi rate

(2.15)

A discussion on which objective stress rate to be used was given in Benson (1992).

2.1.5 Conservation Equations

An important set of equations in continuummechanics are the conservation equations
or balance equations . For thermomechanical systems, the conservation laws include

1. Conservation of mass
2. Conservation of linear momentum
3. Conservation of angular momentum, and
4. Conservation of energy

Conservation of mass. The law of conservation of mass is described by the equation
of mass conservation, or often called equation of continuity written as:

Dρ

Dt
+ ρ∇ · v or ρ̇ + ρvi,i = 0 (2.16)

If the density does not change, i.e., the material is incompressible, hence the material
time derivative of the density vanishes, and the continuity equation becomes vi,i = 0
which is the well known incompressibility condition. For Lagrangian description, a
simpler algebraic equation for the mass conservation is given by

ρ J = ρ0 (2.17)

2.2 Strong Form 63

Conservation of linear momentum. This law demands that the change of linear
momentum in time is equal to the sum of all external forces (volume and surface
forces) acting on the body. It is described by the so-called the momentum equation:

ρ
Dv
Dt

= ∇ · σ + ρb or ρv̇i = σ j i, j + ρbi (2.18)

Conservation of angular momentum. This laws requires that the Cauchy stress be
a symmetric tensor.

Conservation of energy. This law states that the rate of change of the total energy
in the body (consisting of the internal energy and kinetic energy) is equal to the rate
of work done by the external forces plus the rate of work provided by heat flux q and
energy sources.

ρ
De

Dt
= D : σ − ∇ · q + ρs (2.19)

where e is the specific internal energy; ρs indicates a heat source per unit volume.

2.1.6 Constitutive Models

All the equations given previously are material independent: they are valid for both
solids and fluids. Tomodel amaterial behavior, a constitutive equation or constitutive
relation—a relation between kinetic quantities (e.g. stresses) as related to kinematic
quantities (e.g. strains)—is needed. It is through constitutive equations that one
can differentiate fluids from solids, concretes from rubbers etc. The first constitutive
equation (constitutive law) was developed by Robert Hooke and is known as Hooke’s
law. It deals with the case of linear elastic materials. Since then, a plethora of con-
stitutive models has been developed to characterize a diverse range of natural and
engineering materials (Gurtin 1981; Marsden and Hughes 1983; Ogden 1984). For
the sake of completeness, we summarize in Chap. 4 some commonly used constitu-
tivemodels for elastic and plastic solids. It is worth noting that numerical simulations
can only be as accurate as the utilized material models.

2.2 Strong Form

For a continuum body under purely mechanical loading (neglect heat exchange),
the governing differential equations in an updated Lagrangian description include
balance laws, constitutive equation, kinematics equation and boundary/initial condi-
tions, which are collectively given as

64 2 A General MPM for Solid Mechanics

Dρ

Dt
+ ρ∇ · v = 0 (conservation of mass)

ρ
Dv
Dt

= ∇ · σ + ρb (conservation of linear momentum)

ρ
De

Dt
= D : σ (conservation of energy)

D = sym(∇v) (strain measure)
σ∇ = SσD

t (D, σ) (constitutive equation)
v(x, t = 0) = v0, σ (x, t = 0) = σ 0 (initial conditions)
u = ū onΓu (Dirichlet boundary conditions)
t = t̄ onΓt (Neumann boundary conditions)

(2.20)

where ρ(X, t) is the density, v(X, t) denotes the velocity, σ (X, t) is the Cauchy stress
tensor, b is the specific body force and ∇ is the gradient operator with respect to the
current configuration. The rate of deformation tensor is represented by D(X, t), σ∇
denotes some objective stress rates which are necessary for large rotations.

The conservation of energy equation is used to update the internal energy for the
equation of state and to check the energy conservation. As a Lagrangian description
is used in MPM, conservation of mass, first equation in Eq. (2.20) is not solved.
The formulation of the basic MPM is isothermal and thus, the energy equation is
not solved either. We postpone the treatment of temperature effects to Sect. 10.3 in
Chap.10.

Known quantities include prescribed displacements ū (or equivalently prescribed
velocities) on the Dirichlet boundary
u , prescribed tractions t̄ on the traction bound-
ary
t , initial velocities v0 and initial stresses σ 0. Recall that in a Lagrangian for-
mulation, the material time derivative is simply a partial derivative with respect to
time Dϕ(X,t)

Dt ≡ ϕ̇ = ∂ϕ(X,t)
∂t . This is much simpler than the Eulerian formulation of

the material time derivative.
As mentioned above, the independent variables in Lagrangian formulation are the

material coordinate X and time t . The dependent variables include (i) mass density
ρ(X, t) (one unknown), (ii) velocity field1 v (3 unknowns in 3D), (iii) stress field σ (6
unknowns as Cauchy stress tensor is symmetric) and (iv) the deformation rate tensor
D (6 unknowns). Therefore, in total, we have 16 unknowns in three dimensions. The
governing equations include (i) conservation of mass (1 equation), (ii) conservation
of momenta (3 equations), (iii) conservation of energy (1 equation), (iv) constitutive
equations (6 equations that relate the six stress components to the six components
of the deformation rate tensor) and (v) strain-displacement equations (6 equations).
In total, we have 17 equations. However, since we are interested in non-adiabatic,
non-isothermal processes, the conservation of energy is not a PDE, so finally we
have 16 equations for 16 unknowns. Note that the conservation of energy is needed
in the so-called equation of state that relates pressure, volume and specific energy.

1 Having the velocity one can obtain the displacement and acceleration fields.

2.3 Weak Form and Spatial Discretization 65

2.3 Weak Form and Spatial Discretization

The MPM, which can be considered as an updated Lagrangian FEM, also employs a
weak formulation. The weak form of the momentum equation, the second equation
in Eq. (2.20), is given by see e.g. Belytschko et al. (2000) or Appendix A.1

∫
Ω

ρδuiaidΩ +
∫

Ω

ρ
∂δui
∂x j

σ s
i jdΩ =

∫
Ω

ρδuibidΩ +
∫

t

ρδui t̄
s
i d
 (2.21)

where Ω denotes the current configuration, σ s
i j is the specific Cauchy stresses i.e.,

σ s
i j = σi j/ρ; subscripts i, j = 1, 2, 3 are used to denote components of vectors and

tensors; δu is the virtual displacement field or the test functions; a the acceleration
field. The specific traction vector is denoted by t̄ si . Note that the above was written in
indicial notation which will facilitate the derivation of the discrete equations. From
this weak form, one can proceed as Sulsky et al. (1994) in what follows to obtain
the semi-discrete equations for the ULMPM or one can derive the semi-discrete
equations for MPM from the ones of the ULFEM by considering the particles as
quadrature points, see Sect. 2.4.

The whole material domainΩ is discretized by a set of material sub-domainsΩp,
and it is assumed that the whole mass of a material sub-domain is concentrated at the
corresponding material point, which means that the mass density field is expressed
as

ρ(x, t) =
np∑
p=1

mpδ(x − xp) (2.22)

where δ is the Dirac delta function with dimension of the inverse of volume. Note
that mp denotes the mass of particle p. Substitution of Eq. (2.22) into Eq. (2.21)
results in

n p∑
p=1

mpδui (xp)ai (xp) +
n p∑
p=1

mp
∂δui
∂x j

∣∣∣∣
(xp)

σ s
i j (xp) =

n p∑
p=1

mpδui (xp)bi (xp) +
n p∑
p=1

mpδui (xp)t̄ si (xp)h
−1

(2.23)
where usewasmade of the identity

∫
f (x)δ(x − xp) = f (xp). As particles constitute

a volume, one needs to introduce a boundary layer thickness h in the calculation of
the external force due to the traction (Zhang et al. 2016). We postpone the discussion
of external traction to Sect. 5.2. Briefly, as a particle method of which there lacks
an explicit representation of the solid boundary, it is difficult to apply a Neumann
boundary condition in the MPM.

Next, the space is discretized by a finite element mesh (or a grid) so that any
spatially varyingfield can be approximated. Themesh consists of nn nodeswith shape
functions φI associated with each node I ; xi I (t) is the i component of the position
vector of node I . In 3D, one writes xI = (x1I , x2I , x3I) = (xI , yI , zI). Subscript I

66 2 A General MPM for Solid Mechanics

denotes the value of grid nodes, and subscript p denotes the value of particles. Thanks
to the use of a FE mesh, evaluation of shape functions and derivatives are standard
(thus efficient) and does not involve neighbor search as in other meshfree methods
such as SPH or EFG.

The FE approximation of the motion is given by

xi (X, t) =
nn∑
I=1

φI (X)xi I (t) (2.24)

As can be seen, the shape functions are expressed in terms of the Lagrangian coor-
dinates X not the Eulerian coordinates x, similar to Lagrangian finite elements
(Belytschko et al. 2000).

Using Eq. (2.24) for the initial configuration one writes

Xi =
nn∑
I=1

φI (X)Xi I (2.25)

with Xi I is the i component of XI–the coordinates of node I in the initial configu-
ration.

The displacement is thus approximated as

ui = xi − Xi =
nn∑
I=1

φI (X)(xi I − Xi I) =
nn∑
I=1

φI (X)ui I (t) (2.26)

where ui I designates the i component of the displacement vector of node I .
The velocity and acceleration fields are thus given by

vi (X, t) =
nn∑
I=1

φI (X)vi I (t) (2.27)

and

ai (X, t) =
nn∑
I=1

φI (X)ai I (t) (2.28)

where vi I , ai I are the i component of the velocity and acceleration vectors of node I ,
respectively. Note that Eq. (2.27) is not needed in the derivation of the semi-discrete
equations given in this section, it will be used later, for example to compute the
velocity gradient and update the particle position.

Using the Bubnov-Galerkin method, the virtual displacement field is approxi-
mated as

δui (X) =
nn∑
I=1

φI (X)δui I (2.29)

2.3 Weak Form and Spatial Discretization 67

i.e., the virtual displacement field is approximated using the same shape functions.
The spatial derivatives of δui is thus given by

∂δui
∂x j

=
nn∑
I=1

∂φI

∂x j
δui I (2.30)

Substituting the FE approximations of δui , ai and
∂δui
∂x j

evaluated at the particles
using Eqs. (2.28)–(2.30) into Eq. (2.23) leads to

n p∑
p=1

mp

[nn∑
I=1

φI (xp)δui I

][nn∑
J=1

φJ (xp)ai J

]
+

n p∑
p=1

mp

[nn∑
I=1

∂φI

∂x j

∣∣∣∣
(xp)

δui I

]
σ s
i j (xp) =

n p∑
p=1

mp

[nn∑
I=1

φI (xp)δui I

]
bi (xp) +

n p∑
p=1

mp

[nn∑
I=1

φI (xp)δui I

]
t̄ si (xp)h

−1 (2.31)

As δui I are arbitrary,2 we obtain the following set of equations (1, 2, 3 equations for
each node I, I = 1, . . . , nn for 1D, 2D, 3D, respectively)

np∑
p=1

mpφI (xp)

(nn∑
J=1

φJ (xp)ai J

)
+

np∑
p=1

mp
∂φI

∂x j

∣∣∣∣
(xp)

σ s
i j (xp) =

np∑
p=1

mpφI (xp)bi (xp) +
np∑
p=1

mpφI (xp)t̄
s
i (xp)h

−1 (2.32)

which can be written in the following compact form

mI JaJ = fextI + f intI , I = 1, 2, . . . , nn (2.33)

wheremI J , fextI , f intI are the I J component of the consistent mass matrix, the external
force vector and the internal force vector, respectively. This equation is exactly
identical to that of the FEM. Equation (2.33) is usually referred to as the semi-
discrete equation as just space was discretized.

The I J component of the consistent mass matrix is given by

mI J =
np∑
p=1

mpφI (xp)φJ (xp) (2.34)

Note that the mass matrix is not constant as in the FEM but changes in time because
the material points move while the grid nodes are reset after a time step.

2 Boundary conditions will be imposed on the discrete equations later.

68 2 A General MPM for Solid Mechanics

The external force vector is written as

f ext
I =

np∑
p=1

mpφI (xp)b(xp) +
np∑
p=1

mpφI (xp)t̄s(xp)h
−1 (2.35)

and the internal force vector as

f intI = −
np∑
p=1

mp/ρpσ p∇φI (xp) = −
np∑
p=1

Vpσ p∇φI (xp) (2.36)

where ∇φI = (∂φI/∂x1, ∂φI/∂x2, ∂φI/∂x3
)T

denotes the gradient of the shape function;
Vp is the volume of particle p; σ p is the 3 × 3 Cauchy stress matrix of particle p.
Recall that the particle density is defined as the ratio of the particle mass to particle
volume. Note that the definition of the nodal internal force is slightly different from
the one in the nonlinear FE literature – there is no minus sign in FEM formulation.
We decided to be consistent with the MPM notation so that confusions would not
occur for beginners.

Remark 10 To understand the compact expression for the internal force given in
Eq. (2.36), we write the internal force vector explicitly as follows

f intx I = −
np∑
p=1

Vp

[
(σxx)p

∂φI

∂x
(xp) + (σxy)p

∂φI

∂y
(xp) + (σxz)p

∂φI

∂z
(xp)

]

f inty I = −
np∑
p=1

Vp

[
(σxy)p

∂φI

∂x
(xp) + (σyy)p

∂φI

∂y
(xp) + (σyz)p

∂φI

∂z
(xp)

]

f intz I = −
np∑
p=1

Vp

[
(σzx)p

∂φI

∂x
(xp) + (σzy)p

∂φI

∂y
(xp) + (σzz)p

∂φI

∂z
(xp)

]
(2.37)

where we used the second term in Eq. (2.32) for f inti I . Simplifications for 1D and 2D
follow straightforwardly.

Remark 11 Since the Neumann boundary
t where the traction is prescribed is not
accurately defined in MPM, it is difficult to compute the external force due to non-
zero traction. And this difficulty applies to the enforcement of non-zero heat flux in
thermal and thermo-mechanical analysis. We refer to Sect. 5.2.3 for a discussion on
this topic.

We have presented the derivation of Eq. (2.33), the semi-discrete equation follow-
ing the MPM way as Sulsky et al. (1994) did. In the next section, another derivation
is provided to see the link to the updated Lagrangian finite element method.

2.4 MPM as FEM with Particles as Integration Points 69

2.4 MPM as FEM with Particles as Integration Points

In what follows, we show that the MPM semi-discrete equation can be obtained
directly from the updated Lagrangian FE equations by considering the particles as
the integration points. This derivation usually seems to be the most straightforward
for readers with experiences in the FEM. More importantly, it shows one major
drawback of the standard MPM: the quadrature approximation nature of the method.
Note that this way of deriving the MPM equations is not suitable to obtain the GIMP
and CPDI formulations. That is why one must master the previous way which begins
with the weak form.

The UL finite element mass matrix, internal force and external force vectors are
given by Belytschko et al. (2000)

mI J =
∫

Ω

ρφIφJdΩ

f intI = −
∫

Ω

∇φIσdΩ

fextI =
∫

Ω

ρφIbdΩ

(2.38)

where we have skipped the traction terms in the external force for simplicity.
Integrals in Eq. (2.38) are computed using numerical integration or numerical

quadrature rules. The integrand is evaluated at a finite set of points called integration
points or Gauss points and a weighted sum of these values is used to approximate
the integral. For a function f , one writes

∫
Ω

f dΩ =
∑
g

f (xg)wg (2.39)

in which wg denotes the weight of integration point g and xg is the position of this
point. It can be shown that if the material points are taken as the integration points
with the weights being its volumes then the FEM equations reduce to theMPM ones.
For examples,

f intI = −
∫

Ω

∇φIσdΩ = −
∑
p

∇φI (xp)σ pVp (2.40)

which is exactly Eq. (2.36).
In theMPM, as only the particle positions and volumes are updated, the deformed

domain cannot be tiled without gaps as in the FEM, cf. Fig. 2.1. Thus, the integration
measure is not exactly preserved in the MPM. In other words, the sum of the particle
volumes is not exactly equal to the volume of the deformed domain. Therefore, the
error due to numerical quadrature in the MPM (more precisely the standard MPM
formulation) is significant.And this is just the first source of quadrature error inMPM.

70 2 A General MPM for Solid Mechanics

Fig. 2.1 Numerical
quadrature in the FEM and
MPM: quadrature measure
error in MPM

Understanding this issue is crucial to reduce this error in developing methods. This
is discussed in subsequent chapters of this book.

The second source of quadrature error emerges from the fact that particles are
independently located with respect to the background grid. Therefore, the particle
based quadrature does not respect the continuity of the grid functions or the support of
these functions. This is similar to other Galerkin meshfree method, see e.g. Dolbow
and Belytschko (1999). In the context of the MPM, Steffen et al. (2008a) presented
a detailed analysis of this quadrature error.

Solutions to the quadrature error of the MPM include the utilization of smooth
grid basis functions such as GIMP, B-spline, CPDI, or the adoption of finite element
quadrature rules (commonly used in the geotechnical engineering community with
unstructured background grids) and the FEMLIP ofMoresi et al. (2003, 2007) where
the quadrature weights are calculated on the fly such that affine functions can be
exactly re-constructed. Among these techniques, CPDI is the most accurate in terms
of quadrature.

2.5 Temporal Discretization and Resulting MPM
Algorithms

Up to this point, we have obtained the semi-discrete, cf. Eq. (2.33). The full discrete
equation is obtained by performing a time integration of this equation as described
therein. We present mass lumping in Sect. 2.5.1 to avoid inverting the mass matrix, a
time consuming step. In contrary to the FEM where the velocity field is stored at the
nodes, the grid velocities are, in the MPM, nullified after every step when the grid is
reset. Therefore, at the beginning of a time step t , one needs to project the particle
velocities to the grid nodes to serve as the starting point for the time advancement.
This crucial step is discussed in Sect. 2.5.2. Section2.5.3 presents the first complete
MPM algorithm named USL (update stress last) which is probably the most popular

2.5 Temporal Discretization and Resulting MPM Algorithms 71

MPM algorithm. A slight modification of the USL and dubbed MUSL (modified
USL) is given in Sect. 2.5.4 to enhance the stability of MPM simulations.

2.5.1 Lumped Mass Matrix

It is obvious from Eq. (2.33) that, to obtain the acceleration one needs to solve a
system of linear equations at every time step. The size of this system is 3nn × 3nn
in 3D where nn—the number of nodes of the grid—can be a very large number. To
avoid this, a lumped mass matrix is adopted. This lumped mass matrix is a diagonal
matrix of which the diagonal terms are given by

mI =
nn∑
J=1

mI J =
nn∑
J=1

np∑
p=1

mpφI (xp)φJ (xp) =
np∑
p=1

mpφI (xp) (2.41)

where Eq. (2.34) was used in the second equality and the partition of unity (PU)
property of FE shape functions,

∑
J φJ (x) = 1, ∀x, was used in the third equality.

Remark 12 A lumpedmassmatrix is more than just a computational simplification;
it also gives better results for impulsive loadings (Benson 1992). Note also that the
use of a lumped mass matrix results in energy dissipation, see e.g. Zienkiewicz and
Taylor (2006) (Sect. 16.2.4).

Remark 13 As the momentum equation is resolved at the grid nodes and not the
material points, the conservation of mass must be satisfied at the nodes. By using
Eq. (2.41) one can write

∑
I

m I =
∑
I

⎛
⎝ np∑

p=1

mpφI (xp)

⎞
⎠ =

np∑
p=1

mp

(∑
I

φI (xp)

)
=
∑
p

m p (2.42)

which proved that mass is conserved at the grid nodes as well.

With this lumped mass matrix, one gets the following system of ordinary differ-
ential equations (ODE) in time:

mIaI (t) = fI (t) := fextI (t) + f intI (t) (2.43a)

aI = dvI (t)
dt

(2.43b)

for all the nodes I .
Let’s denote by t f the simulation time. Then, for time discretization, the temporal

domain 0 ≤ t ≤ t f is divided into nT time steps with time increment Δt = t f /nT .

72 2 A General MPM for Solid Mechanics

Therefore, Eq. (2.43) has to be satisfied for every time instances tk = kΔt with
k = 0, 1, . . . , nT . The most straightforward method to advance the solution in time
i.e., solving the semi-discrete equations, is an explicit formulation in which the
solution is advanced in time from t (i.e., tk) to t + Δt (or tk+1) without solving a
system of linear algebra equations. The forward Euler method is such an scheme and
will be discussed in Sect. 2.5.3. Note that explicit schemes demand the use of quite
small time steps Δt for stability.

A word about notation is in order. We use the superscript t to denote quantities
at time instant t which are known and superscript t + Δt for unknown quantities at
the next time instant.

2.5.2 Calculation of Nodal Velocities (Momenta)

At the beginning of every time step, the particle velocities need to be mapped to the
nodes. This step is not present in the FEM and is necessary as the grid is reset at the
end of a time step and the nodal velocities for that step are lost. More precisely, the
nodal momenta are mapped from the particles using the shape functions (Burgess
et al. 1992)

(mv)tI =
∑
p

φI (xtp)(mv)tp (2.44)

or the particle momenta are projected to the grid nodes.
In what follows, we prove that a weighted least square approximation is needed

for the momenta projection (Eq. (2.44)) as there are more particles than nodes. For
the sake of presentation, let us consider a one dimensional grid made of one cell with
two nodes of which velocities are denoted by vi . Moreover, within this cell, there are
two particles at x1 and x2.

The idea is to minimize the following function

J = 1

2

[
m1(V1 − (φ1(x1)v1 + φ2(x1)v2))

2 + m2(V2 − (φ1(x2)v1 + φ2(x2)v2))
2
]

(2.45)
which is aweighted least squareswhere theweights are the particlemass. In the above
equation, Vi are the particle velocities (not volumes) and mi are the particle masses.
Differentiating J with respect to v1 and v2 and making them zeros one obtains

[m1V1φ11 + m2V2φ12] = (φ11v1 + φ21v2)m1φ11 + (φ12v1 + φ22v2)m2φ12

[m1V1φ21 + m2V2φ22] = (φ11v1 + φ21v2)m1φ21 + (φ12v1 + φ22m2)m2φ22
(2.46)

where use was made of the short notation φi j = φi (x j), the above equation can be
rewritten as follows

2.5 Temporal Discretization and Resulting MPM Algorithms 73

[
φ11φ11m1 + φ12φ12m2 φ11φ21m1 + φ22φ12m2

φ11φ21m1 + φ12φ22m2 φ21φ21m1 + φ22φ22m2

] [
v1
v2

]
=
[
m1V1φ1(x1) + m2V2φ1(x2)
m1V1φ2(x1) + m2V2φ2(x2)

]

(2.47)
which is a system of linear algebra equations to solve for v1 and v2. It can be observed
that the coefficient matrix of this linear system is exactly the consistent mass matrix.
To avoid the solution of such a system, a row sum lumping technique is used which
results in the following

[
φ1(x1)m1 + φ1(x2)m2 0

0 φ2(x1)m1 + φ2(x2)m2

] [
v1
v2

]
=
[
m1V1φ1(x1) + m2V2φ1(x2)
m1V1φ2(x1) + m2V2φ2(x2)

]

(2.48)
which can be generalized to obtain Eq. (2.44) which concludes the proof.

Remark 14 We are checking whether linear momentum is conserved with Eq.
(2.44). By using Eq. (2.44) one can write

∑
I

(mv)I =
∑
I

⎛
⎝ np∑

p=1

(mv)pφI (xp)

⎞
⎠ =

np∑
p=1

(mv)p

(∑
I

φI (xp)

)
=
∑
p

(mv)p

(2.49)
which proved that linear momentum is conserved at grid nodes as well (as long as
φI makes a partition of unity).

Remark 15 Even though this projection of particle velocity has been used nearly
in all MPM simulations, we will see later in Sect. 9.3 that it is not able to provide an
exact projection of a linear velocity field for arbitrary particle positions.

2.5.3 Standard Formulation (USL)

Equation (2.43a) is used to obtain the nodal accelerations atI = f tI /m
t
I , and then the

nodal velocity field is updated using the explicit Euler forward method as follows

vt+Δt
I = vtI + ΔtatI (2.50)

where vtI denotes the nodal velocity at time t , which is known; Δt is the time incre-
ment. Theoretically, the nodes are moved to the new positions given by

xt+Δt
I = xtI + Δtvt+Δt

I (2.51)

Note that this nodal position update is rarely realized as the grid would be reset in
the beginning of the next time step anyway as done in most MPM implementations.
However, it should be emphasized that grid resetting is not a requirement. Grid nodes
can be updated using Eq. (2.51) until the grid is distorted or the grid can be replaced

74 2 A General MPM for Solid Mechanics

with any other suitable grid. This is possible because all information has been stored
at the particles.

Once the grid has been updated, the grid velocities are used to update the particle
state including position, velocity, volume, deformation gradient, stresses etc. We
discuss the update of the particle positions and velocities first as there are different
options which might confuse new comers to the field. The options are PIC, FLIP and
a blended PIC-FLIP.

In the PIC way, the particle velocity is obtained using the total grid velocity. On
the other hand, according to the FLIP way, the particle velocity is obtained using the
grid velocity increment. These are summarized in the following equations

PIC: vt+Δt
p =

∑
I

φI (xtp)v
t+Δt
I (2.52)

FLIP: vt+Δt
p = vtp +

∑
I

φI (xtp)
[
vt+Δt
I − vtI

]
(2.53)

As PIC replaces the particle velocity by the grid velocity, information is loss (there
are many more particles than grid nodes), and thus PIC has numerical dissipation
(or in other words, energy is not conserved for problems without dissipation). FLIP
overcomes that by adding the grid velocity increment to the particle only (Brackbill
and Ruppel 1986).

A combination of PIC and FLIP was first introduced by Zhu and Bridson (2005);
Stomakhin et al. (2013) in the computer graphics community. It was used later in
the engineering community, e.g. by Leroch et al. (2018). In this blended PIC-FLIP,
a mix of PIC and FLIP is used for the particle velocity

vt+Δt
p = α

(
vtp +

∑
I

φI (xtp)
[
vt+Δt
I − vtI

])+ (1 − α)
∑
I

φI (xtp)v
t+Δt
I (2.54)

xt+Δt
p = xtp + Δt

∑
I

φI (xtp)v
t+Δt
I (2.55)

where α = 1 corresponds to the FLIP and α = 0 corresponds to the PIC. We refer
to Fig. 2.2 for an illustration on the influence of α and Sect. 6.15.1 for more detail.
Note that Leroch et al. (2018) updated the particle position as xt+Δt

p = xtp + Δtvt+Δt
p

which we found to give similar results to the standard way.

Remark 16 The particle velocity update is actually computed as follows

vt+Δt
p = α

(
vtp +

∑
I

φI (xtp)
[
vt+Δt
I − vtI

])+ (1 − α)
∑
I

φI (xtp)v
t+Δt
I

= αvtp +
∑
I

φI (xtp)
[
vt+Δt
I − αvtI

] (2.56)

2.5 Temporal Discretization and Resulting MPM Algorithms 75

Fig. 2.2 Vibration of a bar: PIC versus FLIP

Finally, particle stresses are updated. This is known as the update stress last (USL)
formulation in the MPM literature. There exists other formulations as discussed in
Remark 21.Depending on the constitutivemodels being used, onemight need to com-
pute the gradient deformation F, the velocity gradient L and the rate of deformation
D etc. For example, one may need to compute the particle velocity gradients, defined
in Eq. (2.11), then compute the gradient deformation using the relation Ḟ = LF, and
finally using the continuity equation ρ J = ρ0 to determine the updated volume. This
is typically for hyperelastic solids. They are given by

Lt+Δt
p ≡ ∇vt+Δt

p =
∑
I

∇φI (xtp)v
t+Δt
I (2.57a)

Ft+Δt − Ft

Δt
= Lt+ΔtFt , ⇒ Ft+Δt

p = (I + Lt+Δt
p Δt)Ft

p (2.57b)

V t+Δt
p = JV 0

p , J = det Ft+Δt
p (2.57c)

76 2 A General MPM for Solid Mechanics

ρ t+Δt
p = ρ0/J (2.57d)

whereLp is a 3 × 3matrix ofwhich components are Li j = vi, j (in three dimensions).
In the above equation, I is the identity matrix, and Fp is a 3 × 3matrix with the initial
matrix being I i.e.,F0

p = I. We have added the equation to update the particle density,
which is for example needed to calculate the equations of state. Note that there exists
other ways to compute the deformation gradient with higher accuracy, albeit with
more complexities.

Remark 17 The velocity gradient L is actually computed as

L =
⎡
⎣
∑

I φI,xvx I
∑

I φI,yvx I
∑

I φI,zvx I∑
I φI,xvy I

∑
I φI,yvy I

∑
I φI,zvy I∑

I φI,xvz I
∑

I φI,yvz I
∑

I φI,zvz I

⎤
⎦ =

∑
I

⎡
⎣vx I

vy I

vz I

⎤
⎦[φI,x φI,y φI,z

]
(2.58)

for 3D problems. Simplifications for 1D and plane strain/stress 2D problems are
straightforward. For axi-symmetric problems, see Sect. 2.7.

For a hypoelastic constitutive model, one needs to compute the strain incre-
ment Δep = (symLt+Δt

p

)
Δt and using it to compute the stress increment Δσ p.

The updated particle stresses are given by

σ t+Δt
p = σ t

p + Δσ p (2.59)

For complex constitutive models, it might be required to calculate other quantities to
update the particle stresses. We refer to Chap.4 for some common material models
for elastic, hyperelastic and elasto-plastic solids and Sect. 10.1 for fluids and gaseous.
As the material points are Lagrangian, existing stress update algorithms developed
mainly by the FEM community can be readily reused in the MPM. We refer to the
textbooks of Simo and Hughes (1998); de Souza Neto et al. (2011) for detail. And
this brings us to the first complete explicit ULMPM algorithm given in Algorithm 1.
As can be seen, it is a very simple algorithm, which can be coded straightforwardly.
And yet, it has been used to solve many challenging solid mechanics problems. Note
that mp lacks a time label because it is never changed to ensure mass conservation.

2.5 Temporal Discretization and Resulting MPM Algorithms 77

Algorithm 1 Solution procedure of explicit MPM (USL, cut-off).
1: Initialization
2: Set up the Cartesian grid, set time t = 0
3: Set up particle data: x0p, v

0
p, σ

0
p,F

0
p, V

0
p ,mp, ρ

0
p

4: end
5: while t < t f do
6: Reset grid quantities: mt

I = 0, (mv)tI = 0, fext,tI = 0, f int,tI = 0
7: Mapping from particles to nodes (P2G)
8: Compute nodal mass mt

I =∑p φI (xtp)mp

9: Compute nodal momentum (mv)tI =∑p φI (xtp)(mv)tp
10: Compute external force fext,tI =∑p φI (xp)mpb(xp)

11: Compute internal force f int,tI = −∑p V
t
pσ

t
p∇φI (xtp)

12: Compute nodal force f tI = fext,tI + f int,tI
13: end
14: Update the momenta (mv)t+Δt

I = (mv)tI + f tIΔt

15: Fix Dirichlet nodes I e.g. (mv)tI = 0 and (mv)t+Δt
I = 0

16: Update particles (G2P)
17: Get nodal velocities vtI = (mv)tI /m

t
I and vt+Δt

I = (mv)t+Δt
I /mt

I

18: Update particle velocities vt+Δt
p = α

(
vtp +∑I φI (xtp)

[
vt+Δt
I − vtI

])+ (1 −
α)
∑

I φI (xtp)v
t+Δt
I

19: Update particle positions xt+Δt
p = xtp + Δt

∑
I φI (xtp)v

t+Δt
I

20: Compute velocity gradient Lt+Δt
p =∑I ∇φI (xtp)v

t+Δt
I

21: Updated gradient deformation tensor Ft+Δt
p = (I + Lt+Δt

p Δt)Ft
p

22: Update volume V t+Δt
p = det Ft+Δt

p V 0
p

23: Compute the rate of deformation matrix Dt+Δt
p = 0.5(Lt+Δt

p + (Lt+Δt
p)T)

24: Compute the strain increment Δε p = ΔtDt+Δt
p

25: Update stresses: σ t+Δt
p = σ t

p + Δσ p(Δε p), or σ t+Δt
p = σ t+Δt

p (Ft+Δt
p)

26: end
27: Advance time t = t + Δt
28: Error calculation: if needed (e.g. for convergence tests)
29: end while

Remark 18 There are some remarks on Algorithm 1. First, we have omitted the
contribution to the external force due to non-zero traction. This is because it is more
difficult to deal with than with the FEM as discussed in Sect. 5.2.3. Second, we have
assumed that a constant time step Δt = const was used. In practice, varying time
steps are often adopted, see Sect. 2.8 for details. Finally, we presented the so-called
momentum formulation. Note that this momentum formulation is very common but
it does not improve the stability of the MPM.

Smallmass issue. There is a numerical issue in this formulation: the division operator
in atI = f tI /m

t
I would yield infinite acceleration if the mass mt

I is small. In turn, the
velocity gradient in Eq. (2.57a) would be infinite as well and this would spoil the
particle stresses (Sulsky et al. 1995b). This happens when a particle is very close to a
node which has only one particle within its support, cf. Fig. 2.3. This usually happens
with nodes located close to the material interface. For multiple bodies simulations,

78 2 A General MPM for Solid Mechanics

Fig. 2.3 Troubled nodes
with nearly zero mass
resulting in infinite
acceleration (node 2)

those interface nodes are often in contact and therefore contact algorithms have to
carefully address the small nodal mass issue.

To identify the trouble more clearly, we turn to the example given in Fig. 2.3. We
assume that there is only one element and one single particle, with mass denoted by
mp, located very close to node 1. Furthermore, we assume the old nodal velocities
are zero i.e., vt

1 = vt
2 = 0.

The nodal masses are given by

m1 = mpN1

m2 = mpN2 (small value)
(2.60)

And the nodal accelerations are thus

a1 = f1/m1

a2 = f2/m2 (very large value)
(2.61)

where f1 and f2 are the nodal forces. The updated nodal velocities are given by using
Eq. (2.50)

vt+Δt
1 = Δt f1/m1

vt+Δt
2 = Δt f2/m2 (very large value)

(2.62)

The updated particle position and velocity are given by according to Eqs. (2.54) and
(2.55) with α = 1

vt+Δt
p = vt

p + Δt (N1 f1/m1 + N2 f2/m2) = vt
p + Δt (f1/mp + f2/mp)

xt+Δt
p = xtp + Δt (N1Δt f1/m1 + N2Δt f2/m2) = xtp + Δt2(f1/mp + f2/mp)

(2.63)
where Eq. (2.60) was used for the nodal masses m1 and m2. Note that the updated
particle position and velocity are normal as they are smoothed out by the shape
functions.

Next, one computes the velocity gradient needed for stress updating

Lt+Δt
p = −1

h
vt+Δt
1 + 1

h
vt+Δt
2 (very large value) (2.64)

2.5 Temporal Discretization and Resulting MPM Algorithms 79

In conclusion, the problem lies in the use of vt+Δt
2 in computing the velocity gradient

but not in updating the particle velocity and position. A technique to solve this issue,
proposed by Sulsky et al. (1995b), will be presented in Sect. 2.5.4.

Cutoff technique. In this technique, a small positive threshold is introduced to cure
the small mass issue. Accordingly, the nodal velocities are computed as

vt+Δt
I =

⎧⎪⎨
⎪⎩

(mv)t+Δt
I

mt
I

ifmt
I > tol

0 otherwise
(2.65)

This algorithm requires an extra parameter (a cutoff value). Yet how to chose it is not
clear. Even if a good cutoff value can be chosen, it produces an undesirable constraint
which should not be in the system. More advanced techniques are presented in what
follows.

Remark 19 Wallstedt and Guilkey (2008) have studied a number of families of
time integration schemes for use with GIMP including Runge Kutta, Runge-Kutta-
Nystrom, Adams-Bashforth-Moulton (ABM), and Predictor-Corrector Newmark
methods. They reported that few of these methods have been able to achieve their
formal orders of accuracy. Not only is the MPM used for highly discontinuous
and nonlinear problems but the spatial error of the method tend to overwhelm any
improvement that a temporally high order method might offer. They also showed
that the central difference scheme, commonly used in nonlinear finite element codes
(Belytschko et al. 2000), is exactly the same as USL but for one crucial difference:
initialization of particle velocity to a negative half time step.

Remark 20 As can be seen fromAlgorithm 1, theMPM algorithm is very similar to
the ULFEM, cf. Algorithm 24 in Appendix D. There are just a few differences. First,
the nodal mass and velocity have to be re-calculated at the beginning of every time
step. This is natural as the grid does not store permanent information. Second, one
needs to update the particle’s position and velocity. In the ULFEM, the integration
points’ position are fixed and one does not need to calculate their velocity. Based
on this observation, per time step, the MPM is about 2–3 times slower than the
ULFEM. Yet, for very large deformation problems, Ma et al. (2009a) showed that
their in-house MPM code is much faster than the commercial LS-DYNA FEM.

2.5.4 Modified Update Stress Last (MUSL)

In the MUSL of Sulsky et al. (1995b), the updated particle velocities are mapped
back to the nodes to get the nodal velocities using

(mv)t+Δt
I =

∑
p

φI (xp)(mv)t+Δt
p (2.66)

80 2 A General MPM for Solid Mechanics

and thus

vt+Δt
I = (mv)t+Δt

I

mt
I

=
∑

p φI (xp)(mv)t+Δt
p∑

p φI (xp)mp
=
∑

p φI (xp)(mv)t+Δt
p

mt
I

(2.67)

In the second equality, the appearance of the shape functions in both numerator
and denominator cancels out its role and the numerical problem regarding very large
velocity gradient is thus cured. Applying this to the example given in Fig. 2.3, the
updated velocity at the troubled node is now given by

vt+Δt
2 = (1/m2)

[
Δt

(
f1
mp

+ f2
mp

)
mp

]
N2 = Δt

(
f1
mp

+ f2
mp

)
(2.68)

where the first of Eq. (2.63) was used with a simplification that vt
p = 0. Apparently

vt+Δt
2 is not infinite and can be safely used for computing the velocity gradient. The
resulting algorithm, dubbed MUSL, is given in Algorithm 2. Other name for this
algorithm is the double mapping USL as the particle momenta are extrapolated to
the nodes twice—at the beginning of the step and after updating the nodal momenta.
We use a tilde �̃ to denote the temporary grid velocities (Line 14). The differences
of MUSL compared with USL are in Lines 16–21.

Remark 21 It was Bardenhagen (2002) who introduced the term Update Stress
Last (USL) and presented an Update Stress First (USF) algorithm where stresses are
updated in the P2G step. He found that while USL is dissipative (i.e., suffers from
numerical dissipation), USF conserves energies well. Nairn (2003) analyzed the USF
and MUSL for a 2D elastic vibration problem. He found that USL is very unstable,
that the MUSL approach slowly dissipated energy while the USF approach slowly
increased energy. Wallstedt and Guilkey (2008) used the method of manufactured
solutions to test temporal and spatial convergence of GIMPwithUSF andUSL. Their
results show that USL is superior in terms of stability and convergence.

Remark 22 We have so far presented just explicit dynamics MPM. For implicit
dynamics and quasi-static MPM formulations, please refer to the discussion in
Sect. 1.5.4. It is quite straightforward to develop these algorithms as the MPM is
very similar to the updated Lagrangian FEM. That is expressions for the geomet-
ric and material tangent matrices developed for ULFEM can be readily reused, see
Belytschko et al. (2000). A clear presentation of an implicit dynamics MPM is given
in Iaconeta et al. (2017).

Remark 23 An explicit MPM code can also be used for quasi-static problems .
Even though using an explicit code for simple static simulations is not efficient (due
to many time steps for a long simulation period), an explicit code is the only option
for challenging static simulations where implicit solvers would crash (e.g. the solver
does not converge). Global and local damping can be added to mitigate the effects
of stress waves for static simulations (Al-Kafaji 2013).

2.5 Temporal Discretization and Resulting MPM Algorithms 81

Algorithm 2 Solution procedure of explicit MPM (MUSL).
1: Initialization
2: Set up the Cartesian grid, set time t = 0
3: Set up particle data: x0p, v

0
p, σ

0
p,F

0
p, V

0
p ,mp, ρ

0
p

4: end
5: while t < t f do
6: Reset grid quantities: mt

I = 0, (mv)tI = 0, fext,tI = 0, f int,tI = 0
7: Mapping from particles to nodes (P2G)
8: Compute nodal mass mt

I =∑p φI (xtp)mp

9: Compute nodal momentum (mv)tI =∑p φI (xtp)(mv)tp
10: Compute external force fext,tI =∑p φI (xp)mpb(xp)

11: Compute internal force f int,tI = −∑p V
t
pσ

t
p∇φI (xtp)

12: Compute nodal force f tI = fext,tI + f int,tI
13: end
14: Update the momenta (mṽ)t+Δt

I = (mv)tI + f tIΔt

15: Fix Dirichlet nodes I e.g. (mv)tI = 0 and (mṽ)t+Δt
I = 0

16: Update particle velocities and grid velocities (double mapping)
17: Get nodal velocities ṽt+Δt

I = (mṽ)t+Δt
I /mt

I

18: Update particle positions xt+Δt
p = xtp + Δt

∑
I φI (xtp)ṽ

t+Δt
I

19: Update particle velocities vt+Δt
p = α

(
vtp +∑I φI (xtp)

[
ṽt+Δt
I − vtI

])+ (1 −
α)
∑

I φI (xtp)ṽ
t+Δt
I

20: Update grid velocities (mvI)t+Δt =∑p φI (xtp)(mv)t+Δt
p

21: Fix Dirichlet nodes (mv)t+Δt
I = 0

22: end
23: Update particles (G2P)
24: Get nodal velocities vt+Δt

I = (mv)t+Δt
I /mt

I

25: Compute velocity gradient Lt+Δt
p =∑I ∇φI (xtp)v

t+Δt
I

26: Updated gradient deformation tensor Ft+Δt
p = (I + Lt+Δt

p Δt)Ft
p

27: Update volume V t+Δt
p = det Ft+Δt

p V 0
p

28: Update stresses σ t+Δt
p = σ t

p + Δσ p
29: end
30: Advance time t = t + Δt
31: Error calculation: if needed (e.g. for convergence tests)
32: end while

2.5.5 Update Stress First (USF)

USF is the last method introduced (Bardenhagen 2002). In USF, stresses are updated
at the beginning of the time step, not at the end (see Algorithm 3). According to
Nairn (2003), USF is another way to mitigate the small mass problem discussed in
Sect. 2.5.4.

82 2 A General MPM for Solid Mechanics

Bardenhagen (2002) found that USF conserves energy better than USL. To
know more about this problem of energy conservation is the MPM, please refer
to Sect. 9.1.3, where it is covered in detail.

Algorithm 3 Solution procedure of explicit MPM (USF).
1: Initialization
2: Set up the Cartesian grid, set time t = 0
3: Set up particle data: x0p, v

0
p, σ

0
p,F

0
p, V

0
p ,mp, ρ

0
p

4: end
5: while t < t f do
6: Reset grid quantities: mt

I = 0, (mv)tI = 0, fext,tI = 0, f int,tI = 0
7: Mapping from particles to nodes (P2G)
8: Compute nodal mass mt

I =∑p φI (xtp)mp

9: Compute nodal momentum (mv)tI =∑p φI (xtp)(mv)tp
10: Compute velocity gradient Lt

p =∑I ∇φI (xtp)v
t
I

11: Updated gradient deformation tensor Ft
p = (I + Lt

pΔt)Ft−Δt
p

12: Update volume V t
p = det Ft

pV
0
p

13: Compute the rate of deformation matrix Dt
p = 0.5(Lt

p + (Lt
p)

T)

14: Compute the strain increment Δε p = ΔtDt
p

15: Update stresses: σ t
p = σ t

p + Δσ p(Δε p), or σ t
p = σ t

p(F
t
p)

16: Compute external force fext,tI =∑p φI (xp)mpb(xp)

17: Compute internal force f int,tI = −∑p V
t
pσ

t
p∇φI (xtp)

18: Compute nodal force f tI = fext,tI + f int,tI
19: end
20: Update the momenta (mv)t+Δt

I = (mv)tI + f tIΔt

21: Fix Dirichlet nodes I e.g. (mv)tI = 0 and (mv)t+Δt
I = 0

22: Update particles (G2P)
23: Get nodal velocities vtI = (mv)tI /m

t
I and vt+Δt

I = (mv)t+Δt
I /mt

I

24: Update particle velocities vt+Δt
p = α

(
vtp +∑I φI (xtp)

[
vt+Δt
I − vtI

])+ (1 −
α)
∑

I φI (xtp)v
t+Δt
I

25: Update particle positions xt+Δt
p = xtp + Δt

∑
I φI (xtp)v

t+Δt
I

26: end
27: Advance time t = t + Δt
28: Error calculation: if needed (e.g. for convergence tests)
29: end while

2.6 Total Lagrangian MPM (TLMPM)

2.6.1 Motivation: Numerical Fracture

Numerical fracture occurs when the particles move so far out of the cell where
they originally locate that a gap of one cell or more is created between them. To
demonstrate this issue, we simulated the deformation of a hyperelastic square of unit
size subjected to a downwards body force using the ULMPM with linear functions.

2.6 Total Lagrangian MPM (TLMPM) 83

We can see from Fig. 2.4a that the solid continuously deforms and that after some
time, it splits into two parts that are not connected anymore as shown by the fact
that the displacement of the bottom right corner is parabolic at t > 80 ms (Fig. 2.4c).
Such un-physical fracture depends only on the background grid cell-size and the
weighting functions and is therefore not related to any physics. This unphysical
numerical fracture would ultimately limit the accuracy of theMPM tomodel fracture
of materials under large deformation. To mitigate this issue one can use either one of
these options or all of them: (i) more particles per cell, (ii) smoother basis functions
such as B-splines and (iii) particle splitting.

On the other hand, the TLMPM, to be presented in this section, is free of the
numerical fracture trouble; the same simulation of the vertical bar using the TLMPM
(Fig. 2.4b) shows the expected behaviour: the solid stretches and returns to its original
position–no fracture occurs. Thus, the TLMPM is effective at removing “numerical”
fracturewithout having to use techniques that require tracking of the particle domains
(such as CPDI which ironically suffers from mesh-distortion).

2.6.2 Derivation of TLMPM

A total Lagrangian MPM (TLMPM) was presented in de Vaucorbeil et al. (2020)
where the stress and strain are Lagrangian, i.e., they are defined with respect to
the reference configuration (for example, the 1st PK stress is employed), the spatial
derivatives are computed with respect to thematerial coordinates. The corresponding
weak form therefore involves integrals over the reference configuration.The result is a
very efficient and easy to implementMPM that does not suffer cell-crossing error and
numerical fracture. Furthermore, the TLMPM has a better quadrature approximation
since the particles are always located at the optimal quadrature points. For all that,
the inherent no-slip no-penetration contact capability in the ULMPM ceases to exist
for the TLMPM.

The algorithm is nearly identical to the standard MPM, see Algorithm 4. The
differences lie in (1) the 1st PK stress is employed in the internal force, (2) the spatial
derivatives are computed with respect toXp (rather than xtp), and (3) the deformation
gradient and the velocity gradient are calculated differently. Furthermore, the nodal
mass, the weighting functions, and gradients are computed once. And for some
consitutive models adopting the Cauchy stress, one might need to convert it to the
1st PK stress.

84 2 A General MPM for Solid Mechanics

Fig. 2.4 Vertical bar simulations with coarse background grid illustrating a the problem of numer-
ical fracture crippling the ULMPM and b how this is mitigated by the use of TLMPM. Note that in
both simulations, the solid domain is identical but the magnification is different here. Also note that
in the TLMPM simulations, the background grid is only present at the beginning of the simulation
as it is only defined in the reference configuration, i.e., t = 0. In c is plotted the displacement of the
particle at the bottom right corner. The solid’s upper face is fixed and its Young’s modulus, Pois-
son’s ratio and density are respectively 200 MPa, 0.3 and 1050 kg/m3. The body force magnitude
is −1050 m/s2 (de Vaucorbeil and Nguyen 2021b)

2.6 Total Lagrangian MPM (TLMPM) 85

The deformation gradient can be computed as follows

Ḟp = Ft+Δt
p − Ft

Δt
⇒ Ft+Δt

p = Ft
p + ΔtḞp, Ḟp =

∑
I

∇0φI (Xp)vt+Δt
I (2.69)

or alternatively, F can be computed using the relation F = I + ∂u
∂X :

Ft+Δt
p = I +

∑
I

∇0φI (Xp)(xt+Δt
I − XI) (2.70)

Our experiences show that the two ways yield identical results.
The velocity gradient L is then computed as

L := ∂v
∂x

= ∂v
∂X

∂X
∂x

= ḞF−1 (2.71)

From which one can compute the strain rate D.

Remark 24 The rate of the deformation gradient Ḟ is actually computed as

Ḟ =
⎡
⎣
∑

I φI,Xvx I
∑

I φI,Y vx I
∑

I φI,Zvx I∑
I φI,Xvy I

∑
I φI,Y vy I

∑
I φI,Zvy I∑

I φI,Xvz I
∑

I φI,Y vx I
∑

I φI,Zvz I

⎤
⎦ =

∑
I

⎡
⎣vx I

vy I

vz I

⎤
⎦[φI,X φI,Y φI,Z

]

(2.72)
for 3D problems.

Remark 25 Similar to the ULMPM, the TLMPM can be derived following two
ways. In the first way, one can start from the strong form of the governing equations
in the TL form and develop the corresponding weak form. In the second way, one
can directly use the TLFEM semi-discrete equations and use the particles as the
integration points. Since we have done these steps for the ULMPM, we do not repeat
them for the TLMPM.

Remark 26 Even though the TLMPM is very similar to the TLFEM, there are
subtle differences. First, the TLMPM does not need a mesh conforming to the solid
under consideration. Second, modeling contact can be done in the spirit of particle
methods. Third, the TLMPM provides an ideal test bed for developing high order
MPM algorithms as it eliminates many issues of the ULMPM.

86 2 A General MPM for Solid Mechanics

Algorithm 4 Solution procedure of explicit TLMPM (MUSL).
1: Initialization
2: Set up particle data: Xp, v0p, σ

0
p,F

0
p, V

0
p ,mp, ρ

0
p

3: Compute nodal mass mI =∑p φI (Xp)mp
4: Compute and store weighting and gradient φI (Xp) and ∇0φI (Xp)

5: end
6: while t < t f do
7: Reset grid quantities: (mv)tI = 0, fext,tI = 0, f int,tI = 0
8: Mapping from particles to nodes (P2G)
9: Compute nodal momentum (mv)tI =∑p φI (Xp)(mv)tp
10: Compute external force fext,tI

11: Compute internal force f int,tI = −∑n p
p=1 V

0
p P

t
p∇0φI (Xp)

12: Compute nodal force f tI = fext,tI + f int,tI
13: end
14: Update the momenta (mṽ)t+Δt

I = (mv)tI + f tIΔt

15: Fix Dirichlet nodes I e.g. (mṽ)t+Δt
I = 0 and (mv)tI = 0

16: Update particle velocities and grid velocities (double mapping)
17: Get nodal velocities ṽt+Δt

I = (mṽ)t+Δt
I /mt

I

18: Update particle velocities vt+Δt
p = α

(
vtp +∑I φI (Xp)

[
ṽt+Δt
I − vtI

])+ (1 −
α)
∑

I φI (Xp)ṽ
t+Δt
I

19: Update grid velocities (mvI)t+Δt =∑p φI (Xp)(mv)t+Δt
p

20: Fix Dirichlet nodes (mv)t+Δt
I = 0

21: end
22: Update particle (G2P)
23: Compute Ḟt+Δt

p =∑I ∇0φI (Xp)v
t+Δt
I

24: Updated gradient deformation tensor Ft+Δt
p = Ft

p + ΔtḞt+Δt
p

25: Velocity gradient Lt+Δt
p = Ḟt+Δt

p (Ft+Δt
p)−1

26: Update stresses σ t+Δt
p = σ t

p + Δσ p

27: Covert stresses to 1st PK stresses Pt+Δt
p = g(σ t+Δt

p) using Table 2.1

28: Update particle positions (for visualization) xt+Δt
p = xtp + Δt

∑
I φI (Xp)v

t+Δt
I

29: end
30: end while

The formulation presented so far can be used for either 1D, plane stress/strain 2D
or 3D problems. For axi-symmetric problems, slight modifications are needed (see
next section).

2.7 Axi-Symmetric MPM

Structures of revolution (SOR) subject to loading which is symmetric about the
axis of revolution can be effectively modeled using the so-called two dimensional
axi-symmetric formulations. As can be seen from Fig. 2.5, a SOR is obtained by
revolving a generating cross section around the axis of revolution 360◦. The spatial
discretization is thus only performed on the 2D cross section. The resulting axi-

2.7 Axi-Symmetric MPM 87

Fig. 2.5 A solid of revolution (a) and its two dimensional representation (b). We consider a cylin-
drical coordinate system with coordinates (r, θ, z), and with z along the axis of symmetry

symmetric formulation is quite similar to the 2D one. The major modeling difference
is the appearance of the circumferential (or hoop) strain and stress (εθθ and σθθ).
Axi-symmetric ULMPM formulations have been presented in Sulsky and Schreyer
(1996),Ma et al. (2013), Nairn andGuilkey (2015) andwe present them in Sect. 2.7.1.
Also discussed is the axi-symmetric for the TLMPM (Sect. 2.7.2).

2.7.1 Axi-Symmetric ULMPM

For the ULMPM, the following are modifications for axi-symmetric problems:

• Particle mass per radian (which varies from particle to particle):

mp :=
∫

Ωp

ρr dΩ = ρApr
0
p (2.73)

where the coordinates of particle p are xtp := (r tp, z
t
p). This can be obtained as

follows. If we denote the solid of revolution by Ω3 and its 2D domain is Ω we
then can write the following

∫
Ω3

f (r, z)dΩ =
∫ ∫ ∫

f (r, z)rdrdθdz

=
∫ 2π

0

(∫
Ω

r f (r, z)dΩ

)
dθ = 2π

∫
Ω

r f (r, z)dΩ

(2.74)

where dΩ = drdz. By using this formula with f = ρ, one gets Eq. (2.73).
• The nodal internal force vector is given by

88 2 A General MPM for Solid Mechanics

f intr I = −
np∑
p=1

Vp

[
(σrr)p

∂φI

∂r
(xp) + (σr z)p

∂φI

∂z
(xp) + (σθθ)p

φI (xp)

rp

]

f intz I = −
np∑
p=1

Vp

[
(σr z)p

∂φI

∂r
(xp) + (σzz)p

∂φI

∂z
(xp)

] (2.75)

which is only slightly different from the 2D case—the only modification to f intr I
is the third term which comes from the contribution of the energy σθθεθθ . In the
above equation, Vp is the particle volume per radian.

• The initial particle volume per radian is given by

V 0
p = mp/ρ

0 (2.76)

• The velocity gradient matrix is written as

L =
⎡
⎣Lrr Lrz 0
Lzr Lzz 0
0 0 Lθθ

⎤
⎦ , Lθθ =

∑
I

φI (xp)

rp
vr I (2.77)

The last component Lθθ comes from the fact that the hoop strain is defined as
εθθ = ur/r .

Remark 27 If GIMP or CPDI are used, one needs to use the axi-symmetric forms
of the GIMP/CPDI weighting functions. Details can be found in Nairn and Guilkey
(2015). For other weighting functions, the expressions for 2D plane and 3D problems
can be directly used.

2.7.2 Axi-Symmetric TLMPM

For the TLMPM, the following are modifications for axi-symmetric problems:

• Particle mass per radian (which varies from particle to particle):

mp :=
∫

Ω0
p

ρ0R dΩ = ρ0A
0
p Rp (2.78)

where the coordinates of particle p in the reference configuration are Xp :=
(Rp, Z p).

• The nodal internal force vector is given by

2.8 Adaptive Time Step 89

f intr I = −
np∑
p=1

V 0
p

[
(Prr)p

∂φI

∂R
(Xp) + (Prz)p

∂φI

∂Z
(Xp) + (Pθθ)p

φI (Xp)

Rp

]

f intz I = −
np∑
p=1

V 0
p

[
(Prz)p

∂φI

∂R
(Xp) + (Pzz)p

∂φI

∂Z
(Xp)

]

(2.79)
which is only slightly different from the 2D case—the only modification to f intr I
is the third term which comes from the contribution of the energy Pθθ εθθ . In the
above equation, Vp is the particle volume per radian.

• The initial particle volume per radian is given by

V 0
p = mp/ρ

0 (2.80)

• The time derivative of the deformation gradient matrix is written as

Ḟ =
⎡
⎣Ḟrr Ḟrz 0
Ḟzr Ḟzz 0
0 0 Ḟθθ

⎤
⎦ , Ḟθθ =

∑
I

φI (Xp)

Rp
vr I . (2.81)

2.8 Adaptive Time Step

As explicit time integrations are only conditionally stable, explicit dynamics MPM
must employ a time step smaller than a critical value so that errors will not be so
amplified from time step to time step that the error will quickly swamp the solution.
In typical explicit MPM simulations, an adaptive time step is employed i.e., the time
step is adjusted according to the particle velocities instead of being fixed. One first
computes the dilatational wave speed cdil:

cdil =
√

λ + 2μ

ρ
=
√

K + 4
3G

ρ
(2.82)

where λ,μ are the Lamé constants and K is the bulk modulus and G = μ denotes
the shear modulus.

Next, one computes the maximum wave speed using the following equation
(Anderson Jr 1987)

c = (max
p

(cdil + |vxp|),max
p

(cdil + |vyp|),max
p

(cdil + |vzp|)) (2.83)

where vxp is the x component of particle p’s velocity. For hyper-velocity impact
problems, the above equation, where the particle velocity is taken into account, is
very much needed.

90 2 A General MPM for Solid Mechanics

The time step Δt is then chosen as follows

Δt = αmin

(
hx

cx
,
hy

cy
,
hz

cz

)
(2.84)

where (hx , hy, hz) are the cell spacings and α is a time step multiplier ranging from
0 to 1. This factor is needed as the stability analysis was done for linear problems.
The above formulation was implemented in the Uintah MPM code.

Remark 28 When a model contains a few very stiff elements, the efficiency of
explicit time integration is severely compromised. This is because the time step of
the entire model is decided by these very stiff elements. Sub-cycling is a technique
where the problem is divided into a number of sub-domains and each sub-domain is
integrated in time with its own stable time steps, see Belytschko et al. (2000). This
technique has just recently been taken in the computer graphics and they introduced
the so-called asynchronous material point method (Hu and Fang 2017).

2.9 Particle/Element Inversion

For extreme large deformation problems, theMPMsuffers from the negative Jacobian
issue i.e., the element in trouble gets converted. Todemonstrate this issue,we consider
one 1D element in Fig. 2.6. Due to conversion, node 1moves to the right of node 2 (its
displacement is larger than the element length: u1 > L), and assume, for simplicity,
that node 2 is stationary i.e., its displacement is zero. The deformation gradient tensor
in this 1D case is given by

F = 1 + ∂u

∂X
= 1 + ∂N1

∂X
u1 = 1 − u1/L < 0 (2.85)

This is particularily problematic inTLMPMwhere particles cannot swappositions
like in the MPM. A local negative volume can provoke unexpected consequences
such as dramatic instabilities. Particle or element inversion happen when large com-

Fig. 2.6 Negative jacobian
issue when elements get
inverted: 1D illustration

2.10 Adaptivity 91

Fig. 2.7 Multi-level grid refinement and particle splitting. Shaded cells are the ones needed to be
refined. Solid squares denote hanging nodes

pression and shear strains are experienced. In such cases, the time step needs to be
decreased. However, a robust formulation that works well in all circumstances is yet
to be found.

2.10 Adaptivity

A basic MPM implementation adopts a fixed uniform Cartesian (or unstructured)
grid and a fixed number of material points. In order to better resolve regions of high
gradients while keeping a reasonable computational cost, adaptive grid has been
proposed, see Sect. 2.10.1. Accompany with grid refinement is particle splitting in
which original particles are split into new ones to be added to the new grid cells.
Another situation where particle splitting is needed is to prevent numerical fracture.
This particle splitting is discussed in Sect. 2.10.2 (Fig. 2.7).

2.10.1 Grid Adaptive Refinement

Adaptive refinementMPMwas reported inTan andNairn (2002) for fracturemechan-
ics applications. Details are not provided on how to handle hanging nodes. Ma et al.
(2006) presented a multi-level grid refinement for GIMP. The standard grid functions
are modified to handle hanging nodes, and the modified functions are convoluted
with the particle characteristic functions, in the conventional GIMP way, to obtain
the final weighting function φI (xp). A similar method was given in the community
of computer graphics (Gao et al. 2017). Cheon and Kim (2019) reports a similar
grid refinement, for the standard MPM, within the context of phase-field fracture
simulation. In the field of free surface flows, Mao et al. (2015) reported an adaptive
MPM to accurately handle free surfaces. The algorithm allows particle splitting and
merging.

92 2 A General MPM for Solid Mechanics

2.10.2 Particle Splitting and Merging

We confine to 2D problems for simplicity. Assume that a given particle is split into 4
particles. The mass and volume of the new four particles are 1/4 of the corresponding
values for the original particle. All intrinsic material state properties (e.g., density,
deformation gradient, stress, damage, etc.) are set equal to that of the original particle
(Homel et al. 2016). When it comes to when one should perform particle splitting
there exists different criteria, see Ma et al. (2009b), Gracia et al. (2019). Basically,
when a particle is stretched too much, it is split. The splitting criterion uses the local
particle data such as F, its original/current size and the grid cell size.

We have presented the basic MPM formulation for explicit solid dynamics. This
MPM formulation, as simple as it is, can simulate collision of solids involving large
deformation where the contact is no-slip, see Fig. 1.24. Frictional contact can be
incorporated into this model quite straightforwardly (see Sect. 8.1). However, no
details about φI (x) and ∇φI (x) are specified yet. The next section is devoted to this
topic.

References

Al-Kafaji, I.K.J.: Formulation of a Dynamic Material Point Method (MPM) for Geomechanical
Problems. PhD thesis, University of Stuttgart (2013)

Anderson Jr, C.E.: An overview of the theory of hydrocodes. Int. J. Impact Eng. 5(1–4), 33–59
(1987)

Bardenhagen, S.G.: Energy Conservation Error in the Material Point Method for Solid Mechanics.
J. Comput. Phys. 180(1), 383–403 (2002)

Belytschko, T., Liu,W.K.,Moran, B.: Nonlinear Finite Elements for Continua and Structures.Wiley,
Chichester, England (2000)

Benson, D.J.: Computational methods in Lagrangian and Eulerian hydrocodes. Comput. Methods
Appl. Mech. Eng. 99(2–3), 235–394 (1992)

Brackbill, J.U., Ruppel, H.M.: FLIP: a method for adaptively zoned, particle-in-cell calculations of
fluid flows in two dimensions. J. Comput. Phys. 65(2), 314–343 (1986)

Burgess,D., Sulsky,D.,Brackbill, J.U.:Massmatrix formulationof theFLIPparticle-in-cellmethod.
J. Comput. Phys. 103(1), 1–15 (1992)

Cheon, Y-J., Kim, H-G.: An adaptive material point method coupled with a phase-field fracture
model for brittle materials. Int. J. Numer. Methods Eng. (2019)

de Vaucorbeil, A., Nguyen, V.P.: Modeling contacts with a total lagrangian matertial point method.
Comput. Methods Appl. Mech. Eng. 360, 112783 (2021). https://doi.org/10.1016/j.cma.2019.
112783

de Souza Neto, E.A., Peric, D., Owen, D.R.J.: Computational Methods for Plasticity: Theory and
Applications. Wiley (2011)

de Vaucorbeil, A., Phu Nguyen, V., Hutchinson, C.R.: A total-Lagrangian material point method
for solid mechanics problems involving large deformations. Comput. Methods Appl. Mech. Eng.
360, 112783 (2020). https://doi.org/10.1016/j.cma.2019.112783

Dolbow, J., Belytschko, T.: Numerical integration of the galerkin weak form in meshfree methods.
Comput. Mech. 23(3), 219–230 (1999)

https://doi.org/10.1016/j.cma.2019.112783
https://doi.org/10.1016/j.cma.2019.112783
https://doi.org/10.1016/j.cma.2019.112783

References 93

Gao, M., Tampubolon, A.P., Jiang, C., Sifakis, E.: An adaptive generalized interpolation material
point method for simulating elastoplastic materials. ACM Trans. Graphics (TOG) 36(6), 223
(2017)

Gracia, F., Villard, P., Richefeu, V.: Comparison of two numerical approaches (DEM and MPM)
applied to unsteady flow. Comput. Particle Mech. 1–19 (2019)

Gurtin, M.E.: An Introduction to Continuum Mechanics. Academic, New York (1981)
Holzapfel, G.A.: Nonlinear Solid Mechanics. Wiley, New York (2000)
Homel, M.A., Brannon, R.M., Guilkey, J.: Controlling the onset of numerical fracture in paral-
lelized implementations of the material point method (MPM) with convective particle domain
interpolation (CPDI) domain scaling. Int. J. Numer. Meth. Eng. 107(1), 31–48 (2016)

Hu, Y., Fang, Y.: An asynchronous material point method. In: ACM SIGGRAPH 2017 Posters,
p. 60. ACM (2017)

Iaconeta, I., Larese, A., Rossi, R., Guo, Z.: Comparison of a material point method and a Galerkin
meshfree method for the simulation of cohesive-frictional materials. Materials 10(10), 1150
(2017)

Leroch, S., Eder, S.J., Ganzenmüller, G., Murillo, L.J.S., Rodríguez Ripoll, M.: Development and
validation of a meshless 3D material point method for simulating the micro-milling process. J.
Mater. Process. Technol. 262, 449–458 (2018)

Ma, J., Lu, H., Komanduri, R.: Structured mesh refinement in generalized interpolation material
point (GIMP) method for simulation of dynamic problems. Comput. Model. Eng. Sci. 12, 213–
227 (2006)

Ma, S., Zhang, X., Qiu, X.M.: Comparison study of MPM and SPH in modeling hypervelocity
impact problems. Int. J. Impact Eng 36(2), 272–282 (2009)

Ma, S., Zhang,X., Lian,Y., Zhou,X.: Simulation of high explosive explosion using adaptivematerial
point method. Comput. Model. Eng. Sci. (CMES) 39(2), 101 (2009)

Ma, X., Zhang, D.Z., Giguere, P.T., Liu, C.: Axisymmetric computation of taylor cylinder impacts
of ductile and brittle materials using original and dual domain material point methods. Int. J.
Impact Eng 54, 96–104 (2013)

Malvern, L.E.: Introduction to theMechanics of a ContinuousMedium. Prentice-Hall International,
Englewood Cliffs, New Jersey (1969)

Mao, S., Chen, Q., Li, D., Feng, Z.: Modeling of free surface flows using improved material point
method and dynamic adaptive mesh refinement. J. Eng. Mech. 142(2), 04015069 (2015)

Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Prentice-Hall, Englewood
Cliffs, New Jersey (1983)

Moresi, L., Dufour, F., Mühlhaus, H.-B.: A Lagrangian integration point finite element method
for large deformation modeling of viscoelastic geomaterials. J. Comput. Phys. 184(2), 476–497
(2003)

Moresi, L., Quenette, S., Lemiale, V., Mériaux, C., Appelbe, B., Mühlhaus, H.-B.: Computational
approaches to studying nonlinear dynamics of the crust and mantle. Phys. Earth Planet. Inter.
163(1–4), 69–82 (2007)

Nairn, J.A.: Material Point Method Calculations with Explicit Cracks. Comput. Model. Eng. Sci.
4(6), 649–663 (2003)

Nairn, J.A., Guilkey, J.E.: Axisymmetric form of the generalized interpolation material point
method. Int. J. Numer. Meth. Eng. 101(2), 127–147 (2015)

Ogden, R.W.: Non-linear Elastic Deformations. Ellis Harwood Ltd, Chichester, England (1984)
Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, London (1998)
Steffen, M., Kirby, R.M., Berzins, M.: Analysis and reduction of quadrature errors in the material
point method (MPM). Int. J. Numer. Meth. Eng. 76(6), 922–948 (2008)

Stomakhin, A., Schroeder, C., Chai, L., Teran, J., Selle, A.: A material point method for snow
simulation. ACM Trans. Graphics 32(4), 1 (2013)

Sulsky, D., Schreyer, H.L.: Axisymmetric form of the material point method with applications to
upsetting and Taylor impact problems. Comput. Methods Appl. Mech. Eng. 139, 409–429 (1996)

94 2 A General MPM for Solid Mechanics

Sulsky, D., Chen, Z., Schreyer, H.L.: A particle method for history-dependent materials. Comput.
Methods Appl. Mech. Eng. 5, 179–196 (1994)

Sulsky, D., Zhou, S.J., Schreyer, H.L.: Application of a particle-in-cell method to solid mechanics.
Comput. Phys. Commun. 87(1–2), 236–252 (1995)

Tan, H., Nairn, J.A.: Hierarchical, adaptive, material point method for dynamic energy release rate
calculations. Comput. Methods Appl. Mech. Eng. 191(19–20), 2123–2137 (2002)

Wallstedt, P.C., Guilkey, J.E.: An evaluation of explicit time integration schemes for use with the
generalized interpolation material point method. J. Comput. Phys. 227(22), 9628–9642 (2008)

Zhang, X., Chen, Z., Liu, Y.: The Material Point Method: A Continuum-Based Particle Method for
Extreme Loading Cases. Academic (2016b)

Zhu, Y., Bridson, R.: Animating sand as a fluid. ACM Trans. Graphics 24(3), 965–972 (2005)
Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method for Solid and Structural Mechanics,
6th edn. Butterworth-Heinemann, Oxford, UK (2006)

Chapter 3
Various MPM Formulations

A general framework for the MPM has been presented in Chap. 2 in which the
shape functions have not yet been specified. In this section, various shape functions
ranging from the standard hat functions (or linear Lagrange functions), see Sect. 3.2,
generalized interpolationMPM (Sect. 3.3), B-splines (Sect. 3.4), Bernstein functions
(Sect. 3.5), convected particle domain integrator (Sect. 3.6) are discussed. Finally, the
generalized particle in cell (GPIC) is presented in Sect. 3.7. GPIC is a combination
of the TLFEM and ULMPM which is efficient and accurate for large deformation
contact problems.

A note on terminology of φI (x) and ∇φI (x) is worthy here. As will be seen
in Sect. 3.3, φI (x) is constructed as a convolution of the linear/bilinear/trilinear FE
shape functions NI (x) with the particle characteristic function. Therefore, it is not
rigorous to call φI (x) grid basis functions. Therefore, in the remaining of this book,
φI (x) is referred to as weighting function and ∇φI (x) the weighting gradient.

Remark 29 We restrict, for now, our discussion toMPMformulations using aCarte-
sian grid. There exists MPM variants that adopt unstructured grids. See Sect. 5.4 for
a discussion on this topic.

3.1 Properties of Weighting Functions

The weighting functions φI (x) should satisfy all the following properties in addition
to being smooth and continuous across the cell boundaries

Partition of Unity (PU)
∑

I φI (x) = 1 for all x.

Compact support φI (x) �= 0 for just points x close to node I .

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. P. Nguyen et al., The Material Point Method, Scientific Computation,
https://doi.org/10.1007/978-3-031-24070-6_3

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24070-6_3&domain=pdf
https://doi.org/10.1007/978-3-031-24070-6_3

96 3 Various MPM Formulations

Non-negativity φI (x) ≥ 0 for all x.

Kronecker delta property φI (xJ) = δI J .

The PU property defines completeness (i.e., the ability to represent rigid motions
and constant strains) which is required for convergence, see Hughes (2000) and
Appendix A.2. Compact support is for efficiency and non-negativity ensures positive
nodal mass when a lumped mass is used. The use of second-order finite elements
implies the use of shape functions having negative values in their domain. This may
lead to negative mass at some of the grid points, possibly causing instability of
the solution scheme (Andersen and Andersen 2010). The Kronecker delta property
should be satisfied at least at the solid boundaries so that enforcement of Dirichlet
boundary conditions is straightforward.

3.2 Standard Linear Basis Functions

Although any grid can be used in the MPM, a Cartesian grid is usually chosen
for computational convenience reasons. To avoid finding the natural coordinates of
material points, if shape functions are defined in the parameter space, the shape
functions are conveniently defined in the global coordinate system in the MPM. In
1D, the shape functions are defined as

Nx
I (x) =

{
1 − |x − xI |/hx if|x − xI | ≤ hx

0 else
(3.1)

where hx denotes the nodal spacing or element size in the x direction. Its derivatives
are given by

Nx
I,x (x) ≡ dN x

I (x)

dx
=

{
−sign(x − xI)/hx if|x − xI | ≤ hx

0 else
(3.2)

where sign(x) is the signum function.
For 2D, the shape functions are simply the tensor-product of the two shape func-

tions along the x and y directions

NI (x, y) = Nx
I (x)N

y
I (y) (3.3)

And the derivatives of the shape functions are given by

∇NI (x, y) =
[
Nx

I,x (x)N
y
I (y)

Nx
I (x)N

y
I,y(y)

]

(3.4)

3.2 Standard Linear Basis Functions 97

Fig. 3.1 Hat shape functions
for a series of three elements
in 1D

Grid node

Grid element

Particle

Fig. 3.2 Cell crossing issue
in MPM. As the shape
functions are linear, the
derivatives of the shape
functions which are used to
form the divergence are
piecewise constant over the
elements. More important is
that the derivatives are
discontinuous across the cell
boundary (change sign)

node

particle

(equilibriuum)

(a)

(b)

In the first MPM, the weighting functions are simply this hat function i.e., φI (x) =
NI (x). This MPM is refered to as the standard MPM in this text. An illustration of
the hat shape functions is given in Fig. 3.1 for a series of three elements in 1D.

Cell crossing instability. The original MPM with C0 shape functions suffers from
the so-called cell crossing instability. To illustrate this phenomenon, consider a 1D
MPM discretization shown in Fig. 3.2 in which all particles have the same stress (i.e.,
uniform stress state), the same volume and a uniform element size. Each element has
two particles (Fig. 3.2a). The internal force at node 2 is identically zero in the absence
of body force. When a particle has just moved to a new cell, Fig. 3.2b, the internal
force at node 2 is non-zero resulting in non-equilibrium. To demonstrate the issue of
this non-equilibrium, we consider a simple one dimensional MPM simulation shown
in Fig. 3.3a where two particles are moving with a constant velocity towards each
other. The grid consists of 6 cells with cell size is 1/6. While the particle stresses are
identically zero, before collision, and thus causing no issue as the particles travel,
after collision they become non-zero. And right after the particles cross the cells, the
stress field is spoiled and there is a sudden increase of the strain energy (Fig. 3.3b/c).

The cell-crossing issue is more severe in static analyses where there is no inertia
force. For structure and material failure modeling where the onset of failure is most
often based on stresses, cell-crossing issue must be completely avoided. Fine meshes
are preferred for accuracy, but they are more prone to cell crossing. A simple but
inefficient way to prevent this is to adopt more material points and smaller time steps,
cf. Fig. 3.4 where three particles per cell are used. Another option is to not to reset
the grid at the end of every steps as done in Guilkey et al. (2006): particles never

98 3 Various MPM Formulations

Fig. 3.3 Simple example to demonstrate the cell-crossing issue of MPM: a problem setup, b plot
of strain and kinetic energies showing the erroneous strain energy and c zoom-in plot. The stress
of the left particle is depicted in (c, d)

Fig. 3.4 Using more particles per cell can reduce the impact of the cell-crossing issue

3.3 Generalized Interpolation Material Point (GIMP) 99

move out of the deformed grid. The resulting algorithm is very close to the ULFEM
but the extent of mesh distortion is much lower as the initial mesh contains elements
with right angle corners.

Better methods to mitigate this error include the use of high order B-splines
basis functions, the generalized interpolation material point (GIMP) method (and its
variants such as CPDI), the use of modified gradient of shape functions in the dual
domain MPM (Zhang et al. 2011) and the total Lagrangian MPM (Sect. 2.6). All
these methods also improve the quadrature of the MPM.

For quasi-static problems, Beuth et al. (2011) proposed to use Gauss integration to
remove the cell-crossing error. The idea is that Gauss points never leave the elements.
In their formulation, also used in later work of Jassim et al. (2013), one uses Gauss
points not MPs, whose data are interpolated from the MPs, to integrate the internal
force vector (which is the cause of the problem) for fully filled elements. In Alonso
andZabala (2011) a simple procedure that can be used to reduce this type of instability
is to consider a constant stress at each cell equal to the stress average of the particles
that are currently within the cell. In this case, the internal forces are obtained in the
same way as in the FEM when one point of integration is used, using the gradient of
the shape functions evaluated at the cell center. This idea is used later in the improved
MPM of Sulsky and Gong (2016), see Chap. 9.

3.3 Generalized Interpolation Material Point (GIMP)

There are different ways to develop GIMP and Bardenhagen and Kober (2004)
derived the formulation using the Petrov-Galerkin method. We adopt a simpler view
taken by Steffen et al. (2008b)–the projection from particles to nodes for a scalar
field g can be written as

gI =
∑

p

gpNI (xp) =
∑

p

gp

∫

Ω

NI (x)δ(x − xp)dΩ
∫

Ω

δ(x − xp)dΩ
(3.5)

where δ is the Dirac delta and NI are the standard grid functions, presented in
Sect. 3.2. In GIMP, one replaces the Dirac delta with a general function χ(x) called
the particle characteristic function and the resulting projection is given by

gI =
∑

p

gpφI (xp) (3.6)

where φI (xp) is given by

φI p ≡ φI (xp) = 1

Vp

∫

Ωp

χ(x − xp)NI (x)dΩ (3.7)

100 3 Various MPM Formulations

Fig. 3.5 Particle domain and particle characteristic function in GIMP: rectangular particle domains
can fill the initial material domain without overlapping (left) and overlapping circular particle
domains commonly used in meshfree methods (right). Note also that particle domain is evolving in
time as the material deforms

and the short notation φI p was introduced to represent φI (xp); Ωp denotes the parti-
cle domain. Figure3.5 illustrates the concept of particle domains in the MPM and in
meshfree approximations. GIMP weighting functions, as defined by the above equa-
tion, are the convolution of the characteristic function and the grid basis function
normalized by the particle volume.

The particle characteristic functions must satisfy the partition of unity property
in the reference undeformed configuration (Bardenhagen and Kober 2004)

∑

p

χp(x, t = 0) = 1 ∀x (3.8)

Note that Bardenhagen and Kober (2004) placed no such constraint on the character-
istic functions in the deformed configuration due to the potential existence of gaps
between the different particles’ domains. However, the CPDI of Sadeghirad et al.
(2011) ensures the PU of χp(x, t) in the deformed configuration as it closely tracks
the particle domains.

Typically piece-wise constant particle characteristic functions that satisfy the PU
given in Eq.3.8 are used

χp(x) =
{
1 ifx ∈ Ωp

0 otherwise
(3.9)

which implies that the material domain is partitioned into non-overlapping rectan-
gular particle domains (in 2D) as shown in Fig. 3.5. This characteristic function
is known as the “top-hat” function. This particular particle characteristic function
results in the following GIMP weighting functions (simplification of Eq.3.7)

φI p = 1

Vp

∫

Ωp

NI (x)dΩ (3.10)

3.3 Generalized Interpolation Material Point (GIMP) 101

Fig. 3.6 Tracking particle
domain in GIMP: space
cannot be tiled in a general
multi-dimension domain
using rectilinear Ωp

Since theGIMP functions depend on the particle domainΩp which in turn evolves
in time, the GIMP functions are particle specific and time-dependent. Differences in
how the integral in Eq.3.10 is evaluated and how the particle domains are defined/up-
dated result in variousGIMP formulations. Figure3.6 illustrates existingGIMPmeth-
ods to be discussed in what follows.

In the approach commonly referred to as uGIMP (unchanged GIMP) Ωp is kept
fixed and the integral in Eq.3.10 can be exactly integrated resulting in analytical
expressions for φI p. Therefore, uGIMP is more effective than GIMP formulation.
However, as material deforms, the unstretched particle domains cannot fill the mate-
rial space. A more complicated approach, known as cpGIMP (contiguous particle
GIMP), updates the particle domain using the deformation gradient Fwithout taking
shear deformation into account. Analytical expression for the weighting functions
and its derivatives are available. Nonetheless, the updated particle domain is a axis-
aligned rectangle in 2D and space cannot be tiled particularly for shearing. Andersen
(2009) used Gaussian quadrature to numerically evaluate the GIMP basis functions
on the fully updated particle domain (the particle domain is a parallelogram in 2D).
But, it is very computationally expensive and thus should not be employed. Con-
vected Particle Domain Interpolation (CPDI) (Sadeghirad et al. 2011, 2013) is the
next logical development of GIMP where particles are given parallelogram-shaped
domains that are constantly updated using the deformation gradient evaluated at
the particle location. The novelty in CPDI is that the integrals in Eq.3.10 are also
analytically evaluated thanks to the use of alternative basis functions. CPDI will be
presented in Sect. 3.6.

3.3.1 uGIMP

In uGIMP and cpGIMP, the following one dimensional particle characteristic func-
tion is employed

χp(x) =
{
1 if|x − xp| ≤ l p/2

0 otherwise
(3.11)

Here l p is the current particle size. The initial particle size is determined by dividing
the cell spacing hx by the number of particles per cell. Equation3.10 is reduced to

102 3 Various MPM Formulations

φI p = 1

l p

∫ xp+l p/2

xp−l p/2
NI (x)dx (3.12)

and after substitution of the standard FE hat function NI (x), cf. Eq. 3.1, into the
above, one obtains the uGIMP function (Steffen et al. 2008b)

φ(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − (4x2 + l2p)/(4hxlp) if|x | < 0.5l p
1 − |x |/h if0.5l p ≤ |x | ≤ hx − 0.5l p
(h + l p/2 − |x |)2/(2hxlp) ifhx − 0.5l p ≤ |x | < hx + 0.5l p
0 otherwise

(3.13)

of which an example is given in Fig. 3.7.1 The GIMP functions are C1 across the
cell boundaries, have support in adjacent cells and their next nearest neighbors. Note
also that there are four non-zero basis functions within one cell. But, for a given
particle in a cell there are only three non-zero functions. As can be seen, if there are
many particles per element (l p is getting smaller), the GIMP functions resemble the
standard FE hat functions.

The first derivative of the GIMP weighting function is given by

φ,x =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−8x/(4hxlp) if|x | < 0.5l p
−(1/hx)sign(x) if0.5l p ≤ |x | ≤ hx − 0.5l p
−sign(x)(hx + l p/2 − |x |)/(hxlp) if hx − 0.5l p ≤ |x | < hx + 0.5l p
0 otherwise

(3.14)
where sign(x) is the signum function.

In 2D the particle domain is a rectangle defined as l xp × l yp and the GIMP func-
tions are the tensor product of the 1D functions i.e., φ(x, y) = φ(x, l xp)φ(y, l yp). An
example of 2D uGIMP functions is given in Fig. 3.8. In 3D, the particle domain is a
cube and the weighting function is defined similarly. For a given particle p there are
9/27 non-zero basis functions φI p for 2D and 3D problems, respectively.

3.3.2 cpGIMP

In the cpGIMP, the particle domain is tracked by updating the particle sizes in the x
and y directions

l xp(t + Δt) = l xp(t = 0)Fxx (t + Δt)

l yp(t + Δt) = l yp(t = 0)Fyy(t + Δt)
(3.15)

1 Matlab scripts used to generate this plot are presented in Sect. C.1.

3.3 Generalized Interpolation Material Point (GIMP) 103

node
0 0.5 1 1.5 2 2.5 3 3.5 4

0
0.2
0.4
0.6
0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2
0.4
0.6
0.8

1

Fig. 3.7 One dimensional GIMP basis functions φI = φ(x − xI): basis functions (top row), first
derivative (middle row) and GIMP functions are reduced to MPM basis functions as l p decreases
(bottom row)

Fig. 3.8 Two dimensional GIMP basis functions: illustrated for node at (2, 2) on a square domain
4 × 4 discretized by 16 elements of spacing 1 (de Vaucorbeil et al. 2020)

104 3 Various MPM Formulations

i.e., the deformed domain is stretched in orthogonal directions but is never sheared.
In other words, particle domains that start as squares (in 2D) or cubes (in 3D) will
deform to rectangles (in 2D) or orthogonal boxes (in 3D), respectively. Accordingly,
the cpGIMP is limited to problems for which deformation is along the grid directions
so that off-diagonal deformation gradient components are negligible.

3.4 B-Splines Basis Functions

Steffen et al. (2008a, b) showed that for simple problems, the use of cubic splines
improves the spatial convergence properties of the MPM as grid-crossing errors are
reduced. Cubic B-splines were also adopted in the amazing snow animations given in
Stomakhin et al. (2013) for the Frozen movie. There are different ways to construct
the B-splines basis functions, namely through a recurrence or a convolution concept.
The latter was used in Steffen et al. (2008a, b); Stomakhin et al. (2013) and other
MPM references. However, we present herein only the B-splines constructed using
a recursive formula not only because we are familiar with them based on our work
on isogeometric analysis but also because they are general.

3.4.1 Recursive B-Splines

Given a knot vector Ξ 1 = {ξ1, ξ2, . . . , ξn+k+1}, which is defined as an ordered set of
increasing parameter values, the associated set of B-spline basis functions {Ni,k}ni=1
are defined recursively by the Cox-de-Boor formula (Piegl and Tiller 1996), starting
with the zeroth order basis function (k = 0)

Ni,0(ξ) =
{
1 ifξi ≤ ξ < ξi+1,

0 otherwise,
(3.16)

and for a polynomial order k ≥ 1

Ni,k(ξ) = ξ − ξi

ξi+k − ξi
Ni,k−1(ξ) + ξi+k+1 − ξ

ξi+k+1 − ξi+1
Ni+1,k−1(ξ). (3.17)

in which fractions of the form 0/0 are defined as zero.
High order B-spline basis functions are Ck−1 not C0 as high order Lagrange

polynomial basis, the connectivity of elements is, therefore, different from standard
finite elements. Elements are defined as non-zero knot spans. Note that the B-splines
functions are not interpolatory except at the boundaries when open knots are used.
Open knots are those where the first and last knots are repeated p + 1 times. Open
knots facilitate the imposition of Dirichlet boundary conditions. B-splines elements

3.4 B-Splines Basis Functions 105

Fig. 3.9 One dimensional cubic (k = 3) B-spline basis functions on an open uniform knot Ξ =
{0, 0, 0, 0, 1, 2, 3, 4, 5, 5, 5, 5} (de Vaucorbeil et al. 2020). There are 8 nodes (control points in
CAD terminology) and 5 elements (or knot spans in CAD). At any point, there are 4 (= k + 1)
non-zero basis functions. Therefore each element has 4 nodes. The first element’s connectivity is
[1, 2, 3, 4] i.e. particles locate in this element contribute to nodes 1, 2, 3 and 4. The second element’s
connectivity is [2, 3, 4, 5] and so on (Hughes et al. 2005). These functions are modified to get ones
in Fig. 3.10

are used extensively in Isogeometric Analysis (Hughes et al. 2005) which is a com-
putational paradigm that reduces the gap between Computer Aided Design (CAD)
and Finite Element Analysis (FEA).

To illustrate B-splines, we consider cubic B-spline basis functions for a uniform
knot vector Ξ = {0, 0, 0, 0, 1, 2, 3, 4, 5, 5, 5, 5} (Fig. 3.9). The knot vector is made
of 5 knot spans and there are 8 basis functions. Even though it is possible to use
this B-splines in the MPM, see Sect. 6.8.1, we want to modify them to get only 6
basis functions centered at the six nodes, or to have exactly n + 1 nodes (and basis
functions) for a mesh of n cells (1D). This is just a matter of implementation as the B-
splines grid is now exactly the same as the grid that uses hat functions. Furthermore,
analytical forms for these modified B-splines can be derived and thus result in a more
efficient code. In what follows, we present boundary modified cubic B-splines and
refer to Appendix C.3 for quadratic splines.

3.4.2 Boundary Modified B-Splines

To use the knot spans as elements in the manner of Cartesian grid commonly used
in the MPM, one needs, in this example, 6 shape functions not 8. Therefore, there
are two more basis functions than the number of shape functions required. The right
number of shape function is obtained by (1) replacing the first function by itselft plus
one third of the second function, and (2) combining the two basis functions (on each
side) that do not peak at the junction between two elements to obtain the new one

106 3 Various MPM Formulations

Fig. 3.10 Cubic B-spline shape functions for a series of five elements in 1D. Note that there are
now just 6 basis functions (de Vaucorbeil et al. 2020)

dimensional shape functions, now denoted by SI,ζ where ζ corresponds to any axis
x , y or z, plotted on Fig. 3.10. By doing this, the partition of unity is respected and
all elements have the same size. We refer to Sect. C.3 for a detailed derivation.

Because of the presence of boundaries, there are four different types of shape
functions Si,ζ which differ by the position of node I with respect to the boundaries.
They are represented on Fig. 3.10 by different colours and their expressions are, with
r = (ζp − ζi)/h

• Shape functions of type 1 (blue in Fig. 3.10): the node I is located at the boundary,
i.e. ζI = ζB , and have the following form:

S1I,ζ (r) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
6r

3 + r2 + 2r + 4
3 , −2 ≤ r ≤ −1

− 1
6r

3 + r + 1, −1 ≤ r ≤ 0

1
6r

3 − r + 1, 0 ≤ r ≤ 1

− 1
6r

3 + r2 − 2r + 4
3 , 1 ≤ r ≤ 2

, (3.18)

• Shape functions of type 2 (green in Fig. 3.10): the node I is located on the right
side of the closest boundary one cell away from it, i.e. ζI = ζB + h, and have the
following form:

S2I,ζ (r) =

⎧
⎪⎪⎨

⎪⎪⎩

− 1
3r

3 − r2 + 2
3 , −1 ≤ r ≤ 0

1
2r

3 − r2 + 2
3 , 0 ≤ r ≤ 1

− 1
6r

3 + r2 − 2r + 4
3 , 1 ≤ r ≤ 2

(3.19)

• Shape functions of type 3: the node I is located at least two cells away from any
boundary, i.e. ζI ≥ ζB + 2h, and have the following form:

3.5 Bernstein Functions 107

S3I,ζ (r) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
6r

3 + r2 + 2r + 4
3 , −2 ≤ r ≤ −1

− 1
2r

3 − r2 + 2
3 , −1 ≤ r ≤ 0

1
2r

3 − r2 + 2
3 , 0 ≤ r ≤ 1

− 1
6r

3 + r2 − 2r + 4
3 , 1 ≤ r ≤ 2

(3.20)

• Shape functions of type 4: the node I is located on the left side of the closest
boundary, one cell away from it, i.e. ζI = ζB − h, and have the following form:

S4I,ζ (r) =

⎧
⎪⎪⎨

⎪⎪⎩

1
6r

3 + r2 + 2r + 4
3 , −2 ≤ r ≤ −1

− 1
2r

3 − r2 + 2
3 , −1 ≤ r ≤ 0

1
3r

3 − r2 + 2
3 , 0 ≤ r ≤ 1

(3.21)

The two dimensional and three-dimensional shape functions are obtained as the
product of the one-dimensional shape functions as:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φI (xp) = SI,x

(
xp − xI

hx

)

× SI,y

(
yp − yI

hy

)

in 2D

φI (xp) = SI,x

(
xp − xI

hx

)

× SI,y

(
yp − yI

hy

)

× SI,z

(
z p − zI

hz

)

in 3D

(3.22)
These four types of one-dimensional shape functions Si,ζ translate into 42 = 16

two dimensional shape functions, and into 43 = 64 three dimensional shape func-
tions: each node I having a different type along the respective axes x , y, and z. Unless
otherwise stated, in the following, when cubic B-splines are used, each background
cell is populated by 2, 4 and 8 material points in 1D, 2D and 3D, respectively. These
particles will be located at positions defined by ξ1 = 0.2113 and ξ2 = 0.7887. And
these locations are determined from the Gauss quadrature rule.

3.5 Bernstein Functions

Bernstein polynomials form a basis for the Bézier elements used in isogeometric
analysis (Hughes et al. 2005). These polynomials are used in CAD to construct the
so-called Bézier curves/surfaces (Piegl and Tiller 1996). The univariate Bernstein
basis functions of order k are defined over the biunit interval [0, 1] as:

Bi,k(ξ) =
(
k

i

)

ξ i (1 − ξ)k−i (3.23)

108 3 Various MPM Formulations

Fig. 3.11 Bernstein basis
polynomials of degree 2

where the binomial coefficient
(k
i

) = k!
i !(k−i)! for 1 ≤ i ≤ k + 1. Bernstein polynomi-

als of degree 2 are plotted in Fig. 3.11. These polynomials form a partition of unity:∑k
i=1 Bi,k(ξ) = 1.
Each cell of the background mesh is made of 3 (in 1D), 9 (in 2D), or 27 (in 3D)

nodes. As some of these nodes are common to different cells, we express the shape
functions as a function of the normalized distance between a particle p and a node
I , i.e. (xI − xp)/h:

φI (xp) = SI,x

(
xI − xp

hx

)

× SI,y

(
yI − yp

hy

)

× SI,z

(
zI − z p

hz

)

(3.24)

where SI,ζ are the shape functions along the axis ζ (i.e. x , y or z). The shape function
depends on the position of the nodes in a cell: if it is located on an edge or the cell
center along the axis i , they take two different forms: if the node I is located on an
edge of a mesh element along the axis ζ :

Si,ζ (r) = B0,2(|r |) =
{

(1 − |r |)2 if − 1 ≤ r ≤ 1

0 otherwise
(3.25)

otherwise, i.e. if the node I is located at the center (or inside) an element along the
axis ζ :

Si,ζ (r) = B1,2

(

|r | + 1

2

)

=
{

1
2 − 2r2 if − 1/2 ≤ r ≤ 1/2

0 otherwise
(3.26)

Figure3.12 shows these functions over a grid of three cells. As Bernstein functions
are smooth but still C0 across the cell boundaries, they are not recommended for
adoption in any MPM variant except the TLMPM.

In this work, unless otherwise stated, when using Bernstein shape functions, each
background cell is populated by 3, 9 and 27 material points in 1D, 2D and 3D,
respectively. The particles will be located at positions defined by ξ1,2 and 3 = 0.1127,
0.5, and 0.8873.

3.6 Convected Particle Domain Interpolation 109

Grid node

Grid element

shape functions of an edge node

shape functions of a center node

Fig. 3.12 Bernstein quadratic shape functions for a series of three elements in 1D. Note that
Bernstein functions are still C0

3.6 Convected Particle Domain Interpolation

The first method that can fully track particle domains is the Convected Particle
Domain Interpolation (CPDI), developed in Sadeghirad et al. (2011) where 2D parti-
cle domains are approximated as parallelograms which still induce some gaps. Later
on, quadrilateral particle domain was presented in Sadeghirad et al. (2013). Nguyen
et al. (2017) extended CPDI to triangular particle domains, tetrahedral domains, and
also to arbitrary polygon/polyhedral domains. All these formulations are presented
in this section. We refer to Sect. 3.7.4 for an interpretation of CPDI as a way of
projecting quantities defined over a Lagrangian mesh to a Cartesian grid.

3.6.1 One Dimensional Linear CPDI (CPDI-L2)

In order to have a better understanding of the CPDI shape functions, we herein derive
the one dimensional CPDI shape functions. Visualization of 1DCPDI functions were
provided in the original reference (Sadeghirad et al. 2011) but without details. If the
1D particle domain is represented as a two-node line element, we have

φI (xp) = 0.5NI (x
1
p) + 0.5NI (x

2
p)

dφI (xp) = −1

l p
NI (x

1
p) + 1

l p
NI (x

2
p)

(3.27)

where x1p, x
2
p are the corners of the particle domain i.e., the nodes of the line element.

For a visualization of these functions, we consider a grid of three cells with four
nodes as shown in Fig. 3.13. There is one particle with l p = 1 = hx that moves from

110 3 Various MPM Formulations

Fig. 3.13 One dimensional
CPDI-L2 shape functions
(bottom figure). Also shown
are the standard FE basis
functions (middle figure) and
the grid/particle (top figure)

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

grid nodesparticle

1 2 3 4

the left (node 1) to the right (node 4). By using Eq.3.27, one can compute the CPDI
basis functions of all four nodes as plotted in Fig. 3.13 (bottom figure). Also depicted
is the standard FE shape functions–the well known hat functions (middle figure). As
can be seen from the figure, the CPDI basis functions form a partition of unity, but
they are not interpolator i.e., they do not satisfy the Kronecker property. It should
be noted that as we did not use extra cells the CPDI functions do not form a PU for
intervals 0 ≤ x ≤ 0.5 and 2.5 ≤ x ≤ 3.

3.6.2 Convected Particle Domain Interpolation (CPDI-R4)

In the first version of the CPDI family, the particle domain is tracked using the
particle deformation gradient F in the way that the deformed particle domain is a
parallelogram as shown in Fig. 3.14. The domain is defined by (i) the particle position
and (ii) the domain vectors. The latter at time t + Δt are given by

rt+Δt
1 = Ft+Δtr01
rt+Δt
2 = Ft+Δtr02

(3.28)

where r01 and r02 are the initial domain vectors. Since the initial particle domain is a
rectangle (that is why we label it as CPDI-R4 where R stands for rectangles and 4 is
the number of nodes of one particle domain), then we have

3.6 Convected Particle Domain Interpolation 111

Fig. 3.14 Particle domain as
a parallelogram in CPDI is
defined by the particle
position and the domain
vectors

r01 =
[
0.5l x0p
0

]

, r02 =
[

0
0.5l y0p

]

(3.29)

where l x0p and l y0p are the initial particle sizes in the x and y direction, respectively.
The main issue in any GIMP methods is how to perform the integral in Eq.3.10

effectively. Particularly when one allows the deformed particle domain to be of
arbitrary shape and thus located arbitrarily with respect to the background grid.
In CPDI, this is achieved by approximating the grid hat functions NI (x) over the
deformed particle domain Ωp using yet another basis functions

NI (x) ≈ N app
I (x) =

4∑

c=1

Mc(x)NI (xc) (3.30)

where NI (xc) are the conventional grid functions evaluated at the corner c of the
particle domain and Mc(x), or precisely Mc(ξ, η) where (ξ, η) are the so-called
parent coordinates, are the basis functions of the four-node quadrilateral elements
(Q4). The original (NI) and alternative basis functions (N app

I (x)) differ from each
other in the interior of the particle domain. And yet, the alternative basis function
identically equals the exact basis function at the particle corners and hence on the
particle edges sinceMc(x) are interpolation functions. This propertymakes the CPDI
evaluation of nodal internal forces exact in 1D (Sadeghirad et al. 2011).

The GIMP basis functions in Eq.3.10 now becomes

φI p = 1

Vp

∫

Ωp

N app
I (x)dΩ = 1

Vp

∫

Ωp

[
4∑

c=1

Mc(x)NI (xc)

]

dΩ

= 1

Vp

4∑

c=1

[∫

Ωp

Mc(x)dΩ

]

NI (xc)

(3.31)

and similarly the gradient ∇φI p is written by

112 3 Various MPM Formulations

∇φI p = 1

Vp

∫

Ωp

∇N app
I (x)dΩ = 1

Vp

∫

Ωp

[
4∑

c=1

∇Mc(x)NI (xc)

]

dΩ

= 1

Vp

4∑

c=1

[∫

Ωp

∇Mc(x)dΩ

]

NI (xc)

(3.32)

Integrals in Eqs. (3.31) and (3.32) can be computed exactly and the resulting CPDI
basis functions and first derivatives are written as (Sadeghirad et al. 2011)

φI p = 1

4

4∑

c=1

NI (xc) ≡
4∑

c=1

w f
c NI (xc), w f

c = 1/4

∇φI p = 1

Vp

{

(NI (x1) − NI (x3))
[
r1y − r2y
r2x − r1x

]

+ (NI (x2) − NI (x4))
[
r1y + r2y

−r1x − r2x

]}

≡
4∑

c=1

wg
c NI (xc)

(3.33)
where (r1x , r1y) are the components of r1; w

f
c andwg

c are the so-called function/gra-
dient weights. As can be seen from Eq.3.33, the basis function of node I evaluated at
particle p is the sum of the conventional grid functions evaluated at the four corners
of the particle domain. The gradient is the weighted sum of the conventional grid
functions evaluated at the four corners of the particle domain. Note that the coeffi-
cient 1/Vp in the gradient is different from the original formula of Sadeghirad et al.
(2011) (1/(2Vp)) because we adopted different domain vectors.

It can be observed that the function weights sum to unity and the gradient weights
sum to zero. These properties are the consequence of the PUof the FE shape functions
Mc. For example, one can write

∑

c

Mc(x) = 1 →
∫

Ωp

∑

c

McdΩ = Vp →
∑

c

(
1

Vp

∫

Ωp

McdΩ

)

= 1 (3.34)

This observation is useful for verifying the derivation of CPDI functions. Based on
this, it can be straightforwardly shown that the CPDI functions satisfy the partition
of unity. We refer to Fig. 3.13 for a demonstration of this property.

The position of the four corners (they are numbered counter clock wise as shown
in Fig. 3.14) are computed from the particle position and the particle domain vectors

x1 = xp − r1 − r2
x2 = xp + r1 − r2
x3 = xp + r1 + r2
x4 = xp − r1 + r2

(3.35)

3.6 Convected Particle Domain Interpolation 113

and the particle domain volume is

Vp = Ap = 4 ||r1 × r2|| (3.36)

3.6.3 Quadrilateral Convected Particle Domain Interpolation
(CPDI-Q4)

As parallelograms cannot fill space without gaps, cf. Fig. 3.15 and thus Sadeghirad
et al. (2013) presented an improved CPDI method where particles are represented
as quadrilaterals in 2D, cf. Fig. 3.16. This enhancement was referred to as CPDI2
by the authors. Herein, we label it the CPDI-Q4 to reflect that a particle resembles
a Q4 finite element. This minor revision removes overlaps or gaps between particle
domains and it also provides flexibility in choosing particle domain shape in the
initial configuration.

The CPDI-Q4 weighting function and its derivatives are written by Sadeghirad
et al. (2013)

φI p = 1

24Vp

[
(6Vp − a − b)NI (x1) + (6Vp − a + b)NI (x2)

+ (6Vp + a + b)NI (x3) + (6Vp + a − b)NI (x4)
]

(3.37)

Fig. 3.15 Gaps in CPDI-R4.
This is a compliant bar under
influence of a large gravity
force (de Vaucorbeil et al.
2020)

Fig. 3.16 Particle domains
as (bilinear) quadrilaterals in
CPDI-Q4. Note that the
particle domain corners only
play a role in defining the
basis functions and they do
not carry any material
quantities (Nguyen et al.
2017) grid nodes

particles
particle corners

114 3 Various MPM Formulations

∇φI p = 1

2Vp

{

NI (x1)
[
y2 − y4
x4 − x2

]

+ NI (x2)
[
y3 − y1
x1 − x3

]

+ NI (x3)
[
y4 − y2
x2 − x4

]

+ NI (x4)
[
y1 − y3
x3 − x1

]}

(3.38)

where a = (x4 − x1)(y2 − y3) − (x2 − x3)(y4 − y1) and b = (x3 − x4)(y1 − y2) −
(x1 − x2)(y3 − y4). The volume (actually area) of the particle domain is given by
Vp = 0.5[(x1y2 − x2y1) + (x2y3 − x3y2) + (x3y4 − x4y3) + (x4y1 − x1y4)]. There
was a typo is Sadeghirad et al. (2013) and the above equations are correct. Nguyen
et al. (2017) provided a derivation and Sect. C.2 discusses another derivation using
a computer algebra system.

The particle corners are updated using the updated grid velocities (as if we did
before for the particles)

xt+Δt
c = xtc + Δt

∑

I

NI (xc)vt+Δt
I (3.39)

By using the grid velocities to update the particle corners, no gaps between particle
domains will be produced. If needed, e.g. for particle visualization, the particle
positions can be computed as the centers of the particle domains:

xo ≡ 1

Vp

∫

Ωp

xdΩ =
∑

c

wc
f xc (3.40)

where in the second equality the mapping x = Mcxc was used.

3.6.4 Triangular Convected Particle Domain Interpolation
(CPDI-T3)

It is straightforward to extend the CPDI to the case where the particle domains
are linear (or three-node) triangles as illustrated in Fig. 3.17. This is beneficial for
geometries where a discretization in terms of triangles is available. The CPDI-T3
weighting functions and first derivatives are given by Nguyen et al. (2017)

φI p = 1

3
[NI (x1) + NI (x2) + NI (x3)] (3.41)

∇φI p = 1

2Vp

{

NI (x1)
[
y2 − y3
x3 − x2

]

+ NI (x2)
[
y3 − y1
x1 − x3

]

+ NI (x3)
[
y1 − y2
x2 − x1

]}

(3.42)

3.6 Convected Particle Domain Interpolation 115

Fig. 3.17 Particle domains
as (linear) triangles in
CPDI-T3

grid nodes
particles
particle corners

3.6.5 Three Dimensional Linear Tetrahedron CPDI
(CPDI-Tet4)

If the particles are represented by linear tetrahedron elements, the corresponding
CPDI-Tet4 weighting and gradient weighting functions are given by Nguyen et al.
(2017)

φI p = 1

4
NI (x1) + 1

4
NI (x2) + 1

4
NI (x3) + 1

4
NI (x4)

∇φI p = 1

6Vp

⎧
⎨

⎩
NI (x1)

⎡

⎣
a1
b1
c1

⎤

⎦ + NI (x2)

⎡

⎣
a2
b2
c2

⎤

⎦ + NI (x3)

⎡

⎣
a3
b3
c3

⎤

⎦ + NI (x4)

⎡

⎣
a4
b4
c4

⎤

⎦

⎫
⎬

⎭

(3.43)
where

a1 = y42z32 − y32z42, a2 = y31z43 − y34z13, a3 = y24z14 − y14z24, a4 = y13z21 − y12z31

b1 = x32z42 − x42z32, b2 = x43z31 − x13z34, b3 = x14z24 − x24z14, b4 = x21z13 − x31z12

c1 = x42y32 − x32y42, c2 = x31y43 − x34y13, c3 = x24y14 − x14y24, c4 = x13y21 − x12y31
(3.44)

with xi j = xi − x j and yi j = yi − y j ; 6Vp = x21(y23z34 − y34z23) + x32(y34z12 −
y12z34) + x43(y12z23 − y23z12). Note that Vp is a signed quantity and a proper node
numbering was used to have a positive value. This CPDI-Tet4 has been used in Sinaie
et al. (2018) to model thin-walled metallic tubes under impacts and in Leavy et al.
(2019) for mesoscale 3D simulations of polycrystalline materials.

3.6.6 Polygonal and Polyhedral CPDI

Voronoi diagrams or Voronoi tessellations have widespread applications in compu-
tational geometry, city planning, computer graphics, geophysics, and meteorology
etc. It is easy to make a simple Voronoi diagram. Just throw a random scattering of
points (or seeds) across a plane, connect these sites with lines (linking each point to

116 3 Various MPM Formulations

Fig. 3.18 Voronoi diagrams
and its dual–the Delaunay
triangles

nodes (seeds)

Voronoi cell

Delaunay triangle

those which are closest to it), and then bisect each of these lines with a perpendicular,
cf. Fig. 3.18. Each cell in the diagram encloses a particular site, and the surface of the
cell contains all the points on the plane that are closer to that site than to any other.
The properties of Voronoi diagrams have been studied extensively and we refer the
readers to the review paper (Aurenhammer 1991).

A centroidal Voronoi tessellation (CVT) is a special type of Voronoi diagrams. A
Voronoi tessellation is called centroidal when the generating seed of each Voronoi
cell is also its mean–the center of mass with respect to a given density function (Du
et al. 1999). The center of mass is the arithmetic mean of all points weighted by
the local density. If a physical object has uniform density, then its center of mass
is the same as the centroid of its shape. It can be viewed as an optimal partition
corresponding to an optimal distribution of generators.

Nguyen et al. (2017) extended CPDI to arbitrary polyhedron. For sake of simplic-
ity, we present the 2D polygonal CPDI. The idea is simple: the particle polygon of
n sides is partitioned into n triangles as shown in Fig. 3.19. This allows us to rewrite
the function φI p in Eq.3.10:

φI p = 1

Vp

n∑

s=1

[∫

Ωs
p

NI (x)dΩ

]

≈ 1

Vp

n∑

s=1

[∫

Ωs
p

N app
I (x)dΩ

]

≈ 1

Vp

n∑

s=1

[
3∑

c=1

w̄c
f NI (xc)

]

(3.45)
where Ωs

p denotes the sub-triangles and w̄c
f are the function weights defined

previously for the CPDI-T3 case: w̄c
f = As/3, c = 1, 2, 3, and As is the area of

sub-triangle s.
Equation3.45 can be rewritten in the following general form which is equally

applicable to any n-sided polygons with n ≥ 4

φI p =
n+1∑

c=1

wc
f NI (xc) (3.46)

3.6 Convected Particle Domain Interpolation 117

Fig. 3.19 Particle domains
as a polygon in polygonal
CPDI (Nguyen et al. 2017)

particles sub-triangles

where for example w1
f = (A1/3 + A2/3)/A, and A denotes the area of the particle

domain i.e., A = ∑
s As . Note that in our sub-sampling method in addition to the

polygon vertices one needs to use the polygon’s centroid as well.
In the same manner, the derivatives are given by

∇φI p ≈ 1

Vp

n∑

s=1

[∫

Ωs
p

∇N app
I (x)dΩ

]

≈ 1

Vp

n∑

s=1

[
3∑

c=1

w̄c
gNI (xc)

]

≈
n+1∑

c=1

wc
gNI (xc)

(3.47)
where w̄c

g are the unnormalized gradient weights of the sub-triangle under consider-
ation.

The proposed sub-sampling method is easy to be implemented and it is applicable
to polygons of arbitrary sides. By numbering the particle corner nodes in a counter
clockwise order, one simply loops over the polygon edges, for each edge a sub-
triangle is formed and the function weights of this sub-triangle are computed and
accumulated to the correspondingweights. The particles are stored as a finite element
mesh consisting of elements of different types: quadrilaterals, pentagons, hexagons
and heptagons etc.

Remark 30 The polyhedral CPDI could be the only MPM variant that represent the
solid geometrymost accurately (including the surfaces) and in the case that remeshing
is needed (as the particle domains get distorted), no advection occurs. This is because
the particles are the seeds for the Voronoi tesselation. If this is realized, the resulting
method is quite similar to the PFEM. Yet this has not yet been implemented as
remeshing is against the spirit of meshfree methods.

3.6.7 Complications in GIMP/CPDIs

There are some complications associated with GIMP and CPDI. First, for axisym-
metric problems, the weighting and gradients must be modified (Nairn and Guilkey

118 3 Various MPM Formulations

Fig. 3.20 Ghost cells in
GIMP/CPDI: due to the
larger extent of the GIMP
basis functions’ support,
ghost cells have to be
employed. Note that material
points never move to ghost
cells

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

Fig. 3.21 Hole problem
configuration: a background
grid of 7 × 7 cells with two
particles of which one is
moving down with a
constant velocity (de
Vaucorbeil et al. 2020)

2015). Second, ghost cells have to be used and third, there are voids in CPDI. The
latter two issues are discussed in this section.

High order C1 GIMP shape functions and CPDIs requires the introduction of
ghost cells (also referred to as extra cells) at the boundaries, cf. Fig. 3.20, so as that
partition of unity (i.e.,

∑
I φI (x) = 1) is satisfied. Without doing so would result in

non-zero stresses for the particles on the bold lines even for rigid body motion. The
use of ghost cells in GIMP is identical to extra cells in finite difference methods.
However, these ghost cells induce a geometric error in order of h (Steffen 2009).

Next, we demonstrate holes can appear in the CPDIs.2 The problem configuration
is given in Fig. 3.21. The blue particle is moving down with a constant velocity
whereas the red particle initial velocity is null. Note that we purposely assign the
particle sizes for these two particles as follows. The red particle has a particle size in
the horizontal direction exceeds three grid spans while the size of the blue particle is

2 This was firstly discovered by Dr. Brannon at University of Uintah in a post on her blog.

3.6 Convected Particle Domain Interpolation 119

(a) (b)

Fig. 3.22 Hole problem result: particle configurations at different time steps (de Vaucorbeil et al.
2020)

slightly smaller than the grid cell. Snapshots of the simulations are shown inFig. 3.22a
and it clearly demonstrates that CPDIs functions have holes which allow the blue
particle goes through the red particle without any deformation. When the particle
size is smaller than three grid spans (for the red particle) then no hole is created as
demonstrated in Fig. 3.22b. This issue can be solved using particle splitting (Homel
et al. 2016).

Parallelization complication of CPDI. Although the benefits of CPDI have been
clearly demonstrated in a variety of test cases, its widespread use has been limited
because of parallelization difficulties.

A common parallelization strategy for MPM codes is to use domain decompo-
sition, in which the computational domain is decomposed into a number of sub-
domains, often referred to as “patches”; each sub-domain in handled by different
processing units. Particles near the boundary of a patch may contribute to, or receive
data from, nodes on neighboring patches. For particles of a fixed dimension (in
all MPMs except CPDI), defining these data dependencies is straightforward, and
“ghost” data facilitate the calculation. We refer to Chap. 7 for a discussion of domain
decomposition based parallelization of MPM codes.

The complication with CPDI is that particles may stretch unboundedly, leading
to an unpredictable number of ghost nodes required to maintain the fidelity of the
calculation.

120 3 Various MPM Formulations

Homel et al. (2016) has presented a solution to this problem. The idea is to scale
the deformed particle domain so that the corner-to-corner distance of a single particle
is less than the width of the ghost cell, if a single ghost row of cells is used. This
is achieved by splitting the troubled particle into 2, 4, 8 particles in 1D, 2D and 3D,
respectively.

3.7 The Generalized Particle in Cell Method

In the generalized particle in cell (GPIC) method, each solid is discretized by a
number of finite elements, and all finite elements are embedded in a fixed background
grid (Fig. 3.23). The background grid, for computational efficiency purposes, is a
Cartesian grid with basis functions φI (x). The basis functions of the finite elements
are denoted by φFE

J (x). So, we use subscript I for the nodes of the background grid
and J for the nodes of the FE meshes.

At the nodes of the FE mesh(es), we store the mass, the internal forces, external
forces due to body forces and external forces due to tractions. The internal variables
e.g. damage/equivalent plastic strain, kinematic variables (e.g. deformation gradient
tensor) and stresses are stored at the quadrature points of the FE meshes.

At the nodes of the Eulerian grid, we store the mass mI , the momentum and the
forces. They are obtained by projecting the mass, velocity and forces from the FE
meshes in the MPMway. The equation of momentum is solved on this Eulerian grid.

We present the GPIC algorithms in Sect. 3.7.1 with details regarding the com-
putation of the nodal mass and internal forces on the FE meshes in Sect. 3.7.2. For
completeness, basis functions are presented in Sect. 3.7.3. The similarities of GPIC
and CPDI are elucidated in Sect. 3.7.4 and an axi-symmetric formulation of GPIC is
given in Sect. 3.7.5.

Fig. 3.23 GPIC: finite
element meshes embedded in
a background Eulerian grid
(Nguyen et al. 2021)

3.7 The Generalized Particle in Cell Method 121

3.7.1 General Algorithms

The flowchart of GPIC is as follows. At the beginning of the simulation, the masses
of all FE nodes are calculated. The forces at these nodes are initialized to zeros.
In the simulation loop, there are four steps. In step 1–meshes to grid (M2G)–one
maps the FE quantities (mass, velocity and forces) to the Eulerian grid. In step
2, the momentum equation is solved on the Eulerian grid i.e., the grid velocities
are updated. In step 3–grid to mesh (G2M)–the updated grid velocities are used to
update the position, velocity and displacement of the FE nodes. And finally, in step
4–update mesh forces (UMF)–we compute the stresses at Gauss points and compute
the internal/external forces at the FE nodes. For ease of implementation, a detailed
flowchart is given in Algorithm 5 for the UL form of GPIC and Algorithm 6 for the
TL form. For simplicity, these algorithms are presented only for one-point quadrature
but extension to a general quadrature is straightforward. The TL form is different
from the UL form only in the computation of the internal forces: the former employs
the original configuration and the first Piola-Kirchoff stress and the latter adopts the
current configuration and the Cauchy stress. We refer to Belytschko et al. (2000) for
an excellent presentation of TL and UL formulations.

We use a subscript t for quantities at the beginning of a time step e.g. xtJ and sub-
script t + Δt for quantities at the end of the step. Note that the original configuration
of the solid is designated by Ω0 and the current configuration by Ω . The position of
a FE node in Ω0 is denoted by X and the position of that same node in Ω is xt . They
are related via the displacement field ut : xt = X + ut .

The mapping from FE meshes to the grid for the momenta, external and internal
forces are achieved using the grid basis functions in the spirit of the MPM

Mapping momenta : (mv)tI =
∑

J

φI (xtJ)(mv)tJ (3.48a)

Mapping external forces : fext,tI =
∑

J

φI (xtJ)f
ext,t
J (3.48b)

Mapping internal forces : f int,tI = −
∑

J

φI (xtJ)f
int,t
J (3.48c)

Note that gradients of the grid functions are never required. Therefore, GPIC is
free of cell-crossing issue and highly efficient. In the graphics community, Hu et al.
(2018) developed amoving least squareMPM that also does not need basis gradients.

122 3 Various MPM Formulations

Algorithm 5 Solution procedure of explicit GPIC (UL): one-point quadrature.
1: Initialization
2: Set up Eulerian grid and Lagrangian mesh
3: Compute nodal mass mJ = ∑

g φFE
J (ξ g)ρgwg

4: end
5: while t < t f do
6: Reset grid quantities: (mv)tI = 0, fext,tI = 0, f int,tI = 0
7: Mapping from particles to nodes (M2G)
8: Compute nodal momentum (mv)tI = ∑

J φI (xtJ)(mv)tJ
9: Compute external force fext,tI = ∑

J φI (xtJ)f
ext,t
J

10: Compute internal force f int,tI = −∑
J φI (xtJ)f

int,t
J

11: Compute nodal force f tI = fext,tI + f int,tI
12: end
13: Update the momenta (mv)t+Δt

I = (mv)tI + f tIΔt

14: Fix Dirichlet nodes I e.g. (mv)t+Δt
I = 0 and (mv)tI = 0

15: Update particle velocity, position & displacement (G2M)
16: Get nodal velocities vt+Δt

I = (mv)t+Δt
I /mt

I

17: Update mesh velocities vt+Δt
J = vtJ + ∑

I φI (xtJ)
[
vt+Δt
I − vtI

]

18: Update mesh positions xt+Δt
J = xtJ + Δt

∑
I φI (xtJ)v

t+Δt
I

19: Update mesh incremental displacement dut+Δt
J = Δt

∑
I φI (xtJ)v

t+Δt
I

20: Fix Dirichlet nodes K : vt+Δt
K = 0,dut+Δt

K = 0, xt+Δt
K = XK

21: end
22: Update stress and forces on the FE meshes (UMF)
23: Update stress at element center σ (ξ0)

24: Compute internal force f int,t+Δt
J = σ (ξ0)∇φFE

J (ξ0)w(ξ0)

25: Compute external force fext,t+Δt
J

26: end
27: end while

Then, the momentum equation is solved and the grid velocity is updated in an
exact way of theMPM. The faces of the Eulerian grid can play a role of rigid walls for
which Dirichlet boundary conditions can be applied. In the G2M step, one projects
the updated grid velocity to the FE meshes. For the velocity update, we follows the
FLIPway ofBrackbill andRuppel (1986) by interpolating the grid velocity increment
not the total grid velocity. This becomes the standard in the MPM because it avoids
numerical dissipation which would occur if the total grid velocity was mapped to the
mesh nodes. What is different from the MPM is that we also need to compute the
displacement increments duJ .

At this stage, we have the updated displacements at all nodes of the FE meshes,
the last step is to update the internal forces f int,t+Δt

J and external forces fext,t+Δt
J in a

FEM manner. This is discussed in the next sub-section.

3.7 The Generalized Particle in Cell Method 123

Algorithm 6 Solution procedure of explicit GPIC (TL): one-point quadrature.
1: Initialization
2: Set up Eulerian grid and Lagrangian mesh
3: Compute nodal mass mJ = ∑

g φFE
J (ξ g)ρgwg

4: end
5: while t < t f do
6: Reset grid quantities: (mv)tI = 0, fext,tI = 0, f int,tI = 0
7: Mapping from particles to nodes (M2G)
8: Compute nodal momentum (mv)tI = ∑

J φI (xtJ)(mv)tJ
9: Compute external force fext,tI = ∑

J φI (xtJ)f
ext,t
J

10: Compute internal force f int,tI = −∑
J φI (xtJ)f

int,t
J

11: Compute nodal force f tI = fext,tI + f int,tI
12: end
13: Update the momenta (mv)t+Δt

I = (mv)tI + f tIΔt

14: Fix Dirichlet nodes I e.g. (mv)t+Δt
I = 0 and (mv)tI = 0

15: Update particle velocity, position & displacement (G2M)
16: Get nodal velocities vt+Δt

I = (mv)t+Δt
I /mt

I

17: Update mesh velocities vt+Δt
J = vtJ + ∑

I φI (xtJ)
[
vt+Δt
I − vtI

]

18: Update mesh positions xt+Δt
J = xtJ + Δt

∑
I φI (xtJ)v

t+Δt
I

19: Update mesh incremental displacement dut+Δt
J = Δt

∑
I φI (xtJ)v

t+Δt
I

20: Fix Dirichlet nodes K : vt+Δt
K = 0,dut+Δt

K = 0, xt+Δt
K = XK

21: end
22: Update stress and forces on the FE meshes (UMF)
23: Update Cauchy stress at element center σ (ξ0)

24: Convert Cauchy stress to 1st PK stress P(ξ0) = JFσ (ξ0)(F(ξ0))
−T

25: Compute internal force f int,tJ = P(ξ0)∇0φ
FE
J (ξ0)w(ξ0)

26: Compute external force fext,tJ
27: end
28: end while

Remark 31 The idea of computing the internal forces on a FE mesh and project it
to an Eulerian grid was probably first presented by Lian et al. (2011); Hamad et al.
(2015) where finite elements were used to model structural elements (reinforcement
bars in Lian et al. (2011) and membranes in Hamad et al. (2015)). So, our method
GPIC is an extension of their idea to solids. Interestingly, GPIC is very similar to
CPDI of Sadeghirad et al. (2011). We present a comparison of CPDI and GPIC in
Sect. 3.7.4.

3.7.2 Computation of Mass and Forces on FE Meshes

At the beginning of the simulation, we compute the nodalmassmJ for the FEmeshes:

mJ =
∫

Ω0

ρφFE
J dΩ =

∑

g

ρφFE
J (ξ g)wg (3.49)

124 3 Various MPM Formulations

wherewe have assumed that a lumpedmasswas adopted using the row sum technique
and ρ is the material density. The second equation is the standard Gauss quadrature
with Gauss points denoted by ξ g and wg is the weight. Unless otherwise stated, we
use one-point quadrature with ξ 0 denoting that point. In this case, we consider an
element a particle.

The internal forces at node J are calculated as, using either an updated Lagrangian
(UL) formulation or a total Lagrangian (TL) one:

UL : f intJ =
∫

Ω

σ∇φFE
J dΩ =

∑

g

σ (ξ g)∇φFE
J (ξ g)wg (3.50a)

TL : f intJ =
∫

Ω0

P∇0φ
FE
J dΩ =

∑

g

P(ξ g)∇0φ
FE
J (ξ g)wg (3.50b)

where σ is the Cauchy stress tensor and P is the first Piola-Kirchoff (1st PK) stress
tensor. They are stored as 3 × 3 matrices for 3D problems. The gradient of the FE
shape functions with respect to the current configuration and reference configuration
are denoted by ∇φFE

J and ∇0φ
FE
J , respectively. If the solid behaviour is described

by a constitutive model using the Cauchy stress, one needs to convert it to the 1st
PK stress in the TL formulation. For that conversion, JF is the determinant of the
gradient deformation tensor.

For a given FE element, we compute the deformation gradient tensor F at a Gauss
point using its definition

UL : F :=
(

I − ∂u
∂x

)−1

=
(

I −
∑

J

∇φFE
J (ξ g)(x

t+Δt
J − XJ)

)−1

(3.51a)

TL : F := I + ∂u
∂X

= I +
∑

J

∇0φ
FE
J (ξ g)(x

t+Δt
J − XJ) (3.51b)

where I is the 3 × 3 identity matrix. And the loop over J is over the FE nodes of the
element under consideration.

For elasto-plastic constitutive models, one needs the strain rate tensor D. We
present how to compute it for the TL formulation (as this one is robust for massive
deformation whereas the UL is not). All these kinematic quantities are evaluated at
the quadrature points of all elements. For ease of presentation, we did not specify this
i.e., we write L for L(ξ g). First, one compute the rate of the deformation gradient Ḟ
as follows

Ḟ = 1

Δt

∑

J

∇0φ
FE
J (ξ 0)duJ (3.52)

Then, we compute the velocity gradient L by Belytschko et al. (2000)

L = ḞF−1 (3.53)

3.7 The Generalized Particle in Cell Method 125

And finally, D is computed as

D = 1

2
(L + LT) (3.54)

From that, one can compute the strain increment ΔtD and use it for updating the
stress.

Our experiences show that the UL version of GPIC is not suitable for extremely
large deformation problems. As the UL-GPIC is similar to the CPDI of Sadeghirad
et al. (2011), this test just confirms the recent findings of Wang et al. (2019) that
this method loses accuracy when the mesh becomes distorted. On the other hand, the
TL-GPIC works well for massive tensile/compressive deformation. Owing to this,
we recommend the use of the TL-GPIC.

3.7.3 Finite Element Basis Functions

As the FE basis functions and their derivatives are standard, we do not discuss them
in detail here; for completeness, we present the four-node quadrilateral element in
Fig. 3.24. For the TL formulation, one can compute∇0φ

FE
J (ξ g) once in the initializa-

tion phase and store them for later use, whichwill significantly enhance the efficiency
of GPIC.

To obtain the derivatives of the shape functions with respect to the spatial coor-
dinates x we use the chain rule, say for a quadrilateral element

⎡

⎢
⎢
⎢
⎣

∂φFE
J

∂ξ

∂φFE
J

∂η

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

∂φFE
J

∂x

∂x

∂ξ
+ ∂φFE

J

∂y

∂y

∂ξ

∂φFE
J

∂x

∂x

∂η
+ ∂φFE

J

∂y

∂y

∂η

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

∂φFE
J

∂x
∂φFE

J

∂y

⎤

⎥
⎥
⎦ (3.55)

Fig. 3.24 The four-node quadrilateral element (Nguyen et al. 2021): the black filled circle denotes
the Gauss point at the center with the weight equal 4. The final weight wg used e.g. in Eq.3.49 is
thus 4 multiplied by the determinant of the transformation matrix in Eq.3.57

126 3 Various MPM Formulations

Hence,
⎡

⎢
⎢
⎣

∂φFE
J

∂x
∂φFE

J

∂y

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

⎤

⎥
⎥
⎦

−1
⎡

⎢
⎢
⎢
⎣

∂φFE
J

∂ξ

∂φFE
J

∂η

⎤

⎥
⎥
⎥
⎦

(3.56)

with ⎡

⎢
⎢
⎣

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎣

∂φFE
1

∂ξ

∂φFE
2

∂ξ

∂φFE
3

∂ξ

∂φFE
4

∂ξ

∂φFE
1

∂η

∂φFE
2

∂η

∂φFE
3

∂η

∂φFE
4

∂η

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

x1 y1
x2 y2
x3 y3
x4 y4

⎤

⎥
⎥
⎦ (3.57)

3.7.4 Equivalence Between CPDI and GPIC

We are demonstrating the equivalence between CPDI and GPIC method in two
dimensions. Recall that the nodal internal force vector in the MPM is given by

f intx I = −Vp

[

(σxx)p
∂φI

∂x
(xp) + (σxy)p

∂φI

∂y
(xp)

]

f inty I = −Vp

[

(σxy)p
∂φI

∂x
(xp) + (σyy)p

∂φI

∂y
(xp)

] (3.58)

And the CPDI-Q4 derivatives are written as

[
φI,x (xp)
φI,y(xp)

]

= 1

2Vp

{

NI (x1)
[
y24
x42

]

+ NI (x2)
[
y31
x13

]

+ NI (x3)
[
y42
x24

]

+ NI (x4)
[
y13
x31

]}

(3.59)

Substitution of Eq.3.59 into Eq.3.58 results in the following explicit expression
of the grid nodal internal force vector for the x component

f intx I = NI (x1)
(y42

2
σxx + x24

2
σxy

)
+ NI (x2)

(y13
2

σxx + x31
2

σxy

)

+ NI (x3)
(y24

2
σxx + x42

2
σxy

)
+ NI (x4)

(y31
2

σxx + x13
2

σxy

) (3.60)

We are going to prove that we can also get Eq.3.60 by using GPIC. That is, we
compute the internal force at the FE nodes analytically and map them to the Eulerian
grid node I , and we get exactly Eq.3.60.

The internal force vector at node J , J = 1, 2, 3, 4, of the particle element is given
by

3.7 The Generalized Particle in Cell Method 127

f intJ = −
∫

Ω

BT
JσdΩ = −

∑

g=1

BT
Jgσ gwg|J |g (3.61)

where g denotes the integration points, wg is the integration weight and |J | is the
determinant of the transformation. Assuming that the stress field within the particle
element is uniform to be consistent with the CPDI, the internal force can be ana-
lytically evaluated using one single quadrature point positioned at the center of the
element. The results are (only x−component of these forces)

f intx1 = y42
2

σxx + x24
2

σxy

f intx2 = y13
2

σxx + x31
2

σxy

f intx3 = y24
2

σxx + x42
2

σxy

f intx4 = y31
2

σxx + x13
2

σxy

(3.62)

Now these internal forces at the nodes of the particle element are mapped to the
background grid. At node I, we obtain

f intx I = NI (x1) f intx1 + NI (x2) f intx2 + NI (x3) f intx3 + NI (x4) f intx4 (3.63)

which results in an internal force identical to the CPDI one given in Eq.3.60.
So, what we have just demonstrated is that, for Eulerian grid with hat functions,

CPDI-Q4 is equivalent to GPIC or vice versa. In the former, some parts are done
analytically, in GPIC, everything is done numerically.While it is impossible to derive
CPDI functions for other elements such as eight-node hexahedral elements and other
quadratic elements, GPIC does not have this problem. Actually, one can use any
elements (even isogeometric elements) on any background grid (structured grids
with cubic B-splines or even unstructured grids).

3.7.5 Axi-Symmetric GPIC

Similar to the axi-symmetric formulation for the MPM, we compute the nodal mass
(on the FE mesh) per radian:

mJ =
∫

Ω0

RρφFE
J dΩ =

∑

g

ρR(ξ g)φ
FE
J (ξ g)wg (3.64)

where R(ξ g) is given by

128 3 Various MPM Formulations

R(ξ g) =
∑

J

φFE
J (ξ g)RJ (3.65)

and the node coordinates are denoted by (RJ , ZJ) in the reference configuration.
The nodal internal force vector of the FE mesh is written as

f intr J =
∑

g=1

R(ξ g)wg

[

(Prr)p
∂φFE

J

∂R
(ξ g) + (Prz)p

∂φFE
J

∂Z
(ξ g) + (Pθθ)p

φFE
J (ξ g)

R(ξ g)

]

f intz J =
∑

g=1

R(ξ g)wg

[

(Prz)p
∂φFE

J

∂R
(ξ g) + (Pzz)p

∂φFE
J

∂Z
(ξ g)

]

(3.66)
The rate of the deformation tensor Ḟ, now 3 × 3 matrix, is given by

Ḟ =
⎡

⎣
Ḟrr Ḟrz 0
Ḟzr Ḟzz 0
0 0 Ḟθθ

⎤

⎦ , Ḟθθ =
∑

J

φFE
J (ξ g)

R(ξ g)
dur J (3.67)

And one does the same thing for F but Fθθ uses the total displacement not the
displacement increment.

References

Alonso, E.E., Zabala, F.: Progressive failure of Aznalcóllar dam using the material point method.
Géotechnique 61(9), 795–808 (2011)

Andersen, S., Andersen, L.: Analysis of spatial interpolation in the material-point method. Comput.
Struct. 88(7–8), 506–518 (2010)

Andersen, S.M.: Material-point analysis of large-strain problems: modelling of landslides. Ph.D.
thesis, Aalborg University (2009)

Aurenhammer, F.: Voronoi diagrams-a survey of a fundamental geometric data structure. ACM
Comput. Surv. 23(3), 345–405 (1991)

Bardenhagen, S.G., Kober, E.M.: The generalized interpolation material point method. Comput.
Model. Eng. Sci. 5(6), 477–495 (2004)

Belytschko, T., Liu,W.K.,Moran, B.: Nonlinear Finite Elements for Continua and Structures.Wiley,
Chichester, England (2000)

Beuth, L., Wieckowski, Z., Vermeer, P.A.: Solution of quasi-static large-strain problems by the
material point method. Int. J. Numer. Anal. Meth. Geomech. 35(13), 1451–1465 (2011)

Brackbill, J.U., Ruppel, H.M.: FLIP: a method for adaptively zoned, particle-in-cell calculations of
fluid flows in two dimensions. J. Comput. Phys. 65(2), 314–343 (1986)

de Vaucorbeil, A., Nguyen, V.P., Hutchinson, C.R.: A total-lagrangian material point method for
solid mechanics problems involving large deformations. Comput. Methods Appl. Mech. Eng.
360, 112783 (2020). https://doi.org/10.1016/j.cma.2019.112783

de Vaucorbeil, A., Nguyen, V.P., Sinaie, S., Wu, J.Y.: Chapter two—material point method after 25
years: theory, implementation, and applications. In: Advances in Applied Mechanics, vol. 53, pp.
185–398. Elsevier (2020)

Du, Q., Faber, V., Gunzburger, M.: Centroidal voronoi tessellations: applications and algorithms.
SIAM Rev. 41(4), 637–676 (1999)

https://doi.org/10.1016/j.cma.2019.112783

References 129

Guilkey, James E., Hoying, James B., Weiss, Jeffrey A.: Computational modeling of multicellular
constructs with the material point method. J. Biomech. 39(11), 2074–2086 (2006)

Hamad, F., Stolle, D., Vermeer, P.: Modelling of membranes in the material point method with
applications. Int. J. Numer. Anal. Meth. Geomech. 39(8), 833–853 (2015)

Homel, M.A., Brannon, R.M., Guilkey, J.: Controlling the onset of numerical fracture in paral-
lelized implementations of the material point method (MPM) with convective particle domain
interpolation (CPDI) domain scaling. Int. J. Numer. Meth. Eng. 107(1), 31–48 (2016)

Hughes, T.J.R.: The finite element method: linear static and dynamic finite element analysis. Dover
Publications Inc., New York (2000). ISBN 0-486-41181-8. Corrected reprint of the 1987 original
[Prentice-Hall Inc., Englewood Cliffs, N.J.]

Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS,
exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39–41), 4135–
4195 (2005)

Jassim, I., Stolle, D., Vermeer, P.: Two-phase dynamic analysis by material point method. Int. J.
Numer. Anal. Meth. Geomech. 37(15), 2502–2522 (2013)

Leavy, R.B., Guilkey, J.E., Phung, B.R., Spear, A.D., Brannon, R.M.: A convected-particle tetrahe-
dron interpolation technique in thematerial-pointmethod for themesoscalemodeling of ceramics.
Comput. Mech. 1–21 (2019)

Lian, Y.P., Zhang, X., Zhou, X., Ma, Z.T.: A FEMPmethod and its application in modeling dynamic
response of reinforced concrete subjected to impact loading. Comput. Methods Appl. Mech. Eng.
200(17–20), 1659–1670 (2011)

Nairn, J.A., Guilkey, J.E.: Axisymmetric form of the generalized interpolation material point
method. Int. J. Numer. Meth. Eng. 101(2), 127–147 (2015)

Nguyen, V.P., de Vaucorbeil, A., Nguyen-Thanh, C., Mandal, T.K.: A generalized particle in cell
method for explicit solid dynamics. Comput. Methods Appl. Mech. Eng. 360, 112783 (2021).
https://doi.org/10.1016/j.cma.2019.112783

Nguyen, V.P., Nguyen, C.T., Rabczuk, T., Natarajan, S.: On a family of convected particle domain
interpolations in the material point method. Finite Elem. Anal. Des. 126, 50–64 (2017)

Piegl, L.A., Tiller, W.: The NURBS Book. Springer (1996). ISBN 3540615458
Sadeghirad, A., Brannon, R.M., Burghardt, J.: A convected particle domain interpolation technique
to extend applicability of thematerial point method for problems involvingmassive deformations.
Int. J. Numer. Meth. Eng. 86(12), 1435–1456 (2011)

Sadeghirad,A., Brannon,R.M.,Guilkey, J.E.: Second-order convected particle domain interpolation
(CPDI2) with enrichment for weak discontinuities at material interfaces. Int. J. Numer. Meth.
Eng. 95(11), 928–952 (2013)

Sinaie, S., Ngo, T.D., Nguyen, V.P., Rabczuk, T.: Validation of the material point method for the
simulation of thin-walled tubes under lateral compression. Thin-Walled Struct. 130, 32–46 (2018)

Steffen, M., Kirby, R.M., Berzins, M.: Analysis and reduction of quadrature errors in the material
point method (MPM). Int. J. Numer. Meth. Eng. 76(6), 922–948 (2008a)

Steffen, M., Wallstedt, P.C., Guilkey, J.E., Kirby, R.M., Berzins, M.: Examination and analysis of
implementation choices within the material point method (MPM). Comput. Model. Eng. Sci.
31(2), 107–127 (2008b)

Steffen, M.: Analysis-guided improvements of the Material Point Method (MPM). Ph.D. thesis,
University of Utah (2009)

Stomakhin, A., Schroeder, C., Chai, L., Teran, J., Selle, A.: A material point method for snow
simulation. ACM Trans. Graph. 32(4), 1 (2013)

Sulsky, D., ong, M.: Improving the material-point method. In: Innovative Numerical Approaches
for Multi-field and Multi-scale Problems, pp. 217–240. Springer, Berlin (2016)

Wang, L., Coombs, W.M., Augarde, C.E., Cortis, M., Charlton, T.J., Brown, M.J., Knappett, J.,
Brennan, A., Davidson, C., Richards, D., et al.: On the use of domain-based material point
methods for problems involving large distortion. Comput. Methods Appl. Mech. Eng. 355, 1003–
1025 (2019)

https://doi.org/10.1016/j.cma.2019.112783

130 3 Various MPM Formulations

Yuanming, Hu., Fang, Yu., Ge, Ziheng, Ziyin, Qu., Zhu, Yixin, Pradhana, Andre, Jiang, Chenfanfu:
Amoving least squares material point method with displacement discontinuity and two-way rigid
body coupling. ACM Trans. Graph. (TOG) 37(4), 150 (2018)

Zhang, D.Z., Ma, X., Giguere, P.T.: Material point method enhanced by modified gradient of shape
function. J. Comput. Phys. 230(16), 6379–6398 (2011)

Chapter 4
Constitutive Models

This chapter presents some commonly used material models for solids. A model
for isotropic linear elastic materials is given in Sect. 4.1. A nonlinear elastic model
suitable for solids undergoing large elastic deformation such as rubbers and polymers
is considered in Sect. 4.2. Section4.3 presents the widely used Johnson-Cook elasto-
plasticmodel in conjunctionwith theMie-Grüneisen equation of state.We choose not
to give a full exposition of the model and its surrounding theory but, instead, direct
the reader to appropriate references where further details can be found. Rather, we
provide stress update algorithms .

4.1 Linear Elastic Isotropic Material

For isotropic linear elastic materials, the stress tensor is given by

σi j = λεkkδi j + 2μεi j , σ = (λtrε)I + 2με (4.1)

where λ and μ are the Lamé’s constants. The stress tensor is also often written in
terms of a hydrostatic and a deviatoric part

σ = (K trε)I + 2Gε′ (4.2)

where ε′ denotes the deviatoric strain tensor, and the bulk modulus K and shear
modulus G are given by

K := 3λ + 2μ

3
, G := μ (4.3)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. P. Nguyen et al., The Material Point Method, Scientific Computation,
https://doi.org/10.1007/978-3-031-24070-6_4

131

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24070-6_4&domain=pdf
https://doi.org/10.1007/978-3-031-24070-6_4

132 4 Constitutive Models

which are related to the Young’s modulus E and Poisson’s ratio ν by the following
equation

E = 9KG

3K + G
, ν = 3K − 2G

2(3K + G)
(4.4)

The stress update is written as

σ t+Δt
p = σ t

p + (λtrΔε p)I + 2μΔε p, Δε p = ΔtDt+Δt
p , Dt+Δt

p = 1

2
(Lt+Δt

p + (Lt+Δt
p)T)

(4.5)

4.2 Hyperelastic Solids

The Neo-Hookean model is an isotropic hyperelastic material model which exhibits
characteristics that can be identified with the familiar material parameters found in
linear elastic analysis Bonet andWood (1997). For this material model, the 1st Piola-
Kirchhoff stress tensor P is expressed as a function of the deformation matrix F and
the Lamé constants μ and λ as follows:

P = μ(F − F−T) + λ ln JF−T (4.6)

where J = det F.
Such formulation is convenient to be used with the total Lagrangian scheme, but

for the updated Lagrangian scheme, the use of the Cauchy stress tensor σ is more
appropriate. Since σ = J−1PFT, Eq. (4.6) becomes:

σ = 1

J

[
μ(FFT − I) + λ ln J I

]
(4.7)

4.3 Elasto-Plastic Materials

Material modeling can be divided into three areas: volumetric response, or resistance
to compressibility (equation of state), the resistance to distortion (constitutive); and
the reduction in ability to carry stress as damage accumulates (failure). This section
presents a temperature dependent hypoelastic-damage-plastic material model. The
model is applicable to large strain and large rotation problems and suitable for prob-
lems when the elastic deformation is negligible compared with the plastic one.

To deal with the non-invariance of the stress rate under rigid body rotation Bonet
and Wood (1997), the rigid body motion is eliminated from the strain rate, and thus
from the stress rate. This is achieved by first performing a polar decomposing of F in
rotation R and stretch U parts, i.e. F = RU, using the singular value decomposition.

4.3 Elasto-Plastic Materials 133

Then, the rigid body rotations are subtracted from the strain rate tensorD to obtain the
un-rotated strain rate tensor d = RTDR. Once the un-rotated stress rate is integrated
into the un-rotated stress σ ′ using Algorithm 8, the later is rotated back to the current
configuration: σ = Rσ ′RT. Note that this is an alternative to objective stress rates
presented in Eq. (2.15).

The Cauchy stress tensor σ is expressed as the sum of its isotropic part, i.e.,
the hydrostatic pressure (p̂), and the traceless symmetric deviatoric stress σ d . An
equation of state (EOS) is used to determine the hydrostatic pressure, see Sect. 4.3.1.
The deviatoric response is determined using a plastic flow rule in combination with
a yield condition. The von Mises yield condition is adopted here. Moreover, when
fracture is taken into account, it is modeled using the classic continuum damage
mechanics approach. That is, the stress tensor scales linearly with a damage variable
D (Lemaitre 1985). In summary, the model equations are

σ = − p̂I + σ d (stress decomposition)

p̂ = EOS(ρ, e, D, · · ·) (equation of state)

dd = dd,e + dd,p (strain rate decomposition)

σ̇ d = (1 − D)2G(dd − dd,p) (isotropic hypoelastic)

f := σeq − σ f ≤ 0 (von Mises yield condition)

dd,p = λ̇
∂ f
∂σ d (associated plastic flow)

f ≤ 0, λ̇ ≥ 0, λ̇ f = 0 (Karush-Kuhn-Tucker conditions)

(4.8)

whereG is the shearmodulus;λ is the plasticmultiplier,dd is the un-rotateddeviatoric
strain rate with dd,e and dd,p are the elastic and plastic parts, respectively; σ f is the

flow stress to be discussed in Sect. 4.3.2, and σeq =
√

3
2σ

d : σ d is the equivalent von
Mises stress.

4.3.1 Equation of State

The hydrostatic pressure is determined using the Mie-Grüneisen EOS modified to
account for damage (Wilkins 1999):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p̂ =
ρ0(1 − D)c20(η − 1)

[
η − �0

2
(η − 1)

]

[η − Sα(η − 1)]2 + �0e; η = ρ(1 − D)

ρ0
if p̂ > 0

p̂ = ρ0c20(η − 1)[η − �0
2 (η − 1)]

[η − Sα(η − 1)]2 + �0e; η = ρ

ρ0
otherwise

(4.9)

134 4 Constitutive Models

where c0 is the bulk speed of sound, �0 the Grüneisen Gamma in the reference state.
Sα is the linearHugoniot slope coefficient. Note that positive pressure is compression.

The internal energy e is written as

e = Cvρ0(T − Tr) (4.10)

where Cv denotes the specific heat at constant volume.

Linear equation of state which was modified to account for damage, designated by
D, (Wilkins 1999):

p̂ = −K (1 − det F)(1 − D) (4.11)

where K is the bulk modulus.

4.3.2 Johnson-Cook Flow Model

According to the Johnson-Cook’s flow stress model scaled with damage (Johnson
and Cook 1985), the equivalent von Mises flow stress is written as

σ f (εp, ε̇p, T) = [
A + B

(
εp

)n] [
1 + C ln ε̇∗

p

] [
1 − (T ∗)m

]
(1 − D) (4.12)

where εp is the equivalent plastic strain, ε∗
p is the normalized plastic strain rate, A

the yield stress, B and n the strain hardening parameters, C the strain rate parameter,
and m a temperature coefficient. This model has five experimentally determined
parameters that describe quite well the response of a number of metals.

The normalized plastic strain rate and the homologous temperature T ∗ are given
by:

ε̇∗
p = ε̇p/ε̇0, T ∗ = T − Tr

Tm − Tr
(4.13)

where ε̇p and ε̇0 are the plastic strain rate, and the user-defined reference plastic
strain rate, respectively; Tr denotes the reference temperature and Tm is the reference
melting temperature. Unless otherwise stated, ε̇0 = 1.0 s−1.

Remark 32 As can be seen from Eq. (4.12), the effect of plastic strain, its rate,
temperature and damage are coupled by being multiplied by each other. In case that
damage is not interested, its bracket is simply omitted. Similarly, if thermal softening
is not needed, the corresponding bracket should be skipped. The temperature T can
be computed solving a heat diffusion equation (see Sect. 10.3.2 for details) or it can
be simply obtained from the plastic work. For high strain rate deformation, there
is not sufficient time for heat conduction, and thus adiabatic condition prevails, the
temperature increase can be computed as follows

4.3 Elasto-Plastic Materials 135

ΔT = χ

ρCp
σ f Δεp (4.14)

where 0 < χ ≤ 1 is the Taylor-Quinney coefficient that determines how much the
plastic work is converted into heat. For metals, χ = 0.9 is often used.

4.3.3 Damage

The amount of damage (D) in each particle is determined using the Johnson-Cook
damage model, widely used for engineering applications (Johnson and Cook 1985).
It is a strain rate dependent phenomenological model based on the local accumulation
of the plastic strain. According to this model, damage initiates when the accumulated
equivalent plastic strain reaches the equivalent strain at failure ε f (see Fig. 4.1):

Dinit :=
∑ Δεp

ε f
= 1 (4.15)

where Δεp is the equivalent plastic strain increment. The equivalent strain at failure
ε f is given by Johnson-Cook’s empirical equation:

ε f = [
D1 + D2 exp(D3σ

∗)
] [1 + D4 ln(ε̇

∗
p)][1 + D5T

∗] (4.16)

and where D1, …, D5 are five material constants, σ ∗ = − p̂/σeq is the stress triaxi-
ality.

As this model only describes damage initiation, in order to have a complete model
of the fracture phenomenon, a damage evolution model is required. Here, it was
assumed that the damage variable is given by:

Fig. 4.1 Schematic of a typical equivalent stress-plastic strain curve showing the evolution of both
the damage initiation variable Dinit and the damage variable D. Three points are highlighted: the
yield stress A, the point at which damage initiates Dinit = 1, and the point of total failure D = 1
(de Vaucorbeil et al. 2020)

136 4 Constitutive Models

D =
{
0 when 0 ≤ Dinit < 1

10 (Dinit − 1) when Dinit ≥ 1
(4.17)

Even if this assumption affects the details of the damage propagation, it does
not change the fundamentals of the implementation. Other forms for the damage
evolution can be used.

It should be noted that this is a local damage model, which most often does not
work well for damage modeling–the results are sensititive to the grid resolution. A
nonlocal version of this is given later in Sect. 8.5.4.

4.3.4 Algorithm

The complete stress update algorithm is given in Algorithm 7. The equivalent plastic
strain and the the deviatoric stress tensor are calculated jointly and incrementally
according to the stress return algorithm developed by Leroch et al. (2016) and shown
in Algorithm 8. The damage is updated using Algorithm 9. As can be seen, the dam-
age is updated after the deviatoric stress update. This is mainly for efficiency and
easy implementation. Furthermore, the flow stress is assumed to be constant during
the stress update process.

Algorithm 7 Stress update algorithm.

1: Inputs: εtp (equivalent plastic strain), σ
′ d
t (un-rotated deviatoric stress), L, F and damage Dt

2: Outputs: εt+Δt
p , σ t+Δt , new damage Dt+Δt

3: D = 0.5(L + LT) � strain rate
4: Polar decomposition for F to get R and U
5: d = RTDR � un-rotated strain rate
6: dd = d − (1/3)tr(d)I � un-rotated deviatoric strain rate
7: Compute σ ′ d

t+Δt (ε
t
p,d

d , Dt) � Using Algorithm 11
8: Compute pressure p̂t+Δt (Dt) � using an EOS
9: Compute σ ′

t+Δt = σ ′ d
t+Δt + pt+Δt I � un-rotated stress

10: Compute σ t+Δt = Rσ ′
t+ΔtR

T � final stress
11: Compute damage Dt+Δt � using Algorithm 12

For the TLMPM, this σ t+Δt is converted to get Pt+Δt , and to be used for the
internal force computation in the next step. So, there is one time step lag between
the stress and damage. However, this is not an issue due to the small time steps being
used in explicit MPM.

References 137

Algorithm 8 Plasticity algorithm proposed by Leroch et al.

1: Inputs: εtp (equivalent plastic strain), σ
′ d
t (un-rotated deviatoric stress), dd , damage Dt

2: Outputs: εt+Δt
p (equivalent plastic strain), σ ′ d

t+Δt
3: Compute G ′ = (1 − Dt)G
4: σ ′ d

trial = σ ′ d
t + 2G ′Δtdd � purely elastic stress deviator update

5: σ
′ eq
trial =

√
3
2σ ′ d

trial : σ ′ d
trial � equivalent von Mises trial stress

6: σ f =
[
A + B

(
εtp

)n] [
1 + C ln ε̇∗

p

] [
1 − (T ∗)m

]
(1 − Dt) � JC flow stress

7: if σ
′ eq
trial < σ f then � yielding did not occur, purely elastic step

8: σ ′ d
n+1 = σ ′ d

trial � keep trial deviatoric stress
9: else � yielding has occurred
10: Δεp = (σ

′ eq
trial − σ f)/(3G ′) � compute the equivalent plastic strain increment

11: εt+Δt
p = εtp + Δεp � update the undamaged matrix plastic strain

12: σ ′ d
t+Δt = σ f

σ
′ eq
trial

σ ′ d
trial � scale deviatoric stress back to yield surface

13: end if

Algorithm 9 Damage algorithm.
1: Inputs:Δεt+Δt

p (incremental equivalent plastic strain),σ t+Δt , Dt
init (damage initiation variable)

2: Outputs: Dt+Δt
init (updated damage initiation variable), Dt+Δt (updated damage)

3: σ ∗ = −hatp/σeq � Compute stress triaxiality
4: ε f = [

D1 + D2 exp(D3σ
∗)

] [1 + D4 ln(ε̇∗
p)][1 + D5T ∗] � Strain at failure

5: Dt+Δt
init = Dt

init + Δεt+Δt
p /ε f

6: if Dt+Δt
init ≥ 1 then � Damage has initiated

7: Dt+Δt =
(
Dt+Δt
init − 1

)

8: else � Damage has not initiated
9: Dt+Δt = 0
10: end if

References

Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge
University Press (1997)

de Vaucorbeil, A., Nguyen, V.P., Hutchinson, C.R.: A Total-Lagrangian Material Point Method for
solid mechanics problems involving large deformations. Comput. Methods Appl. Mech. Eng.
360, 112783 (2020). https://doi.org/10.1016/j.cma.2019.112783

Johnson, G.R., Cook, W.H.: Fracture characteristics of three metals subjected to various strains,
strain rates, temperatures and pressures. Eng. Fract. Mech. 21(1), 31–48 (1985)

Lemaitre, J.: A continuous damage mechanics model for ductile fracture. J. Eng. Mater. Technol.
107(1), 83–89 (1985). https://doi.org/10.1115/1.3225775

https://doi.org/10.1016/j.cma.2019.112783
https://doi.org/10.1115/1.3225775

138 4 Constitutive Models

Leroch, S., Varga,M., Eder, S.J., Vernes, A., Rodriguez Ripoll,M., Ganzenmüller, G.: Smooth parti-
cle hydrodynamics simulation of damage induced by a spherical indenter scratching a viscoplastic
material. Int. J. Solids Struct 81 (Supplement C), 188–202 (2016)

Mark, L.: Wilkins. Computer Simulation of Dynamic Phenomena. Springer, Berlin, Heidelberg
(1999)

Chapter 5
Implementation

TheMPM algorithms presented in Chap.2 as well as the various weighting functions
treated in Chap.3 put us in a position nearly ready for coding. There are, nonetheless,
some implementation details need to be discussed. First, particle generation is dis-
cussed in Sect. 5.1. Second, application of initial and boundary conditions are given
in Sect. 5.2. Third, as CPDI’s implementation is slightly different from other MPM
variants, we provide implementation details of CPDI in Sect. 5.3. Fourth, material
point methods adopting an unstructured grid, popular in the geo-technical engineer-
ing field, are briefly considered in Sect. 5.4. Finally, post-processing of the results of
MPM simulations is discussed in Sect. 5.5.

5.1 Initial Particle Distribution

TheMPM requires a grid and material points. As a Cartesian grid is easy to construct
in any dimensions, we focus only on particle generation. In the FEM, the solid must
be discretized into finite elements using amesh generator. Thismeshing step is taking
80% of the total simulation time for complex geometries (Hughes et al. 2005). In
the MPM, the solid is represented by a cloud of material points thus eliminating
this time-consuming meshing step. However, the solid boundary has a zig-zag form
except for CPDI or GPIC.

There are numerous ways to obtain the initial particle distribution which depends
on the geometry of the object and/or the available tools. This section presents some
algorithms to generate particles for solids of simple and complex geometries.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. P. Nguyen et al., The Material Point Method, Scientific Computation,
https://doi.org/10.1007/978-3-031-24070-6_5

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24070-6_5&domain=pdf
https://doi.org/10.1007/978-3-031-24070-6_5

140 5 Implementation

5.1.1 Regular Particle Distribution

One can distribute the particles in a regular pattern as shown in Fig. 3.20. The idea
is to use a constant number of material points per grid cell and discard the points
that fall outside the boundary of the initial material domain. For simple geometries,
checking whether a point is outside a domain or not can be done analytically. For
complex geometries, the level set method (Sethian 1999) can be used. This method
of particle generation is the most commonly adopted one inMPM simulations. What
constitutes a suitable number of particles is something of an open question, but it is
typically advisable to use at least two particles in each cell in each direction, i.e. 4
particles per cell (PPC) in 2D and 8 PPC in 3D.

What should be the initial position of the particles relative to the grid cells? For the
TLMPM, it is reasonable to place particles at the locations of theGauss points that are
optimal for numerical integration. For the ULMPM, there are different options. One
can place the particles at Gauss points (this is coded in Karamelo), see Fig. 5.1b
or regularly within the cells, see Fig. 5.1a. As the particles will, anyway, move out
of their original locations, we do not see any difference between the two when a
sufficient number of particles is used for each cell.

A fast particle generation algorithm. We present here some techniques to have a
fast generation of particles for MPM simulations. For the sake of simplicity, only
2D is considered but the principles are general enough to be easily extended to 3D.
If there are n grid cells and m geometrical objects, a naive algorithm by sweeping
over the cells and for each cell loop over all the objects would result in an algorithm
of order O(n × m). This is inefficient if both n and m are large. First an integer cell
coordinate i, j is introduced as shown in Fig. 5.2a. Note that the index is numbered
from one. Let’s assume that one needs to generate the particles for a triangle given
in Fig. 5.2b. Based on the bounding box of the triangle and the cell indices, we can
determine the cells surrounding the triangle. Finally, one loops only over those cells
and distribute particles. A simple check whether a particle is within a polygon is used
to discard particles outside the triangle.

The index of element with coordinates (i, j) is given by

e = i + numx× (j − 1) (5.1)

where numx denotes the number of cells along the x direction.

Fig. 5.1 Initial positions of
material points. The black
dots are particles placed at
Gauss points (de Vaucorbeil
et al. 2020)

(a) Regular MPs (b) Gauss points

5.1 Initial Particle Distribution 141

1 2 3

1

2

3

(2,2)

(a)
bounding box

(2,2) (4,2)

(4,4)

rejected particles

(b)

Fig. 5.2 Grid cells are indexed by (i, j) in the integer index space (a), and this is used to quickly
identity cells which are closest to a given geometry object based on the bounding box concept (b).
Instead of distributing particles in all cells (16) one only does this for 9 cells (de Vaucorbeil et al.
2020)

5.1.2 Irregular Particle Distribution

For solids of complex geometries, one can use a FE mesh generator to build a mesh
and take the centers of the elements as particles. Actually, this is the technique often
used with the uMPM (see Sect. 5.4). For example, in order to generate particles
for a circular disk, one can use a mesh generator to partition the disk into a set
of triangles. The particles can be taken as the centers of these triangles, Fig. 5.3.
Alternatively, integration points of the triangular elements are mapped to the global
coordinate system (using Sect. 2.25) and then are used as material points. The area
of each triangle can be easily obtained and thus the particle volumes and masses can
be determined. This kind of particle distribution is referred to as irregular particle
distribution.

Fig. 5.3 Irregular initial
particle distribution:
obtained using the available
FE mesh generators

142 5 Implementation

5.1.3 Particle Distribution from CAD

This section presents a simple algorithm to create particiles directly from a CAD
file. As an illustration, we confine to the STL format. This file format is supported
by many other software packages; it is widely used for rapid prototyping, 3D print-
ing and computer-aided manufacturing. An STL file describes a raw, unstructured
triangulated surface by the unit normal and vertices (ordered by the right-hand rule)
of the triangles using a three-dimensional Cartesian coordinate system.

The algorithm is quite simple. For each cell we distribute a certain number of
particles; the problem is we have to classify each particle as being inside or outside
the region specified by the STL file. To do so, we use a raytracing/winding number.
Essentially, for a given particle, we just make a random ray from that particle in a
random direction to infinity, and count the number of triangles it intersects with. If
the number of intersections is odd, then the point is inside the region (or solid); if
the number of intersections is even, then the point is outside the region (or solid).

The algorim is simple, but there is a problem: intersecting every ray with every
single triangle takes forever, so to accelerate the ray tracing we use an octree.1

Basically, we split the domain (which is one big cube) into eight cubes (split in half
in each of the three directions), and then as necessary each cube is split into 8, etc.
cursively. And at the leaf cubes, we record which triangles are contained within the
cube. Then when we want to find all the triangles that intersect with a given ray, we
intersect the ray with these nested bounding boxes first, recursively. If the ray does
not intersect a bounding box, then we can instantly know that none of the triangles
inside that bounding box intersect the ray. For instance, referring to Fig. 5.4, all the
purple triangles no longer need to be tested for intersection with the ray.

0

4 5 1

2 3

(a) (b) (c)

Fig. 5.4 The acceleration of raytracing is a common application of octrees: with a naive approach
all triangles need to be tested for intersection with one ray (a). By the use of an octree, only the red
triangles need to be tested for intersection (b). The numbers show the order of visited octree nodes
in the hierarchy and the corresponding triangles (c). Adapted from Patzold (2016)

1 An octree is a tree data structure in which each internal node has exactly eight children. Octrees
are most often used to partition a three-dimensional space by recursively subdividing it into eight
octants.

5.1 Initial Particle Distribution 143

(a) STL triangles (b) 64 ppc

Fig. 5.5 Particle generation for the Stanford bunny obtained from a STL file. Visualized with
Ovito

This algoritm was implemented in Karamelo–to be presented in Chap.7–by
Edward Buckland, a graduate from University of Melbourne. To test the algorithm,
we consider the Stanford bunny and the resulting particle distributions are shown in
Fig. 5.5.

5.1.4 Particle Distribution from Images

Geometries are often available as digital images (e.g. CT scan of the microstructure
of the materials). In this case, the MPM is more suitable than the FEM for it allows a
rather straightforward pre-processing step from the images to the numerical spatial
discretization (Bardenhagen et al. 2005; Guilkey et al. 2006; Nairn 2007a). The basic
idea is to convert each pixel to a material point locating at the center of the pixel and
depending on the intensity of the pixel the particle is tagged to a specific material.
The quality of this process depends heavily on the contrast of the image. Figure5.6
depicts an example of converting an image which is a fiber-reinforced composite
material to particles.

TheMatlab code used to get Fig. 5.6 is given in Listing 5.1. The intensity of differ-
ent phases can be easily obtained using theMatlab image processing toolbox imtool.
Extension to three dimensional images is straightforward and thus not discussed here.

144 5 Implementation

Fig. 5.6 Initial particle distribution: converted from an image. From left to right: RGB image,
particles and zoom in (de Vaucorbeil et al. 2020)

Listing 5.1 From image to material points (2D two-phase images).

1 function pts=image2particles (f i le , lx , ly) ;
2 A = imread(f i l e) ;
3 grayIm = rgb2gray(A) ;
4 [noPixelX ,noPixelY] = size (grayIm) ;
5 [dx,dy] = [lx /noPixelX ly /noPixelY] ;
6 pts1 = [] ;
7 pts2 = [] ;
8 for j =1:noPixelY
9 for i =1:noPixelX

10 intensity = grayIm(i , j) ;
11 x = (i−1)∗dx + dx/2;
12 y = (j−1)∗dy + dy/2;
13 i f (intensity==0)
14 pts1 = [pts1 ;x y] ;
15 elseif (intensity==178)
16 pts2 = [pts2 ;x y] ;
17 end
18 end
19 end

Remark 33 It should not be misunderstood that MPM should be the method of
choice when the solid geometry is defined as images. There exists excellent tools
to convert images into finite element meshes such as Simpleware (commercially
available at http://www.simpleware.com) or OOF (freely available at http://www.
ctcms.nist.gov/oof/oof2/). Nonetheless, for highly complex geometries, the automa-
tion of the mesh generation process is notoriously difficult and a significant portion
of the analysis time is spent simply on mesh generation.

To demonstrate image-based simulations using the MPM, we use the MPM code
Uintah to do a densification of foamed materials. Foamed materials find applica-
tion in engineering systems on account of their unique structural properties. These
properties include effective packaging, and energy absorption. Applications gener-
ally involve large material deformations. Foam mechanical properties are the result
of the material’s microstructure which is a complex three-dimensional network of

http://www.simpleware.com
http://www.ctcms.nist.gov/oof/oof2/
http://www.ctcms.nist.gov/oof/oof2/

5.1 Initial Particle Distribution 145

(a) (b)

(c) (d)

Fig. 5.7 Image-based simulation using the MPM: densification of foam using the MPM code
Uintah. There many self contact events but they are only no-slip contacts. The foamed material
is compressed by a rigid plate moving down with a constant velocity

struts, which undergo large deformations and self contact during deformation. Foam
densification refers to the phase when the network is collapsed onto itself and contact
between network elements results in a dramatic stiffening of the material. Computa-
tional modeling of the foam densification is challenging because we have to deal with
(1) complex geometries and (2) many self contacts. TheMPM provides a framework
suitable for this problem as demonstrated in Bardenhagen et al. (2005).We reproduce
some of their simulations in Fig. 5.7.

146 5 Implementation

5.2 Initial and Boundary Conditions

Initial conditions such as initial velocities, temperatures and stresses (residual stresses
or equilibrium stresses obtained in a static analysis prior to a dynamic simulation)
are imposed on the particles, prior to the time loop starts.

On the other hand, it is quite hard to enforce Dirichlet and Neumann boundary
conditions (BCs) in the MPM. Confining the discussion to mechanical problems,
there exist Dirichlet BCs of the type vi I = v̄ on �u–the so-called Dirichlet boundary,
and Neumann BCs of the type t := σ · n = t̄ on the Neumann boundary �t . In the
case that t̄ = 0, that is all boundaries are traction-free, one does not have to do
anything related to Neumann BCs. Note that if no Dirichlet BC is applied to the
boundary nodes, then particles are able to freely move out of the computational
domain.

Enforcement of Dirichlet BCs is presented in Sect. 5.2.1 and of Neumann BCs in
in Sect. 5.2.3. A technique tailored to CPDIs for enforcing Neumann BCs is given
in Sect. 5.2.4. Finally, how Dirichlet and Neumann BCs are handled in GPIC is
presented in Sect. 5.2.5.

5.2.1 Dirichlet Boundary Conditions

TheDirichlet boundary�u ismost of the case stationary. If�u alignswith the grid, see
Fig. 5.8a, it is straightforward to enforce BCs since the weighting functions satisfy
the Kronecker delta property, at least at the boundaries (e.g. B-splines, GIMP). For
explicit MPMs, basically one overwrites the calculated grid velocities (vt

i I , ṽt+Δt
i I

and vt+Δt
i I) with the prescribed values (v̄), for nodes I on �u (solid black nodes in

Fig. 5.8). For implicit MPMs, methods used in the FEM can be directly used (Hughes
2000).

When the Dirichlet boundary is inclined, see Fig. 5.8b, different options exist. The
easiest option is to adopt an unstructured grid that conforms to theDirichlet boundary
as done by geo-technical engineers, see e.g.Wieçkowski (2004). If a Cartesian grid is
being used, and for dynamics problems, the BCs can be enforced using rigid particles

Fig. 5.8 Dirichlet boundary
condition treatment in MPM:
boundary aligns with the grid
(left) and boundary not
aligned with the grid (right).
Black solid squares are the
nodes where the Dirichlet
BCs are enforced

5.2 Initial and Boundary Conditions 147

as discussed in Sect. 8.1.6. For implicit MPM (implicit dynamics and quasi-static),
it is much harder and there are some solutions (Remmerswaal 2017; Cortis et al.
2018; Bing et al. 2019; Liu and Sun 2019). Bing et al. (2019) presented a B-spline
representation of 2D boundaries in the MPM.

Remark 34 Note that there exists problems where �u is in motion. For example,
in the field of geo-technical engineering, a zero pore pressure condition is applied
on a moving soil surface. For free surface flows, one also needs to apply a pressure
boundary condition (i.e., fluid pressure equals air pressure). It is, therefore, necessary
to locate accurately a moving boundary. Remmerswaal (2017) studied many tech-
niques commonly used in fluid mechanics such as VOF (Volume of Fluid), SMM
(Surface Marker Method) and LSM (Level Set Method).

5.2.2 Symmetric Boundary Conditions

Symmetry BCs are used to represent a plane of symmetry, which allows the use of a
reduced computational domain. Thanks to the background grid, it is straightforward
to impose symmetry BCs. They are achieved by simply applying a zero velocity
Dirichlet boundary condition on the component of velocity normal to a boundary,
while allowing the other components to remain at their computed values.

In treating symmetric boundaries inGIMPorMPMwithC1 functions, special care
must be taken for the ghost nodes. In particular, the normal component of velocity
for these nodes is no longer set to zero, but rather should be set to the negative of the
value of the nodes opposite the boundary, see Fig. 5.9.

Fig. 5.9 Symmetric
boundary conditions for
ghost nodes in GIMP and in
high order MPM (do not
apply for B-splines with
open knots): nodes on the
symmetry boundary are fixed
on the component of velocity
normal to the boundary and
the velocities of ghost nodes
are set to negative of the
velocities of the nodes
opposite the boundary (blue
nodes)

symmetry boundary

(a) full

(b) half model

ghost cells

148 5 Implementation

5.2.3 Neumann Boundary Conditions

Let us recall how the external force due to a traction is computed in the FEM. For
simplicity, let’s consider a 2D case. The Neumann boundary �t is discretized by a set
of 1D elements (they are actually the edges of the solid elements). The nodal force
vector is then given by

fextI =
∫

�t

NI t̄d� =
∫ 1

−1
NI (ξ)t̄Jdξ (5.2)

As an explicit representation of �t is lacking, and there is no nodes on it as well, the
MPM way of computing the force is as follows

fextI =
np∑
p=1

mpφI (xp)t̄s(xp)h
−1 =

np∑
p=1

ApφI (xp)t̄(xp) (5.3)

where Ap represents the area of particle p. And the sum is over only boundary
particles, see Fig. 5.10. The particle area can be updated using Nanson’s formula, see
e.g. Belytschko et al. (2000).

5.2.4 Neumann Boundary Conditions with CPDI

In this section computation of surface tractions is presented using procedures exten-
sively used in the FEM. We illustrate the procedure with an example of a cylinder
subjected to an inner pressure in Fig. 5.11. For simplicity the discussion is confined
to two dimensions.

Fig. 5.10 Computation of
external force due to a
surface traction in the MPM.
The traction is applied to the
so-called boundary particles

5.2 Initial and Boundary Conditions 149

particles

1
2

3
4

Fig. 5.11 Computation of surface traction in CPDI-MPM. A cylinder subjects to inner pressure
(left) and CPDI-MPM (right)

Let us consider the case in which a portion of the traction is applied on edge 1
of a particle domain—edge connecting nodes 1 and 2—as shown in Fig. 5.11. The
external force is thus given by

fextI =
∫

�t

NI t̄d�

=
∫

�t

(
4∑

c=1

Mc(ξ,−1)NI (xc)

)
t̄d� =

∫ 1

−1

(
4∑

c=1

Mc(ξ,−1)NI (xc)

)
t̄Jdξ

(5.4)
where in the second equality the idea of CPDI of approximating NI was used; J is
the Jacobian of the transformation that reads

J = ∣∣∣∣x′∣∣∣∣ =
√
x2,ξ + y2η = 1

2

√
x221 + y221 = 0.5l (5.5)

which is constant and l is the length of edge 1. Furthermore, we assume that the
traction is uniform over the particle edges. Thus Eq. (5.4) becomes

fextI =
4∑

c=1

(∫ 1

−1
Mc(ξ,−1)dξ

)
NI (xc)t̄J = N1(x1)t̄J + N2(x2)t̄J (5.6)

5.2.5 Boundary Conditions in GPIC

It is notoriously difficult to enforce Dirichlet and Neumann boundary conditions in
a particle-based method. Even though there exists some options to enforce Dirichlet

150 5 Implementation

Fig. 5.12 A bi-material cylinder under internal pressure: the inner radius is 80mm, the outer radius
is 150mm and the thickness is 10mm. The pressure is p(t) = p0 exp(−t/t0) with p0 = 400 MPa
and t0 = 100 µs. Only half of the cylinder is considered so that Dirichlet boundary conditions have
to be enforced. The displacements of the marked node are monitored (Nguyen et al. 2021)

conditions, see e.g. Cortis et al. (2018), there is no good solution to Neumann condi-
tions in the MPM, at least to the best of the authors’ knowledge. Herein, we consider
the problem of a bi-material (small strain) elastic cylinder subjected to an internal
pressure. This simple problem demonstrates that GPIC can handle straightforwardly
the enforcement of Dirichlet and Neumann boundary conditions, in the samemanner
of the FEM. Furthermore, it can model material interfaces without special treatment.
Sadeghirad et al. (2013) showed that the MPM cannot capture weak discontinuities
at material interfaces2 with coarse discretization, and they presented an enrichment
for the CPDI to model material interfaces.

We intentionally model half of the cylinder (Fig. 5.12) so as there are Dirich-
let conditions to be applied (on the symmetrical surfaces). These Dirchilet BCs
must be enforced on the solid mesh (not on the background grid); see line 20 in
Algorithm 5. This is so because the internal forces are updated based on the informa-
tion at the nodes of the solidmesh. The cylinder ismeshedwith eight-node hexahedral
elements. The pressure is applied on the inner surface of the cylinder and the external
forces due to this pressure are computed using the mesh of the inner surface (which
consists of four-node quadrilateral elements) and a full quadrature. As this is entirely
a FE business, we do not bother readers with details.

A coarse GPIC model is given in Fig. 5.13a. First, we consider the case where
E1 = E2 = 210 GPa, ρ = 7850 kg/m3 and ν = 0.3. We have verified GPIC with an
FEM solution (Figs. 5.13b, and 5.14). By considering E1 = E2 we can focus on the
treatment of internal pressure in case errors occur. We move now to the case where
E2 = 10E1 = 2100 GPa and the treatment of Neumann conditions and material
interface of GPIC is verified (Fig. 5.15).

To conclude, for GPIC the treatment of both Dirichlet and Neumann boundary
conditions is as easy as it is done in FEM.

2 Weak discontinuities across material interfaces refer to a jump of the stresses/strains across a
material interface.

5.2 Initial and Boundary Conditions 151

Fig. 5.13 Cylinder under internal pressure with E1 = E2 = 210 GPa: a coarse GPIC set-up (a)
and quantitative verification with the FEM (b) (Nguyen et al. 2021)

Fig. 5.14 Cylinder under internal pressure with E1 = E2 = 210 GPa: comparison of σyy obtained
with the FEM (7700 four-node tetrahedral elements) and GPIC (2128 eight-node hexahedral ele-
ments for the cylinder and 12675 nodes for the Eulerian grid) (Nguyen et al. 2021)

5.2.6 Rigid Bodies

Rigid bodies are used to model moving displacement boundary conditions as shown
in Fig. 5.16. Rigid bodies are also represented by particles as deformable solids. How-
ever, there are some simplifications. Indeed,material properties are not required since
these regions will not deform; their purpose is only to impose boundary conditions
on deformable regions.

The positions and velocities of the rigid particles are simply given by (performed
after updating the deformable particles)

152 5 Implementation

Fig. 5.15 Cylinder under internal pressurewith E2 = 10E1 = 2100GPa: verification ofGPICwith
the FEM for displacement and strain energy profiles. The FEMmodel (Abaqus): about 33 thousands
eight-node hexahedral elements. GPIC: similar to the case E1 = E2 (Nguyen et al. 2021)

Fig. 5.16 Moving displacement boundary condition: a ring being smashed by a rigid platen (a)
and rigid body to model the platen (b). Dark red squares represent nodes which are assigned the
moving velocities (if the hat functions are used) (de Vaucorbeil et al. 2020)

vrigid,t+Δt
p = v0

xrigid,t+Δt
p = xrigid,tp + Δtv0

(5.7)

The velocities of the rigid particles are transferred to the normal particles as
follows. First, the elements which contain the rigid particles are determined. Second,
all the nodes of these elements are marked (Fig. 5.16). These nodes are assigned the
velocities of the rigid particles in case of a no slip contact between the rigid body
and the deformable one. For frictional contacts, see Sect. 8.1.6. For implementation,
we present the MUSL algorithm when rigid particles are present in Algorithm 10.
It is worthy noting that this algorithm is simply a special case of the multi-material
contact algorithm of Bardenhagen et al. (2000).

5.3 Implementation of CPDI 153

Algorithm 10 Solution procedure of explicit MPM using MUSL with rigid bodies.
1: while t < t f do
2: Reset grid quantities: mt

I = 0, (mv)tI = 0, fext,tI = 0, f int,tI = 0
3: Mapping from deformable particles to nodes (P2G)
4: end
5: Update the momenta (mṽ)t+Δt

I = (mv)tI + f tIΔt

6: Fix Dirichlet nodes I: I e.g. (mv)tI = 0 and (mṽ)t+Δt
I = 0

7: Fix Dirichlet nodes II: J e.g. vtJ = v0 and ṽt+Δt
J = v0

8: Update deformable particle velocities and grid velocities (double mapping)
9: Get nodal velocities ṽt+Δt

I = (mṽ)t+Δt
I /mt

I

10: Update particle positions xt+Δt
p = xtp + Δt

∑
I φI (xtp)ṽ

t+Δt
I

11: Update particle velocities vt+Δt
p = α

(
vtp + ∑

I φI (xtp)
[
ṽt+Δt
I − vtI

]) + (1 −
α)

∑
I φI (xtp)ṽ

t+Δt
I

12: Update grid velocities (mvI)t+Δt = ∑
p φI (xtp)(mv)t+Δt

p

13: Fix Dirichlet nodes I: (mv)t+Δt
I = 0

14: Fix Dirichlet nodes II: vt+Δt
J = v0

15: end
16: Update deformable particles (G2P)
17: end
18: Update rigid particles (G2P)
19: xrigid,t+Δt

p = xrigid,tp + Δtv0
20: end
21: end while

5.3 Implementation of CPDI

We therein only present the implementation of only CPDI-Q4 as once this is under-
stood, the implementation of the other variants is straightforward. The algorithm to
compute the CPDI shape functions and derivatives for a given particle is given in
Algorithm11 and Fig. 5.17. One extra step, compared to all otherMPMvariants, is to
update the particle domain vectors (for CPDI-R4) or particle corners (for CPDI-Q4).
This is done at the end of every time step.

Algorithm 11 Algorithm to evaluate CPDI shape functions/derivatives.

1: Compute the four function weights w
f
c ;

2: Compute the four gradient weights wg
c ;

3: For each corner, determine which element contains it;
4: Get the nodes of the four elements, I , that contain the four corners;
5: For each node of those, loop over the corner and compute NI (xc);
6: Use Eqs. (3.37) and (3.38) to compute φI and ∇φI .

154 5 Implementation

Fig. 5.17 Particle and node
interaction in CPDI-Q4:
white solid circles are those
nodes with non-zero shape
functions at the particle i.e.,
φI p �= 0, green solid circles
are those do not interact with
particle p. Corners of the
particle domain are denoted
by squares. Shaded elements
are those contain the particle
corners

5.4 MPM Using an Unstructured Grid

Although computationally intensive, MPM formulations adopting an unstructured
backgroundgrid is popular in the geo-technical engineering community (Wieçkowski
et al. 1999; Wieçkowski 2004; Beuth et al. 2011; Jassim et al. 2013). One advantage
is the ease with which boundary conditions can be enforced. Note, however, that this
is only the case for fixed boundaries. Another motivation of adopting unstructured
grids is to handle complex geometries (e.g. multiple soil layers). Herein we discuss
aspects that are specific to MPM using unstructured meshes. First, shape functions
of the MPM using unstructured grids, dubbed uMPM, are discussed in Sect. 5.4.1.
Second, the problemof particle registration to the grid is treated in Sect. 5.4.2. Finally,
mixed integration, as a means to reduce cell-crossing error in the quasi-static uMPM,
is given in Sect. 5.4.3. A more efficient uMPM with C1 shape functions is given in
Sect. 5.4.4.

5.4.1 Shape Functions

As it is difficult to develop GIMP (and CPDI) and B-splines for an unstructured
mesh, uMPM simply employs the well-known isoparametric finite elements in which
the shape functions are written in terms of the so-called natural coordinates. Thus,
there is a need to convert the particle position (in global coordinates) to the natural
coordinates. For illustration, consider a grid made of four-node quadrilateral (Q4)
elements. By employing the isoparametric concept one writes

x =
4∑

I=1

NI (ξ, η)xeI , y =
4∑

I=1

NI (ξ, η)yeI (5.8)

where (xeI , y
e
I) denote the nodal coordinates of element e that contains the particle

(x, y) under consideration; NI (ξ, η) are the Q4 shape functions (see Fig.B.1 for the
formula).

5.4 MPM Using an Unstructured Grid 155

One solves Eq. (5.8) by using the iterative Newton-Raphson method:

⎡
⎢⎣

∂NI

∂ξ

∣∣∣
ξ0

xeI
∂NI

∂η

∣∣∣
η0

xeI
∂NI

∂ξ

∣∣∣
ξ0

yeI
∂NI

∂η

∣∣∣
η0

yeI

⎤
⎥⎦

[
Δξ

Δη

]
=

[
x − NI (ξ0, η0)xeI
y − NI (ξ0, η0)yeI

]
(5.9)

which provides Δξ,Δη and the solution is updated ξ = ξ0 + Δξ , η = η0 + Δη.
The iteration continues until convergence is attained. The initial value for (ξ0, η0)

are usually (0, 0) i.e., the iterative procedure starts from the center of the element.

5.4.2 Particle Registration

Particle registration is required to perform the particle-to-node and node-to-particle
mapping. For example, to calculate the nodal mass mt

I = ∑
p φI (xtp)mp, one needs

to know which particle p contributes to which nodes I . While this step is fast and
efficient when a Cartesian grid is used, the registration of particles to the grid in
uMPM is inefficient as the grid is unstructured. The problem is how to quickly locate
an element that contains a given particle. Just a few works discussed this problem.
In Wang et al. (2005) a ray-crossing algorithm is employed to determine whether
the material points are inside or outside of arbitrary quadrilateral cells. An in-depth
analysis of this problem was given in Pruijn’s master thesis (Pruijn 2017).

5.4.3 Mixed Integration

In the uMPM, the standard particle-based quadrature of the MPM is adopted for
dynamics problems but each element is filled with many elements e.g. 10 material
points per one single linear tetrahedral (Al-Kafaji 2013). For quasi-static problems,
a mixed integration is adopted (Beuth et al. 2011). In this mixed integration scheme,
Gaussian integration is applied to all elements that are fully filled with material,
whereas material point based integration is only adopted for partially filled elements.
Elements (cells) in the interior of a body are assumed to be fully filled. Conversely,
partially filled elements are assumed to occur only along the boundary of a body.
Precisely, an element located on the boundary of the body is considered to be partially
filledwhen the volume sumof all particles inside this element is less than a prescribed
percentage of the element volume.

156 5 Implementation

5.4.4 uMPM with C1 Shape Functions

We think that the mixed integration is not an elegant solution to cell-crossing issue.
Recently, deKoster et al. (2019) developedC1 basis functions over unstructured grids
using Powell-Sabin functions (Powell and Sabin 1977; May et al. 2016). While this
constitutes a C1 uMPM formulation which is free of cell-crossing problem similar
to BSMPM (MPM with a Cartesian grid and B-splines as weighting functions),
evaluation of the Powell-Sabin functions seems complex and to the best knowledge
of the authors, no work on 3D extension has been reported.

To close this discussion on the uMPM, we anticipate that a total Lagrangian
uMPM would be the most efficient uMPM as the shape functions and its derivatives
and the particle registration need only be calculated once for all.

5.5 Visualization

In the FEM, visualization is typically performed on the mesh. Information stored at
the integration points are extrapolated to the nodes to this end. Additionally some
averaging are carried out to obtain smooth fields as each node is connected to a
number of elements. In MPM, the computational grid is fixed and thus not suitable
for visualization. There are at least three approaches to visualizing MPM results
(Childs et al. 2012)

• Particle visualization: the particles are visualized directly as spheres/circles
(3D/2D). Particle data (position, stresses etc.) are written to files and can be
processed by Paraview or VisIt or Ovito.3

• Particle mesh visualization: in standard MPM, one can generate a mesh from the
particle positions using a Delaunay triangulation and use this mesh for visual-
ization. In this way, available visualization technologies developed for the FEM
can be reused. Note that this method is expensive since the particles positions are
evolving in time. And then visualization can be done with Paraview or VisIt.

• Voxel-based visualization: each particle is assigned with a domain so that the par-
ticles are alike to pixels/voxels of digital images (Andersen and Andersen 2010b;
Choudhury et al. 2010). This visualization technique is best suited for CPDI for-
mulation.

Figure5.18 illustrates particle based andmesh-basedvisualization. For particle-based
visualization, Ovito (Stukowski 2009) is an excellent tool as it is a scientific visu-
alization and analysis software for atomistic and particle simulation data. From our
experiences, for MPM simulations, Ovito is faster and easier to use than both
Paraview and ViSit.

3 http://www.paraview.org, https://visit-dav.github.io/visit-website/, https://www.ovito.org.

http://www.paraview.org
https://visit-dav.github.io/visit-website/
https://www.ovito.org

References 157

Fig. 5.18 CPDI and MPM/GIMP visualization of MPM data (de Vaucorbeil et al. 2020)

We refer to Sect. 6.12 for details on how to write particle data to a file supported
by Paraview/ViSit and Sect. 7.3 for a presentation on the file format supported
by Ovito.

Andersen and Andersen (2010a), Dunatunga and Kamrin (2015) showed that
although the stress field at the individual material points may show a noisy variation,
a smoothphysically realistic stress field canbe extractedby amass-weightedmapping
via the computational grid:

σ I = 1

mI

(∑
p

φI (xp)σ pm p

)

σ smooth
p =

∑
I

φI (xp)σ I

(5.10)

We refer to Sect. 10.3.1 for illustrations of noisy particle results. It is interesting
to note that Andersen and Andersen (2010a) realized that attempt to utilize these
more realistic stresses σ smooth

p directly in the computational MPM scheme has been
unsuccessful. But it might be the motivation for Zhang et al. (2011) to have proposed
the dual domain MPM.

References

Al-Kafaji, I.K.J.: Formulation of a Dynamic Material Point Method (MPM) for Geomechanical
Problems. Ph.D. thesis, University of Stuttgart (2013)

Andersen, S., Andersen, L.: Modelling of landslides with the material-point method. Comput.
Geosci. 14(1), 137–147 (2010)

Andersen, S., Andersen, L.: Analysis of spatial interpolation in the material-point method. Comput.
Struct. 88(7–8), 506–518 (2010)

Bardenhagen, S.G., Brackbill, J.U., Sulsky, D.: The material-point method for granular materials.
Comput. Methods Appl. Mech. Eng. 187(3–4), 529–541 (2000)

Bardenhagen, S.G., Brydon, A.D., Guilkey, J.E.: Insight into the physics of foam densification via
numerical simulation. J. Mech. Phys. Solids 53(3), 597–617 (2005)

Belytschko, T., Liu,W.K.,Moran, B.: Nonlinear Finite Elements for Continua and Structures.Wiley,
Chichester, England (2000)

158 5 Implementation

Beuth, L., Wieckowski, Z., Vermeer, P.A.: Solution of quasi-static large-strain problems by the
material point method. Int. J. Numer. Anal. Methods Geomech. 35(13), 1451–1465 (2011)

Bing, Y., Cortis, M., Charlton, T.J., Coombs, W.M., Augarde, C.E.: B-spline based boundary con-
ditions in the material point method. Comput. Struct. 212, 257–274 (2019)

Childs, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S., Pugmire, D., Biagas, K., Miller, M.,
Harrison, C.,Weber, G.H., Krishnan, H., Fogal, T., Sanderson, A., Garth, C., Bethel, E.W., Camp,
D., Rübel, O., Durant, M., Favre, J.M., Navrátil, P.: VisIt: an end-user tool for visualizing and
analyzing very large data. In:High PerformanceVisualization–EnablingExtreme-Scale Scientific
Insight, pp. 357–372 (2012)

Choudhury, A., Steffen,M., Guilkey, J., Parker, S.: Enchanced understanding of particle simulations
through deformation-based visualization. Comput. Methods Eng. Sci. 63, 117–136 (2010)

Cortis, Michael, Coombs, William, Augarde, Charles, Brown, Michael, Brennan, Andrew, Robin-
son, Scott: Imposition of essential boundary conditions in thematerial pointmethod. Int. J. Numer.
Methods Eng. 113(1), 130–152 (2018)

de Vaucorbeil, A., Nguyen, V.P., Sinaie, S., Wu, J.Y.: Chapter two—material point method after 25
years: theory, implementation, and applications. Advances in Applied Mechanics, vol. 53, pp.
185–398. Elsevier (2020)

de Koster, P., Tielen, R., Wobbes, E., Moller, M.: Extension of B-spline material point method for
unstructured triangular grids using powell-sabin splines. Comput. Mech. (2019)

Dunatunga, S., Kamrin, K.: Continuum modeling and simulation of granular flows through their
many phases. J. Fluids Mech. (2015)

Guilkey, James E., Hoying, James B., Weiss, Jeffrey A.: Computational modeling of multicellular
constructs with the material point method. J. Biomech. 39(11), 2074–2086 (2006)

Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis.
Dover Publications Inc., New York (2000). ISBN 0-486-41181-8. Corrected reprint of the 1987
original [Prentice-Hall Inc., Englewood Cliffs, NJ]

Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS,
exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39–41), 4135–
4195 (2005)

Jassim, I., Stolle, D., Vermeer, P.: Two-phase dynamic analysis by material point method. Int. J.
Numer. Anal. Methods Geomech. 37(15), 2502–2522 (2013)

Liu, C., Sun,W.: Shift boundary material point method: an image-to-simulation workflow for solids
of complex geometries undergoing large deformation. Comput. Part. Mech. 1–18 (2019)

May, Stefan, Vignollet, Julien, de Borst, René: Powell-sabin b-splines and unstructured standard
t-splines for the solution of the kirchhoff-love plate theory exploiting bézier extraction. Int. J.
Numer. Methods Eng. 107(3), 205–233 (2016)

Nairn, J.A.: Material point method simulations of transverse fracture in wood with realistic mor-
phologies. Holzforschung 61(4), 375–381 (2007)

Nguyen, V.P., de Vaucorbeil, A., Nguyen-Thanh, C., Mandal, T.K.: A generalized particle in cell
method for explicit solid dynamics. Comput. Methods Appl. Mech. Eng. 360, 112783 (2021).
https://doi.org/10.1016/j.cma.2019.112783

Patzold, M.: The improvement of the material point method by increasing effciency and accuracy.
Master’s thesis, Universitaat Siegen (2016)

Powell, M.J.D., Sabin, M.A.: Piecewise quadratic approximations on triangles. ACM Trans. Math.
Softw. (TOMS) 3(4), 316–325 (1977)

Pruijn, N.S.: Graphical models and simulation for thz-imaging. Master’s thesis, Delft University of
Technology (2017)

Remmerswaal, G.: Development and implementation ofmoving boundary conditions in thematerial
point method. Master’s thesis, TU Delft (2017)

Sadeghirad,A., Brannon,R.M.,Guilkey, J.E.: Second-order convected particle domain interpolation
(CPDI2) with enrichment for weak discontinuities at material interfaces. Int. J. Numer. Methods
Eng. 95(11), 928–952 (2013)

https://doi.org/10.1016/j.cma.2019.112783

References 159

Sethian, J.A.: Level setMethods and FastMarchingMethods: Evolving Interfaces in Computational
Geometry, Fluid Mechanics, Computer Vision and Materials Science. Cambridge University
Press, Cambridge, UK (1999)

Stukowski, A.: Visualization and analysis of atomistic simulation data with ovito-the open visual-
ization tool. Modell. Simul. Mater. Sci. Eng. 18(1), 015012 (2009)

Wang, B., Karuppiah, V., Lu, H., Komanduri, R., Roy, S.: Two-Dimensional mixed mode crack
simulation using the material point method. Mech. Adv. Mater. Struct. 12(6), 471–484 (2005)

Wieçkowski, Z., Sung-kie, Y., Jeoung-Heum, Y.: A particle-in-cell solution to the silo discharging
problem. Int. J. Numer. Methods Eng. 45, 1203–1225 (1999)

Wieçkowski, Z.: The material point method in large strain engineering problems. Comput. Methods
Appl. Mech. Eng. 193(39–41), 4417–4438 (2004)

Zhang, D.Z., Ma, X., Giguere, P.T.: Material point method enhanced by modified gradient of shape
function. J. Comput. Phys. 230(16), 6379–6398 (2011)

Chapter 6
MPMat: A MPM Matlab Code

This chapter presents a tutorial MPM code written inMatlab. The code and examples
presented in this chapter are available at https://github.com/vinhphunguyen/mpm.
We start from an implementation of theMPM for a single-material-point analysis and
proceed to one dimensional continua consisting of multiple particles. Two dimen-
sional MPM implementation is then presented followed by a 3D implementation. It
should be emphasized that the code was written to be readable as much as possible
and thus efficiency was not considered. We give enough details for users interested
in modifying the code or write their own MPM code from scratch.

We have decided to follow a FEM implementation by considering particles as
integration points. Therefore, all the summations either

∑
p (particles to nodes oper-

ation) or
∑

I (nodes to particles operation) are carried out by looping over grid cells
and the particles contained in each cell. We call this implementation element-based
which is familiar for researchers from the FEM community. There also exists a
particle-based implementation which is also presented later in the manuscript.

The code organization is first presented in Sect. 6.1. We discuss Cartesian back-
ground grids in Sect. 6.2: how to generate them and grid data structure. Particle data
(e.g. position, gradient deformation, stress etc.) are described in Sect. 6.3.We present
some ways to generate particles for solids of simple geometries and complex geome-
tries in Sect. 6.4. The solution phase i.e., the time stepping is treated in Sect. 6.5. One
good thing about the MPM is its simplicity, and we show in Sect. 6.6 that 3D imple-
mentation is stringkingly identical to 2D one. We then discuss the implementation
of GIMP in Sect. 6.7. Details regarding BSMPM (MPMwith B-splines) are given in
Sect. 6.8. The next three sections are devoted to the implementation of CPDI: CPDI-
R4 in Sect. 6.9, CPDI-Q4, CPDI-T3 in Sect. 6.10 and polygonal CPDI in Sect. 6.11.
Post-processing using Paraview is discussed in Sect. 6.12. Some improvements of
the code are provided in Sects. 6.13 and 6.14. Finally, some examples are given to
verify the implementation (Sect. 6.15). These examples are just simple simulations
involving the collision of two dimensional elastic solids and high velocity impact of
plastic solids. The idea is simply to illustrate the code and showcase how it is simple

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. P. Nguyen et al., The Material Point Method, Scientific Computation,
https://doi.org/10.1007/978-3-031-24070-6_6

161

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24070-6_6&domain=pdf
https://github.com/vinhphunguyen/mpm
https://doi.org/10.1007/978-3-031-24070-6_6

162 6 MPMat: A MPM Matlab Code

to do impact/contact simulations using the MPM (involving only no-slip contacts).
More challenging simulations signature of the MPM will be provided in subsequent
chapters.

Note that this code only implements the ULMPM, TLMPM and GPIC are imple-
mented in different codes (written in C++ and Julia) for efficiency. We refer to
Chap.7 and AppendixF for details on these C++/Julia codes.

6.1 Code Structure

The Matlab code is organized as follows

• grid: functions to generate 1D, 2D and 3D Cartesian grids;
• basis: functions to evaluate weighting functions and gradients;
• particleGen: functions to generate particles for simple solids;
• postProcessing: functions for VTK outputs;
• fem: implementation of ULFEM and TLFEM for hyperelastic solids;
• example1D: one dimensional examples;
• example2D: two dimensional examples;
• example3D: three dimensional examples.

In folder example2D, there are three sub-folders: example2D/mpm for MPM simu-
lations, example2D/cpdi for CPDI examples and example2D/gimp for GIMP. The
code implements only explicit MPMs.

As this is a tutorial code for learning the MPM, the code is written in the way
that, to solve for a problem, the user has to write codes e.g. to build the grid, do the
particle to node mapping etc. This is different from ready to use packages such as
Uintah, http://www.uintah.utah.edu, or Karamelo described in Chap.7, where
users just need to prepare an input file.

6.2 Background Grid

In theMPM, a structuredEuleriangrid is usually used for its advantages.Amongother
benefits, a uniform Cartesian grid eliminates the need for computationally expensive
neighborhood searches during particle-mesh interaction. A structured mesh is illus-
trated in Fig. 6.1 for 2D cases. Note that the nodes are numbered starting from one
to be compatible with one-based array indexing used in the Matlab language. The
node coordinates are stored in a matrix nodes of dimension n × 2 where n denotes
the number of nodes and the elements are put in the matrix element of dimension
nel × 4, where nel is the number of elements

http://www.uintah.utah.edu

6.2 Background Grid 163

Fig. 6.1 A two dimensional
structured grid

nodes =

⎡

⎢
⎢
⎢
⎣

x1 y1
x2 y2
...

...

xn yn

⎤

⎥
⎥
⎥
⎦

, elements =

⎡

⎢
⎢
⎢
⎣

n(1)
1 n(1)

2 n(1)
3 n(1)

4

n(2)
1 n(2)

2 n(2)
3 n(2)

4
...

...
...

...

n(nel)
1 n(nel)

2 n(nel)
3 n(nel)

4

⎤

⎥
⎥
⎥
⎦

(6.1)

Each row of the elements matrix gives the nodes of an element.
Other grid nodal quantities include nodal mass, nodal momenta and nodal forces.

For example, the nodal mass and momenta are stored using the following 1D and 2D
arrays

nmass =

⎡

⎢
⎢
⎢
⎣

m1

m2
...

mn

⎤

⎥
⎥
⎥
⎦

, nmomentum =

⎡

⎢
⎢
⎢
⎣

(mv)x1 (mv)y1
(mv)x2 (mv)y2

...
...

(mv)xn (mv)yn

⎤

⎥
⎥
⎥
⎦

(6.2)

To keep the implementation similar to FEMasmuch as possible, at every time step,
the elementsmust knowwhich particles they are storing. For element e,mpoints{e}
returns the indices of the particles located inside e. The idea is based on the fact that,
for a particle pwith coordinates (xp, yp), it is straightforward to track which element
it belongs to using the following equation

e = [floor((xp − xmin)/Δx) + 1] + numx[floor((yp − ymin)/Δy)] (6.3)

where the floor function is the function that takes as input a real number x and gives
as output the greatest integer less than or equal to x , numx denotes the number of
elements along the x direction and (xmin, ymin) are theminimumnode coordinates and
Δx,Δy are the nodal spacing in the x and y directions, respectively. The complete
algorithm is shown in Listing 6.1.

164 6 MPMat: A MPM Matlab Code

Fig. 6.2 A three
dimensional structured grid.
The nodes are numbered
from left to right in the x
direction, then from bottom
to up in the y direction for
the plane z = zmin. Then, for
the next plane up to z = zmax

Listing 6.1 Matlab data structures for mesh-particle interaction
1 pElems = ones(pCount , 1) ;
2 mpoints = cell (elemCount , 1) ;
3

4 for p=1:pCount
5 x = xp(p , 1) ;
6 y = xp(p , 2) ;
7 e = floor (x / deltax) + 1 + numx2∗floor (y / deltay) ;
8 pElems(p) = e ; % par t i c le "p" stays in element "e"
9 end

10 for e=1:elemCount
11 id = find (pElems==e) ;
12 mpoints {e}= id ; % mpoints {e}−> indices of par t ic les in "e"
13 end

Extension to 3D is straightforward and if the elements are numbered as shown in
Fig. 6.2, then the particle xp = (xp, yp, z p) belongs to elementwith index determined
using the following equation

e = [floor((xp − xmin)/Δx) + 1] + numx[floor((yp − ymin)/Δy)]
+ numx · numy[floor((z p − zmin)/Δz)]

(6.4)

Remark 35 It should be emphasized that for structured meshes it is also possible to
find directly the nodes to which a particle will interpolate its information rather than
via finding the element as previously presented. The element based implementation
is, however, general and can thus be applied for unstructured meshes.

6.3 Particle Data 165

Listing 6.2 shows the code to generate the grid and initialize the nodal quantities.
Since creating a 2DCartesian grid is standard, we do not present further explanations
here. The readers are referred to the source code for details.

Listing 6.2 Two dimensional MPM: grid creation and initialization of nodal quantities.
1 % bui ld the structured gr id :
2 % mesh.node −> node coordinates , mesh. element −> element connect iv i ty
3 % grid generation functions in fo lder mpm/ gr id /
4 [mesh] = buildGrid2D (Lx ,Ly ,noX0,noY0, ghostCell) ; % ghostCell = 1: CPDI, GIMP
5 nodeCount = mesh. nodeCount ;
6 elemCount = mesh. elemCount ;
7 % i n i t i a l i s e nodal data
8 nmass = zeros (nodeCount , 1) ; % nodal mass vector
9 nmomentum = zeros (nodeCount , 2) ; % nodal momentum vector

10 niforce = zeros (nodeCount , 2) ; % nodal in terna l force vector
11 neforce = zeros (nodeCount , 2) ; % nodal external force vector

6.3 Particle Data

Standard particle quantities include position, velocity, mass, volume, stresses, strains
and gradient deformation. Scalar particle quantities (such as mass and volume) are
stored as column vectors and vectorial quantities (such as velocity, stress and strains)
asmatrices inwhich the columns are for the different components (Listing 6.3). Other
particle data such as temperature, pressure or plastic strains can be added if needed.

Listing 6.3 Two dimensional MPM: particle data initialization.
1 pCount = numelem; % # of par t ic les
2 Mp = ones(pCount , 1) ; % mass
3 Vp = ones(pCount , 1) ; % updated volume
4 Fp = ones(pCount , 4) ; % gradient deformation
5 s = zeros (pCount , 3) ; % stress , Voigt notation
6 eps = zeros (pCount , 3) ; % st ra in
7 vp = zeros (pCount , 2) ; % veloc i ty
8 xp = zeros (pCount , 2) ; % posi t ion
9 Vp0 = Vp; % old volume

In our code, we store second-order symmetric tensors such as the Cauchy stress
and the strain tensor as 6 × 1 (column) vectors using the Voigt notation. The Cauchy
stress vector and strain vector are stored as the following column vectors

σ = [
σxx σyy σzz σyz σxz σxy

]T
, ε = [

εxx εyy εzz 2εyz 2εxz 2εxy
]T

(6.5)

where the off diagonal strain components are doubled to ensure that σ : ε = σ Tε.
Note that storing symmetric tensors as column vectors is not a requirement. Actually,
later on we present a C++ code named Karamelo in which symmetric strain and
stress tensors are stored as 3 × 3 matrices. This is to make easy for matrix operations
such as the polar decomposition of the deformation gradient tensor.

The internal force vector is written explicitly as follows

166 6 MPMat: A MPM Matlab Code

f intx I = −
np∑

p=1

Vp

[

(σxx)p
∂NI

∂x
(xp) + (σxy)p

∂NI

∂y
(xp) + (σxz)p

∂NI

∂z
(xp)

]

f inty I = −
np∑

p=1

Vp

[

(σxy)p
∂NI

∂x
(xp) + (σyy)p

∂NI

∂y
(xp) + (σyz)p

∂NI

∂z
(xp)

]

f intz I = −
np∑

p=1

Vp

[

(σzx)p
∂NI

∂x
(xp) + (σzy)p

∂NI

∂y
(xp) + (σzz)p

∂NI

∂z
(xp)

]

(6.6)

And the corresponding simplification for 2D is straightforward.

6.4 Particle Generation

6.4.1 Particle Generation Using a Mesh

Particles can be generated using a FE meshing program. For example, the code
snippet given in Listing 6.4 creates particles as centers of the elements of a FE mesh
(defined by two data structures–node1 and element1 for the node coordinates
and the element connectivity, respectively).

Listing 6.4 Two dimensional MPM: particle initialization from FE mesh.
1 % par t i c le data i n i t i a l i s a t i o n : see Lis t ing 6.3
2 % i n i t i a l i s e par t i c le posit ion , mass ,volume , ve loc i ty
3 for e = 1:numelem
4 coord = node1(element1 (e , :) , :) ;
5 a = det ([coord , [1 ; 1 ; 1]]) / 2 ;
6 Vp(e) = a ;
7 Mp(e) = a∗rho ;
8 xp(e , :) = mean(coord) ;
9 vp(e , :) = [v v] ;

10 Fp(e , :) = [1 0 0 1] ;
11 end
12 Vp0 = Vp;

6.4.2 Particle Generation for Simple Geometries

For simple geometries such as rectangles, circles, cylinders, etc., one can generate the
particles directly. Herein, we present a technique to efficiently generate particles for
MPM simulations. For the sake of simplicity, only 2D is considered but the principles
are general enough.

6.4 Particle Generation 167

1 2 3

1

2

3

(2,2)

(a)
bounding box

(2,2) (4,2)

(4,4)

rejected particles

(b)

Fig. 6.3 Grid cells are indexed by (i, j) in the integer index space (a), and this is used to quickly
identity cells which are closest to a given geometry object based on the bounding box concept (b).
Instead of distributing particles in all cells (16) one only does this for 9 cells

If there are n grid cells and m geometrical objects a naive algorithm by sweeping
over the cells and for each cell loop over all the objects would result in an algorithm
of order O(n × m). This is inefficient if both n and m are large. A better algorithm
considers only those cells intersecting with a given geometrical object. This can be
achieved using the bounding box concept and integer cell coordinates (Fig. 6.3).

First an integer cell coordinate (i, j) is introduced as shown in Fig. 6.3a. Note
that the index is numbered from one since it was coded in Matlab. Let assume that
one needs to generate the particles for a triangle given in Fig. 6.3b. We can determine
the cells intersecting with this triangle (shaded cells in the referred figure) based on
the bounding box of the triangle and the cell indices. Finally one loops only over
those cells and distribute particles. A simple check whether a particle is within a
polygon is used to discard particles outside the triangle. Listing 6.5 gives a code
snippet implementing the aforementioned particle generation technique.

The index of element with coordinates (i, j) is given by

e = i + numx× (j − 1) (6.7)

Some functions used to generate particlels for simple 2D geometries are collected in
Listing 6.6.

168 6 MPMat: A MPM Matlab Code

Listing 6.5 Matlab script to generate particles for a polygon. mesh is a structure storing the
background mesh, xmin, xmax, ymin, ymax define the bounding box of the polygon.
1 % find element index (i , j) of the lower l e f t and upper r igh t corners of
2 % the bounding box of the polygon
3 minIndex = point2ElemIndexIJ ([xmin ymin] ,mesh) ;
4 maxIndex = point2ElemIndexIJ ([xmax ymax] ,mesh) ;
5

6 iMin = minIndex . i ; iMax = maxIndex . i ;
7 jMin = minIndex . j ; jMax = maxIndex . j ;
8 % number of ce l ls intersect ing with the polygon
9 noElems = (iMax−iMin+1) ∗ (jMax−jMin+1);

10 res .elems = zeros (noElems,1) ;
11 dx = mesh. deltax / (ppc) ; dy = dx ;
12 i i = 1;
13 for i = iMin : iMax % f i r s t 2 loops over ce l ls closest to polygon
14 for j = jMin : jMax
15 id = i + mesh.numx∗ (j − 1) ;
16 res .elems(i i) = id ; i i = i i + 1;
17 sct r = mesh. element (id , :) ; % element scatter vector
18 pts = mesh.node(sctr , :) ;
19 x1 = pts (1 , :) ; % f i r s t corner of the ce l l
20 for ip = 1:ppc % dis t r ibu te par t ic les in x and y di rs .
21 for jp = 1:ppc
22 x(1) = x1(1) + dx∗0.5 + (jp−1)∗dx ;
23 x(2) = x1(2) + dy∗0.5 + (ip−1)∗dy ;
24 end
25 end
26 end
27 end

Listing 6.6 Some Matlab functions for particle generation.
1 function [res] = generateMPForCircle (geo,ppc ,mesh)
2 function [res] = generateMPForQuad (geo,ppc ,mesh)
3 function [res] = generateMPQuadDiffCircles (quad, c i rc le1 , c i rc le2 ,ppc ,mesh)

6.5 Solution Algorithm

The functions to evaluate the hat functions and first derivatives are given in Listing
6.7. Usage of these functions are illustrated in Listing 6.9.

Listing 6.7 Some Matlab functions for basis functions and derivatives (source is in folder /basis).
1 function [phi , dphi]=getMPM(x ,h)
2 function [phi , dphi]=getMPM2D(x ,hx ,hy) % x = [x1 , x2]
3 function [phi , dphi]=getMPM3D(x ,hx ,hy , hz) % x = [x1 , x2 , x3]

6.5 Solution Algorithm 169

Solution phase is implemented in Listing 6.8 with details given in Listings 6.9
and 6.10. At specified time intervals VTK outputs are written (lines 14–18 in Listing
6.8). The implementation was for a linear elastic material in which C denotes the
constitutive matrix (lines 23–25 in Listing 6.10). Modification for other constitutive
models is straightforward.

Listing 6.8 Two dimensional MPM: solution phase (explicit).
1 while (t < time)
2 % reset gr id data
3 nmass (:) = 0;
4 nmomentum(:) = 0;
5 niforce (:) = 0;
6 % par t i c le to gr id nodes
7 See Lis t ing 6.9
8 % update nodal momenta
9 nmomentum = nmomentum + niforce∗dtime ;

10 % nodes to par t ic les
11 See Lis t ing 6.10
12 % update the element par t i c le l i s t , see Lis t ing 6.1
13 % VTK output
14 i f (mod(istep , in te rva l) == 0)
15 xp = pos{ istep } ;
16 vtkF i le = sprintf (’ . . / resul ts/%s%d ’ ,vtkFileName , istep) ;
17 VTKParticles (xp , vtkFi le , s) ;
18 end
19 % advance to the next time step
20 t = t + dtime ; istep = istep + 1;
21 end

Listing 6.9 Two dimensional MPM: particles to nodes.
1 for e=1:elemCount % loop over elements
2 esctr = element (e , :) ; % element connect iv i ty
3 enode = node(esctr , :) ; % element node coords
4 mpts = mpoints {e } ; % par t ic les inside element e
5 for p=1: length (mpts) % loop over par t ic les
6 pid = mpts(p) ; % par t i c le ID
7 stress = s(pid , :) ;
8 for i =1: length (esctr) % loop over nodes of ce l l ‘e ’
9 id = esctr (i) ; % node ID

10 x = xp(pid , :) − node(id , :) ;
11 [N,dNdx] = getMPM2D(x ,mesh. deltax ,mesh. deltay) ;
12 dNIdx = dNdx(i , 1) ;
13 dNIdy = dNdx(i , 2) ;
14 nmass(id) += N(i)∗Mp(pid) ;
15 nmomentum(id , :) += N(i)∗Mp(pid)∗vp(pid , :) ;
16 niforce (id ,1) −= Vp(pid)∗ (stress (1)∗dNIdx + stress (3)∗dNIdy) ;
17 niforce (id ,2) −= Vp(pid)∗ (stress (3)∗dNIdx + stress (2)∗dNIdy) ;
18 end
19 end
20 end

170 6 MPMat: A MPM Matlab Code

Listing 6.10 Two dimensional MPM: nodes to particles (USL and cutoff).
1 for e=1:elemCount % loop over elements
2 esctr = element (e , :) ;
3 enode = node(esctr , :) ;
4 mpts = mpoints {e } ;
5 for p=1: length (mpts) % loop over par t ic les
6 pid = mpts(p) ;
7 Lp = zeros (2 ,2) ;
8 for i =1: length (esctr)
9 id = esctr (i) ; % node ID

10 vI = [0 0] ;
11 i f nmass(id) > t o l
12 vp(pid , :) += dtime ∗ N(i)∗ niforce (id , :) /nmass(id) ;
13 xp(pid , :) += dtime ∗ N(i)∗nmomentum(id , :) / nmass(id) ;
14 vI = nmomentum(id , :) / nmass(id) ;% nodal ve loc i ty
15 end
16 Lp = Lp + vI ’∗dNdx(i , :) ; % par t i c le ve loc i ty gradient
17 end
18 F = ([1 0;0 1] + Lp∗dtime)∗reshape (Fp(pid , :) , 2 , 2) ;
19 Fp(pid , :) = reshape (F,1 ,4) ;
20 Vp(pid) = det (F)∗Vp0(pid) ;
21 dEps = dtime ∗ 0.5 ∗ (Lp+Lp ’) ;
22 dsigma = C ∗ [dEps(1 ,1) ;dEps(2 ,2);2∗dEps(1 ,2)] ;
23 s(pid , :) = s (pid , :) + dsigma ’ ;
24 eps(pid , :) = eps(pid , :) + [dEps(1 ,1) dEps(2 ,2) 2∗dEps(1 ,2)] ;
25 end
26 end

6.6 Three Dimensions

The implementation of 3D MPM follows exactly the 2D procedure and there-
fore not discussed here in great details. We refer to the source code, e.g. M file
MPM3DTwoDisksMUSL.m for details. Listing 6.11 shows someminor differences
of a 3D MPM code compared to a 2D MPM. As Matlab is slow, for 3D simulations,
we prefer to use a C++ code (Chap.7 presents such a code) or a Julia code (refer to
AppendixF.3), both are much more efficient than the Matlab code.

Listing 6.11 Three dimensional MPM: minor differences compared to 2D MPM.
1 % find which elements contain which par t ic les
2 x = xp(ip , 1) ; y = xp(ip , 2) ; z = xp(ip , 3) ;
3 e = floor (x / deltax) + 1 + numx∗floor (y / deltay) + numx∗numy∗floor (z / deltaz) ;
4 elems(ip) = e ;
5 % compute N_I and derivat ives at par t i c le xp
6 x = xp − node(id , :) ;
7 [N,dNdx]=getMPM3D(x , deltax , deltay , deltaz) ;
8 % nodal in terna l force f i n t _ I
9 niforce (id ,1) = ni force (id ,1) − Vp∗(stress (1)∗dNIdx + stress (6)∗dNIdy

10 + stress (5)∗dNIdz) ;
11 niforce (id ,2) = ni force (id ,2) − Vp∗(stress (6)∗dNIdx
12 + stress (2)∗dNIdy + stress (4)∗dNIdz) ;
13 niforce (id ,3) = ni force (id ,3) − Vp∗(stress (5)∗dNIdx + stress (4)∗dNIdy
14 + stress (3)∗dNIdz) ;

6.7 Implementation of (u/cp)GIMP 171

6.7 Implementation of (u/cp)GIMP

The implementation of uGIMP follows closely the MPM except two things: (i) the
GIMP functionsφI replace the FE hat functions NI and (ii) a larger connectivity array
of the elements i.e., the particles not only contribute to the nodes of the element in
which they locate but also to the nodes of neighboring elements (Fig. 6.4).As there are
16 non-zero basis functions within a cell (2D), for a particle p one needs to compute
16 φI p. Note that out of 16 these functions only 9 are non-zero. The cpGIMP is
more involved as one has to determine the element connectivity at every time steps
since the particle domain expands in time. However, this step is relatively fast for
structured grid.

Listing 6.12 is used to build the element connectivity for uGIMP in 2D. The
function getNeighbors returns the eight neighbor elements and the element itself
for a given element. Note that the connectivity array has different dimensions for
elements on the boundary compared to interior elements. That is why a cell data
structure was utilized. In order to illustrate the minor modifications to the MPM
code, Listing 6.13 presents the code for particle to node mapping. Only lines 2 and
11 are different from a standard MPM code.

Listing 6.12 Two dimensional uGIMP: grid connectivity construction.
1 gimpElement = cell (elemCount , 1) ;
2

3 for e=1:elemCount
4 neighbors = getNeighbors (e , numx2, numy2) ;
5 neighborNodes = element (neighbors , :) ;
6 gimpElement {e} = unique (neighborNodes) ;
7 end

(a) MPM (b) GIMP

1 2

5 5

Fig. 6.4 Larger element connectivity in GIMP (b) than inMPM (a). The connectivity of an element
in GIMP can be determined by getting firstly its neighboring elements (a cheap task for structured
grids used in MPM/GIMP) and then the nodes of these elements

172 6 MPMat: A MPM Matlab Code

Listing 6.13 Two dimensional uGIMP: particles to nodes mapping
1 for e=1:elemCount
2 esctr = gimpElement {e } ; % GIMP (extended) element connect iv i ty
3 enode = node(esctr , :) ; % element node coords
4 mpts = mpoints {e } ; % par t ic les inside element e
5 for p=1: length (mpts) % loop over par t ic les
6 pid = mpts(p) ;
7 % par t i c le mass and momentum to node
8 for i =1: length (esctr)
9 id = esctr (i) ;

10 x = xp(pid , :) − node(id , :) ;
11 [N,dNdx]=getGIMP2D(x , deltax , deltay , lpx , lpy) ;
12 dNIdx = dNdx(1) ; dNIdy = dNdx(2) ;
13 nmass(id) = nmass(id) + N∗Mp(pid) ;
14 end
15 end
16 end

6.8 B-splines MPM

We present the implementation of the BSMPM using the recursive formula
(Sect. 6.8.1) and the Bézier operators (Sect. 6.8.2). The latter simplifies the imple-
mentation and speeds up the computation of B-splines functions. Compared to the
boundarymodified B-splines presented in Sect. 3.4, this implementation is general as
it can implement B-splines of any order. We refer to AppendixF for reader interested
in how the modified B-splines are implemented.

6.8.1 Recursive B-splines MPM

In this section we present the implementation of MPM using B-splines described in
Sect. 3.4. Listing 6.14 shows the code that builds a linearly parametrized bi-quadratic
B-spline surface for a square of unit side. The code uses the NURBS toolbox of
de Falco et al. (2011). Line 12 performs a k-refinement where the last two input
parameters control the h-refinement. Only a simple uniform refinement where knot
spans are halved is implemented. Line 13 builds a FE mesh (notably the element
connectivity matrix) from the B-spline surface. B-spline meshes produced by this
code are given in Fig. 6.5. Listing 6.15 presents some codes illustrating the use of a
B-spline mesh in MPM. Note that function BSPLINE2DBasisDers is implemented
in a C-MEX file to speed up the computation of B-spline basis functions which
are recursively defined, cf. Eq. (3.17). The functions on B-splines geometries and
corresponding mesh are discussed in our isogeometric finite elements review article
(Nguyen et al. 2015). We refer to the file example2D/mpm2DTwoDisksBsplines.m
for details.

6.8 B-splines MPM 173

(a) bi-quadratic (b) bi-cubic

Fig. 6.5 B-splinemeshes of a square (16 × 16 elements): a bi-quadratic and b bi-cubic. The control
points or nodes are represented by black dots

Listing 6.14 Building a 2D B-spline mesh.
1 L = 1; w = 1;
2 controlPts = zeros (4 ,2 ,2) ;
3 controlPts (1:2 ,1 ,1) = [0 ; 0] ;
4 controlPts (1:2 ,2 ,1) = [L ; 0] ;
5 controlPts (1:2 ,1 ,2) = [0 ;w] ;
6 controlPts (1:2 ,2 ,2) = [L ;w] ;
7 controlPts (4 , : , :) = 1; % B−splines weights=1
8 uKnot = [0 0 1 1] ; vKnot = [0 0 1 1] ;
9 pnew = 2; % new order basis in x d i r

10 qnew = 2; % new order basis in y d i r
11 surf = nrbmak(controlPts , { uKnot vKnot }) ; % Bspline surface
12 surf = doKRefinementSurface(surf ,pnew,qnew,3 ,3) ;% k−refinement ,8x8 mesh
13 igaMesh = buildIGA2DMesh(surf) ; % mesh

Listing 6.15 B-spline basis functions in action.
1 for e=1:elemCount
2 esctr = igaMesh . globElems (e , :) ; % element connect iv i ty
3 pts = igaMesh . controlPts (esctr , :) ; % element nodal coords
4 mpts = mpoints {e } ; % par t ic les inside element e
5 for p=1: length (mpts) % loop over par t ic les
6 pid = mpts(p) ;
7 x = xp(pid , 1) ;
8 y = xp(pid , 2) ;
9 x i = (x−xMin) / L ; % parameter coords .

10 et = (y−yMin) /w;
11 [N, dNdxi , dNdeta] = BSPLINE2DBasisDers ([x i ; et] , igaMesh .p , . . .
12 igaMesh .q , igaMesh .uKnot , igaMesh . vKnot) ;
13 jacob = pts ’ ∗ [dNdxi ’ dNdeta ’] ;
14 dNdx = [dNdxi ’ dNdeta ’] ∗ inv (jacob) ;
15 end
16 end

174 6 MPMat: A MPM Matlab Code

6.8.2 Bézier Extraction B-splines MPM

Although the B-splines as presented in the previous section are sufficient for use in
theMPM, evaluation of a recursive function is slow and should be avoided especially
in the setting of the MPM. In this section, advancements done in IGA are borrowed
to have a fast implementation of B-splines functions: the so-called Bézier extraction.
Firstly, we recall the univariate Bernstein basis functions of order p that are defined
over the biunit interval [−1, 1] as

Bi,p(ξ) = 1

2p

(
p

i − 1

)

(1 − ξ)p−(i−1)(1 + ξ)i−1, (6.8)

where

(
p

i − 1

)

is the binomial coefficient

(
p

i − 1

)

= p!
(i−1)!(p+1−i)! , 1 ≤ i ≤ p + 1.

We emphasize that, in CAD Bernstein polynomials are defined on interval [0, 1].
However, in a finite element setting, the bi-unit interval [−1, 1], where the Gauss
quadrature is defined, is preferable. The nice thing about the Bernstein basis is that
they can be hard coded for any p.

The first derivative of the Bernstein basis is defined in terms of low order basis as
follows

∂Bi,p(ξ)

∂ξ
= 1

2
p

[
Bi−1,p−1(ξ) − Bi,p−1(ξ)

]
. (6.9)

The shape functions and first derivatives for element e read

Ne(ξ) = CeBe(ξ), Ne
,ξ (ξ) = CeBe

,ξ (6.10)

where Ce is the elemental Bézier extraction operator and Be are the Bernstein poly-
nomials. Index space, knot vectors are all embedded in the Bézier extractors which
are computed in a pre-processing step (line 2 in Listing 6.16). Note that if in the
above equation Ce is omitted then one obtains high order C0 grid functions that are
quite similar to high order Lagrange functions except that the Bernstein functions
are always positive. We refer to the file example2D/mpm2DTwoDisksBezier.m for
details.

Listing 6.16 B-spline basis functions using the Bézier extraction.
1 % compute Bezier extract ion operators
2 [C, Cxi ,Cet] = bezierExtraction2D (uKnot , vKnot ,p ,q) ;
3 % compute Bernstein basis and derivat ives at (xi , eta)
4 % at element ’e ’
5 [B dB] = getShapeGradBernstein2D(p , q , xi , eta) ;
6 % the grid shape function
7 N = C(: , : , e) ∗ B;

6.9 Implementation of CPDI-R4 175

6.9 Implementation of CPDI-R4

Contrary to the standard MPM where particles are simply points, those in the CPDI
have extent and thus require a special implementation. In what follows, we present a
simple data structure for the finite-extent particles (Sect. 6.9.1) and how to evaluate
the basis functions (Sect. 6.9.2) in MPMat. We also made a slight modification in
the code by switching to a particle based implementation i.e., there is no longer a
loop over the grid cells. Instead, we directly sweep over the particles. Although the
CPDI-R4 is a special case of CPDI2s (CPDI-Q4, CPDI-T3), we have decided to
still present the implementation for the CPDI-R4. Next section will be devoted to
CPDI2s.

6.9.1 Data Structure for Particles

In addition to the standard particle data, in the CPDI-R4, one needs to store the
particle domain vectors r01, r

0
2, r1 and r2. Listing 6.17 is a Matlab code used to

compute the initial particle domain vectors for the case they are rectangles.

Listing 6.17 Data structure to store particle domain vectors.
1 lpx = mesh. deltax / noParticleX ;
2 lpy = mesh. deltay / noParticleY ;
3 dvec1 = zeros (pCount , 2) ; % domain vector 1 , r1
4 dvec2 = zeros (pCount , 2) ; % domain vector 2 , r2
5 for p=1:pCount
6 dvec1(p,1) = 0.5∗ lpx ;
7 dvec1(p,2) = 0;
8 dvec2(p,1) = 0;
9 dvec2(p,2) = 0.5∗ lpy ;

10 end
11 dvec10 = dvec1 ; % r10
12 dvec20 = dvec2 ;

6.9.2 Evaluation of φI p and ∇φI p

The algorithm to compute the CPDI-R4 weighting functions and derivatives for a
given particle is given in Algorithm 12. The corresponding Matlab implementation
(details were skipped to save space) is shown in Listing 6.18.

176 6 MPMat: A MPM Matlab Code

Algorithm 12 Algorithm to evaluate CPDI-R4 shape functions/derivatives.
1: Determine the four corners of the particle domain, Eq. (3.35);
2: Compute the four gradient weights w

g
c ;

3: For each corner, determine which element contains it;
4: Get the nodes of the four elements that contain the four corners;
5: For each node of those, loop over the corner xc, compute NI (xc) and use Eq. (3.33).

Listing 6.18 Matlab function to evaluate CPDI-R4 shape function/derivatives.
1 function data = cpdi2D(xp , r1p , r2p ,mesh)
2 % xp : par t i c le posi t ion ; r1p : par t i c le domain vector
3 % mesh: background grid
4 % four corners of the par t i c le domain
5 x1 = xp − r1p − r2p ;
6 x2 = xp + r1p − r2p ;
7 % gradient weights
8 w = zeros (4 ,2) ;
9 w(1 , :) = [r1p(2)−r2p (2) r2p(1)−r1p (1)] ;

10 w(2 , :) = [r1p(2)+r2p (2) −r1p(1)−r2p (1)] ;
11 % find elements contain the corners
12 % compute phi_I (xp) and f i r s t derivatives , see Lis t ing 28
13 data . phi = phi ;
14 data . dphi = dphi ;
15 data .node = nodes ; %indices of nodes to which xp contributes

6.9.3 Time Advance

Compared to the previous MPM implementation, in CPDI there is no loop over the
grid cells. In stead, one directly sweeps over the particles and for a given particle find
the nodes to which it contributes.1 Listing 6.19 shows the code snippet to compute
nodal mass andmomentum from the particle data. One extra step, compared toMPM
and uGIMP, at the end of a time step is to update the particle domain vectors cf. Eq.
(3.28).

1 Obviously one can implement MPM without looping over the cells. However we decided to keep
that implementation which is similar to FEM procedure so that the transition from FEM to MPM
is rather smooth.

6.10 Implementation of CPDI2s (CPDI-Q4, CPDI-T3) 177

Listing 6.19 Particles to nodes mapping using CPDI.
1 for p=1:pCount % loop over par t ic les
2 sig = stress (p , :) ;
3 xp = coord (p , :) ;
4 r1p = dvec1(p , :) ;
5 r2p = dvec2(p , :) ;
6 % par t i c le mass and momentum to node
7 data = cpdi2D(xp , r1p , r2p ,mesh) ;
8 esctr = data .node ;
9 for i =1: length (esctr) % loop over nodes to which xp contributes

10 id = esctr (i) ;
11 nmass(id) = nmass(id) + data . phi (i)∗mass(p) ;
12 nmomentum(id , :) = nmomentum(id , :) + data . phi (i)∗mass(p)∗velo (p , :) ;
13 end
14 end

6.10 Implementation of CPDI2s (CPDI-Q4, CPDI-T3)

In CPDI2s one needs to track the corners of the particle domains not the particle
positions. Therefore, it is convenient to store the particle domains as a FE mesh
which is called the particlemesh—particles.node and particles.elem—
that consists of the nodes which are the corners and the element connectivity array.
The latter is used to quickly retrieve the corners of a given particle (one can consider
a particle an element), cf. Listing 6.20. This particle mesh can be a structured mesh
or an unstructured mesh obtained from a mesh generator such as Gmsh.

Listing 6.20 Particle mesh data structure.
1 % pmesh.node : nnode x 2 matrix where node(i ,:)−>[x i y i]
2 % pmesh. element : nelem x 4 matrix for Q4 elements
3 % store the par t i c le mesh into a structure for convenience
4 par t ic les .node = pmesh.node ;
5 par t ic les .elem = pmesh. element ;

Before discussing our implementation of the CPDI-Q4 weighting function and
gradient, we recall that they, cf. Eqs. (3.37) and (3.38), can be written in the following
compact form

φI p =
4∑

c=1

w f
c NI (xc) (6.11)

∇φI p =
4∑

c=1

wg
c NI (xc) (6.12)

In our code, for a given particple p, we proceed in two steps. First, we determine
the four weighting coefficients w

f
c and the four gradient coefficients wg

c . They can
be computed using the geometry of the particle domain. We also determine all the

178 6 MPMat: A MPM Matlab Code

nodes I whereφI p might be non-zero. Listing 6.21 implements this step. In the second
step, we use Eq. (6.12) with the data just computed in the first step, to compute the
weighting function and the gradient. Listing 6.22 implements this step.

Listing 6.21 Calculation of CPDI-Q4 particle data.
1 function data = getCPDIQuadData(pid , par t ic le ,mesh)
2 % Inputs :
3 % pid : par t i c le index
4 % par t i c le : par t i c le mesh
5 % mesh: background mesh/ gr id
6 % Output :
7 % data .wf : funct ion weights
8 % data .wf : gradient weights
9 % data .nodes : indices of nodes inf luencing par t i c le " pid "

10

11 % four corners of the par t i c le domain
12 nodeIds = par t i c le .elem(pid , :) ;
13 corners = par t i c le .node(nodeIds , :) ;
14 % par t i c le domain area
15 Vp = 0.5∗ (corners (1 ,1)∗corners (2 ,2) − corners (2 ,1)∗corners (1 ,2) . . .
16 + corners (2 ,1)∗corners (3 ,2) − corners (3 ,1)∗corners (2 ,2) . . .
17 + corners (3 ,1)∗corners (4 ,2) − corners (4 ,1)∗corners (3 ,2) . . .
18 + corners (4 ,1)∗corners (1 ,2) − corners (1 ,1)∗corners (4 ,2)) ;
19 % function and gradient weights
20 c1 = (corners(2,1)−corners (1 ,1))∗ (corners(4,2)−corners (1 ,2)) − . . .
21 (corners(2,2)−corners (1 ,2))∗ (corners(4,1)−corners (1 ,1)) ;
22 c2 = (corners(2,1)−corners (1 ,1))∗ (corners(3,2)−corners (2 ,2)) − . . .
23 (corners(2,2)−corners (1 ,2))∗ (corners(3,1)−corners (2 ,1)) ;
24 c3 = (corners(3,1)−corners (4 ,1))∗ (corners(4,2)−corners (1 ,2)) − . . .
25 (corners(3,2)−corners (4 ,2))∗ (corners(4,1)−corners (1 ,1)) ;
26 c4 = (corners(3,1)−corners (4 ,1))∗ (corners(3,2)−corners (2 ,2)) − . . .
27 (corners(3,2)−corners (4 ,2))∗ (corners(3,1)−corners (2 ,1)) ;
28

29 wf = (1/(36∗Vp))∗ [4∗c1+2∗c2+2∗c3+c4 2∗c1+4∗c2+c3+2∗c4
30 c1+2∗c2+2∗c3+4∗c4 2∗c1+c2+4∗c3+2∗c4] ;
31

32 wg(1 , :) = [corners(2,2)−corners (4 ,2) corners(4,1)−corners (2 ,1)] ;
33 wg(2 , :) = [corners(3,2)−corners (1 ,2) corners(1,1)−corners (3 ,1)] ;
34 wg(3 , :) = −wg(1 , :) ;
35 wg(4 , :) = −wg(2 , :) ;
36

37 wg(: , :) = (1/(2∗Vp))∗wg(: , :) ;
38 % find elements contain the corners
39 elems = zeros (4 ,1) ; % indices of elements of 4 corners
40 for c=1:4
41 xc = corners (c , :) ;
42 elems(c) = point2ElemIndex (xc ,mesh) ;
43 end
44 % nodes I where phi_I (xp) are non−zero
45 nodes = unique (mesh. element (elems , :)) ;
46 data .nodes = nodes ;
47 data .wf = wf ;
48 data .wg = wg;
49 data .Vp = Vp;

6.10 Implementation of CPDI2s (CPDI-Q4, CPDI-T3) 179

Listing 6.22 Matlab function to evaluate CPDI-Q4 shape function/derivatives.
1 function data = getCPDIQuadBasis(pid , input , par t ic le ,mesh)
2 % Inputs :
3 % pid : par t i c le index
4 % par t i c le : par t i c le mesh
5 % mesh: background mesh/ gr id
6 % four corners of the par t i c le domain
7 nodeIds = par t i c le .elem(pid , :) ;
8 corners = par t i c le .node(nodeIds , :) ;
9

10 Vp = input .Vp;
11 nodes = input . nodes ;
12 wf = input . wf ;
13 wg = input .wg;
14 % compute phi_I (xp) and f i r s t der ivat ives
15 nodeCount = length (nodes) ;
16 phi = zeros (nodeCount , 1) ;
17 dphi = zeros (nodeCount , 2) ;
18

19 for i =1:nodeCount
20 xI = mesh.node(nodes(i) , :) ;
21 for c=1:4
22 x = corners (c , :) − xI ;
23 [N,dNdx] = getMPM2D(x ,mesh. deltax ,mesh. deltay) ;
24 phi (i) = phi (i) + wf (c) ∗N;
25 dphi (i , :) = dphi (i , :) + wg(c , :)∗N;
26 end
27 end
28 data . phi = phi ;
29 data . dphi = dphi ;
30 data .node = nodes ;

Listing 6.23 Particles to nodes mapping using CPDI-Q4.
1 for p=1:pCount
2 sig = stress (p , :) ;
3 input = getCPDIQuadData (p , par t ic le ,mesh)
4 data = getCPDIQuadBasis(p , input , par t ic les ,mesh) ;
5 esctr = data .node ;
6 for i =1: length (esctr)
7 id = esctr (i) ;
8 nmass(id) = nmass(id) + data . phi (i)∗mass(p) ;
9 nmomentum(id , :) = nmomentum(id , :) + data . phi (i)∗mass(p)∗velo (p , :) ;

10 niforce (id ,1) = ni force (id ,1) − volume(p)∗ (sig (1)∗data . dphi (i ,1)
11 + sig (3)∗data . dphi (i , 2)) ;
12 end
13 end

Listing 6.23 presents the code used to map particle data to grid nodes. After
updating the particle velocities and stresses (not positions), one needs to update
the position of the corners of the particle domains or equivalently the nodes of the
particle mesh, cf. Eq. (3.39). Listing 6.24 is the code used for this purpose. Note that
as neighboring particles share nodes (nodes of the particle mesh or particle corners)
we do not loop over the particles and update its corners.

180 6 MPMat: A MPM Matlab Code

Listing 6.24 Updating corners of the particle domains.
1 for c=1:size (par t ic les .node,1) % loop over a l l par t i c le nodes
2 xc = par t ic les .node(c , :) ; % coords of node ’c ’
3 ec = point2ElemIndex (xc ,mesh) ; % element id contains ’c ’
4 esctr = element (ec , :) ; % nodes of element ’ec ’
5 for i =1: length (esctr) % loop over nodes of ’ec ’
6 id = esctr (i) ;
7 x = xc − node(id , :) ;
8 [N,] = getMPM2D(x ,mesh. deltax ,mesh. deltay) ;
9 i f nmass(id) > t o l

10 xc = xc + dtime∗N∗nmomentum(id , :) / nmass(id) ;
11 end
12 end
13 par t ic les .node(c , :) = xc ; % update pos . of par t i c le node ’c ’
14 end

6.11 Implementation of CPDI-Poly

If the material domain is discretized by Voronoi cells then the number of nodes per
cell varies from cell to cell. Therefore, one has to use a cell data structure to store
the elements of the particle mesh. We use PolyMesher package developed by
Talischi et al. (2012) to create meshes of polygonal elements as shown in Listing
6.25. Similarly, the CPDI data (nodes, function weights and gradient weights) for
all particles are stored using a data structure cell as given in Listing 6.26. CPDI
data are computed using the function given in Listing 6.27 which follows closely Eq.
(3.46).

Listing 6.25 PolyMesher package Talischi et al. (2012) used to generate the polygonal particle
mesh.
1 %% par t i c le d is t r i bu t ion from a mesh
2 % generate Voronoi mesh where CircleDomain .m defines the geometry
3 % which is in th is case a c i r c le
4 NElem = 20;
5 [Node,Element ,Supp,Load,P]=PolyMesher (@CircleDomain ,NElem,100);
6 % store the par t i c le mesh into a structure for convenience
7 par t ic les .node = Node;
8 par t ic les .elem = Element ;
9 % par t ic les .elem{p} −> nodes or vert ices of par t i c le ’p ’

6.12 Visualization Toolkit (VTK) 181

Listing 6.26 Matlab data structures to store particle CPDI-poly data.
1 nodeid = cell (pCount , 1) ; % nodes af fec t par t i c le ’p ’
2 funcW = cell (pCount , 1) ; % function weights of ’p ’
3 gradW = cell (pCount , 2) ; % gradient weights of ’p ’ ,

Listing 6.27 Matlab function to determine particle CPDI data.
1 function data = getCPDIPolygonData(pid , par t ic le ,mesh)
2 % Inputs :
3 % pid : par t i c le index
4 % par t i c le : par t i c le mesh
5 % mesh: background mesh/ gr id
6 % Output :
7 % data .wf : funct ion weights
8 % data .wf : gradient weights
9 % data .nodes : indices of nodes inf luencing par t i c le " pid "

10 nodeIds = par t i c le .elem{ pid } ; % corners of the par t i c le domain
11 corners = par t i c le .node(nodeIds , :) ; % coords of corners
12 nodeCount = length (nodeIds) ;
13 xp = mean(corners) ;
14 wf = zeros (nodeCount+1 ,1); % function weights
15 wg = zeros (nodeCount+1 ,2); % gradient weights
16 elems = zeros (nodeCount+1 ,1); % elements of par t i c le nodes
17 A = 0;
18 for i = 1:nodeCount
19 j = rem(i , nodeCount) + 1;
20 x1 = corners (i , 1) ; y1 = corners (i , 2) ;
21 x2 = corners (j , 1) ; y2 = corners (j , 2) ;
22 x3 = xp (1) ; y3 = xp (2) ;
23 area = 0.5∗(x21∗y31 − y21∗x31) ; % area of sub−t r iang le
24 A = A + area ; area3 = area /3 ;
25 wf (i) = wf (i) + area3 ;
26 wf (j) = wf (j) + area3 ;
27 wf (end) = wf (end) + area3 ;
28 wg(i ,1) = wg(i ,1) + (0.5)∗ (y2−y3) ; % x−der ivat ive
29 wg(i ,2) = wg(i ,2) + (0.5)∗ (x3−x2) ; % y−der ivat ive
30 wg(j ,1) = wg(j ,1) + (0.5)∗ (y3−y1) ;
31 wg(j ,2) = wg(j ,2) + (0.5)∗ (x1−x3) ;
32 wg(end,1) = wg(end,1) + (0.5)∗ (y1−y2) ;
33 wg(end,2) = wg(end,2) + (0.5)∗ (x2−x1) ;
34 elems(i) = point2ElemIndex ([x1 y1] ,mesh) ;
35 end
36 elems(end) = point2ElemIndex (xp ,mesh) ;
37 data .nodes = unique (mesh. element (elems , :)) ;
38 data .wf = wf /A;
39 data .wg = wg/A;

6.12 Visualization Toolkit (VTK)

In this sectionwewill showhow to useParavieworVisIt to visualizeMPMsimulation
results. For each time step, a VTP file, of which an example is given in Listing 6.28, is
created. The number of particles is specified in Line 3. Lines 5–12 are for the particles
coordinates. Stresses and pressure or any other particle fields are specified in Lines
13–29. Here, three fields (two scalar fields and one vector field) are demonstrated.
This file was created using the function VTKParticles. Interested readers are

182 6 MPMat: A MPM Matlab Code

referred to the source code for details. Usually this function writes the following
particle data to file, per time step: position, stresses, plastic strain, velocity. Other
quantities can be added if needed.

For Paraview, a PVD file which collects all the VTP files is needed. Listing
6.29 is an example. For VisIt, one has to number the VTP files properly e.g.
mpm2DTwoDisk100.vtp, mpm2DTwoDisk200.vtp, mpm2DTwoDisk300.vtp and so
on. Additionally the background grid is also exported to a VTU file. Both Paraview
and VisIt have user friendly GUIs we therefore refer to their websites for documen-
tation.

Listing 6.28 Particle information stored in a VTP file.
1 <VTKFile type="PolyData " version="0.1" >
2 <PolyData>
3 <Piece NumberOfPoints="950" NumberOfVerts="0" NumberOfLines="0"
4 NumberOfStrips=" 0" Number OfPolys=" 0">
5 <Points>
6 <DataArray type="Float64 " NumberOfComponents="3" format=" asc i i " >
7 0.274196 0.098072 0.000000
8 0.140125 0.369835 0.000000
9 0.449611 0.247533 0.000000

10 . . .
11 </DataArray>
12 </Points>
13 <PointData Scalars="pressure " Vectors="sigma">
14 <DataArray type="Float64 " Name="pressure " format=" asc i i ">
15 2.0
16 1.0
17 . . .
18 </DataArray>
19 <DataArray type="Float64 " Name="temparature " format=" asc i i ">
20 0.0
21 5.0
22 . . .
23 </DataArray>
24 <DataArray type="Float64 " Name=" s t r " NumberOfComponents="3" format=" asc i i ">
25 0.0 0.0 0.0
26 0.0 0.0 0.0
27 . . .
28 </DataArray>
29 </PointData>
30 </Piece>
31 </PolyData>
32 </VTKFile>

Listing 6.29 VTP files are collected in a PVD file.
1 VTKFile byte_order="Li t t leEndian " type="Collect ion " version="0.1">
2 Collection>
3 DataSet f i l e = ’mpm2DTwoDisks100. vtp ’ groups= ’ ’ part= ’0 ’ timestep= ’100 ’ />
4 DataSet f i l e = ’mpm2DTwoDisks200. vtp ’ groups= ’ ’ part= ’0 ’ timestep= ’200 ’ />
5 . .
6 DataSet f i l e = ’mpm2DTwoDisks370. vtp ’ groups= ’ ’ part= ’0 ’ timestep= ’370 ’ />
7 / Collection>
8 / VTKFile>

6.13 Some Efficiency Improvements 183

6.13 Some Efficiency Improvements

As MPM calculations are slower than FE ones for moderate deformation problems,
many attempts have been done to improve the efficiency of the MPM. In this section,
we present some ideas such as active elements/nodes, coupling the MPM with FEM
and use of dynamically allocated memory etc.

In the MPM the computational grid must be chosen to be sufficiently large to
cover the trajectory of the moving particles. Therefore, at any instance, there are
elements (or cells) which do not contain any particles. It is more efficient not to loop
over these inactive elements.2 Associated to the inactive elements are inactive nodes
which are not needed to be included in the momenta equation. We refer to Fig. 6.6
for an illustration of these concepts. Listing 6.30 shows some Matlab codes to build
the active nodes and elements.

Listing 6.30 Active nodes and elements.
1 pElems = ones(pCount , 1) ;
2 mpoints = cell (elemCount , 1) ;
3

4 for p=1:pCount
5 x = xp(p , 1) ;
6 y = xp(p , 2) ;
7 e = floor (x / deltax) + 1 + numx2∗floor (y / deltay) ;
8 pElems(p) = e ;
9 end

10 % active elements
11 activeElems = unique (pElems) ;
12 % active nodes
13 activeNodes = unique (element (activeElements , :)) ;
14

15 % loop over elements is now loop over activeElements
16 % update nodal momenta for only act ive nodes
17 nmomentum(activeNodes , :) += niforce (activeNodes , :)∗ dtime ;

Fig. 6.6 Active and inactive
elements and nodes in MPM.
Note that the status of nodes
and elements is changing in
time as the material deforms
i.e., material points move
across the mesh

active elements

active nodes

inactive elements

inactive nodes

2 Elements are inactive for only the time step under consideration as in the next step particles can
move to these inactive elements and they become active.

184 6 MPMat: A MPM Matlab Code

Our implementation (and most of MPM implementations) described so far can be
referred to as using a static mesh as the memory was allocated for all the nodes and
cells (active and inactive). In Shin et al. (2010), the concept of dynamic mesh was
proposed to reduce the high memory storage in the conventional MPM. However,
using a dynamic mesh can make the parallelization of a MPM code more difficult.

Another attempt to reduce the extra cost of MPM (due to mapping between grid
nodes and particles) is to use a combined MPM-FEM strategy in which the MPM
is used for domains of intensive deformation and FEM is reserved for regions of
benign deformation (Zhang et al. 2006). These researchers showed that the MPM-
FEM is three times faster than FEM. Another improvement was made by Buzzi et al.
(2008) by computing the shape functions and derivatives once and store them. This is
possible because during a Lagrangian phase of one time step, the relative positions of
the particles with respect to the grid nodes do not change and thus the shape functions
and derivatives are constant. However, this trick requires more storages.

6.14 More Improvements Using MEX Files

MEX—stands forMatlab Executable—functions provide a simplemeans to speed up
Matlab codes by allowing ones to call Fortran and/or C/C++ functions insideMatlab.
In this section we present how one can use MEX files (written in C) to significantly
improve the performance of the MPMMatlab code. Another advantage is that large
pre-existing C and Fortran programs can be called from MATLAB without having
to be rewritten as M-files.

We created a folder mex within the parent folder containing the MPM source
code and all the MEX files are located in this folder. Before using them, one has to
compile them, by in the Matlab CommandWindow running the compile script com-
pile. Note that our MEX files are manually created while one could use the Matlab
Coder, http://www.mathworks.co.uk/products/matlab-coder/, to automatically gen-
erate MEX files from Matlab codes. A good tutorial to the subject can be found at
http://www.nr.com/nr3_matlab.html.

MEX-functions are best suited to substitute some bottleneck M-functions in an
application. If you replace all functions in an application with MEX, you might
port the application entirely to C which is a much harder task to accomplish. For
this reason, the pre- and post- processing are still performed using Matlab codes
while the major parts of the processing is realized via MEX functions. Listing 6.31
shows such an implementation where MEX functions are used in lines 3 and 14.
For simplicity, treatment of boundary conditions was omitted. We refer to file
mpm2DTwoDisksNew.m for the entire source code. In this implementation the
particles are grouped into bodies to facilitate handling of multiple materials and/or
contact, see Chap.10 for details. One should remember that in MEX files, a two
dimensional m × n Matlab matrix A is stored as an one dimensional array stored in
a column-major format. That is A(i + 1, j + 1) in Matlab becomes A[i + j ∗ m] in
MEX files where 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1.

http://www.mathworks.co.uk/products/matlab-coder/
http://www.nr.com/nr3_matlab.html

6.15 Examples 185

Listing 6.31 Processing step of a hybrid MPM code using MEX functions.
1 while (t < time)
2 % par t ic les to nodes , MEX function implemented in mex/ ParticlesToNodes . c
3 [nmass,nmomentum, ni force] = ParticlesToNodes (bodies ,mesh) ;
4 % update nodal momenta (using Matlab)
5 activeNodes=[bodies {1 } .nodes ; bodies {2 } .nodes] ;
6 nmomentum(activeNodes , :) += niforce (activeNodes , :)∗ dtime ;
7 % compute nodal ve loc i t ies and accelerations
8 nvelo (activeNodes ,1) = nmomentum(activeNodes , 1) . /nmass(activeNodes) ;
9 nvelo (activeNodes ,2) = nmomentum(activeNodes , 2) . /nmass(activeNodes) ;

10 nacce(activeNodes ,1) = ni force (activeNodes , 1) . /nmass(activeNodes) ;
11 nacce(activeNodes ,2) = ni force (activeNodes , 2) . /nmass(activeNodes) ;
12 % update par t i c le posit ions , veloc i t ies , stresses , volumes , deformation
13 % using MEX function in mex/ UpdateParticles . c
14 UpdateParticles (bodies ,mesh, nvelo ,nacce , dtime) ;
15 % compute k ine t ic and st ra in energy again with Matlab
16 k = 0; u = 0;
17 for ib =1:bodyCount
18 body = bodies { ib } ;
19 for p=1: length (body .mass)
20 vp = body . velo (p , :) ;
21 k = k + 0.5∗(vp(1)^2+vp(2)^2)∗body .mass(p) ;
22 u = u + 0.5∗body . volume(p)∗body . stress (p , :)∗body . s t ra in (p , :) ’ ;
23 end
24 end
25 % update the element par t i c le l i s t (Matlab)
26 bodies = findActiveElemsAndNodes (bodies ,mesh) ;
27 % advance to the next time step
28 t = t + dtime ; istep = istep + 1;
29 end

From our own experiences calling Matlab functions in C-MEX files (using Mex-
CallMatlab) is inefficient. Due to that reason, stress update routines should be rewrit-
ten in C as well.

Remark 36 We have to admit using MEX files is not an elegant solution and this is
the problem of using two languages (Matlab and C). The new dynamic programming
language Julia can be a more elegant and efficient solution, see AppendixF.

6.15 Examples

In this section, we present some one and two dimensional simulations to verify the
implementation and to demonstrate the performance of the MPM. They include one
dimensional problems (Sect. 6.15.1), a two dimensional elastic collision problem
(Sect. 6.15.2), a high velocity impact problem (Sect. 6.15.3), a compliant cantilever
beam (Sect. 6.15.4) and lateral compression of thin-walled tubes (Sect. 6.15.5).

We iterate that these simulations aim to illustrate the essence of the MPM and our
Matlab code, rather than to demonstrate the modeling capabilities of the MPM. The
aim of the last example (lateral compression of thin-walled tubes) is to present how to
verify numerical simulations against experiments.Advancedproblems (e.g. frictional
contact, fracture, fluid-structure interaction etc.) are presented in the coming chapters.

186 6 MPMat: A MPM Matlab Code

6.15.1 One Dimensional Examples

Single-material-point vibration. As the simplest MPM example, let us consider
the vibration of a single material point as shown in Fig. 6.7. The bar is represented
by a single point initially located at X p = L/2, which has an initial velocity v0. The
material is linear elastic. This problem was studied in Bardenhagen (2002), Buzzi
et al. (2008).

The exact solution is given by

v(t) = v0 cos(ωt), ω = 1

L

√
E/ρ (6.13)

for the velocity and

x(t) = x0 exp
[v0

Lw
sin(ωt)

]
(6.14)

for the position. The density ρ is constant and equals one. The constitutive equation
is σ̇ = E ε̇, ε̇ = dv/dx where E is the Young modulus. The grid consists of one two-
noded element. The elastic wave speed is c = √

E/ρ = 2π . Boundary conditions are
imposed on the grid and demand that both the node velocity and the acceleration at
x = 0 (the left node) be zero throughout the simulation. The Matlab implementation
is given in file example1D/mpm1D.m. Note that this implementation adopts the
double mapping technique presented in Sect. 2.5.4. A time step of 0.001 was used.

A good agreement between theMPMand the exact solutions can be observed (Fig.
6.8). To check if energy is conserved, kinetic, strain and total energies are plotted in
Fig. 6.9. The strain and kinetic energy are computed as

U = 1

2
σpεpVp, K = 1

2
v2
pMp (6.15)

Figure6.10 shows the result obtained with the standard USL formulation and it
is consistent with the result given by Buzzi et al. (2008). It was based on this that
Bardenhagen (2002) concluded that the USL is strictly dissipative. Here, we demon-
strated that only the standard USL formulation is dissipative and the double mapping
USL is not.

Fig. 6.7 Vibration of a
single material point (solid
point). Any set of consistent
units suffices, see Sect.C.5

0.1

6.15 Examples 187

0 2 4 6 8 10
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Time

Ve
lo

ci
ty

MPM
Exact

0 2 4 6 8 10
−8

−6

−4

−2

0

2

4

6

8

10

Time

D
is

pl
ac

em
en

t

MPM
Exact

Fig. 6.8 Vibration of a single material point: USL and double mapping algorithm (Δt = 0.001 s)

Fig. 6.9 Vibration of a
single material point: kinetic,
strain and total energies.
Formulation: USL and
double mapping algorithm
(Δt = 0.001 s). The USF
also gives the same result

0 0.5 1 1.5 2
0

1

2

3

4

5

6

7
x 10−3

Time

En
er

gy

kinetic
strain
total

Fig. 6.10 Vibration of a
single material point: kinetic,
strain and total energies.
Formulation: standard USL
(Δt = 0.001 s)

0 2 4 6 8 10
0

1

2

3

4

5

6

Time

En
er

gy

kinetic
strain
total

188 6 MPMat: A MPM Matlab Code

Axial vibration of a continuum bar. In this example, we study the axial vibration
of a continuum bar with Young’s modulus E = 100 and the bar length L = 25. The
case considered here is the analogy to the single-material-point problem. One end
(x = 0) of the bar is fixed, and the other (x = L) is free.

Exact solutions for mode n are (refer to e.g. Bardenhagen (2002))

v(x, t) = v0 cos(ωnt) sin(βnx) (6.16)

u(x, t) = v0

ωn
sin(ωnt) sin(βnx) (6.17)

where ωn = βn
√
E/ρ and βn = 2n−1

2
π
L . The period of vibration is 2π/ω1 = 10. In

the computations, v0 = 0.1 was used.
The initial velocity is given by

v(x, 0) = v0 sin(βnx) (6.18)

The grid consists of 13 two-noded line elements (14 grid nodes) and 13 material
points (i.e., one particle per element) placed at the center of the elements are used.
The Matlab M-file of this problem is example1D/mpm1DVibrationBar.m. The
time increment is chosen as Δt = 0.1Δx/c where Δx denotes the nodal spacing.
We consider two modes–mode 1 (n = 1) and mode 10 (n = 10) and for both cases,
the quantity of interest used to compare the numerical and exact solution is the center
of mass velocities which are given by

vexa
cm (t) = v0

βn L
cos(ωnt); vnum

cm (t) =
∑

vp(t)mp
∑

mp
(6.19)

for the exact solution and the MPM solution, respectively.
For mode 1 the MPM solution are in good agreement with the exact solution (Fig.

6.11) and the algorithm conserved the energy (Fig. 6.12). The same observation was
made by Bardenhagen (2002). To demonstrate that PIC results in a big numerical
dissipation and FLIP does not, we solved this example with two values of α ∈ {0, 1}
(Fig. 6.13). In this chapter, α = 1 was used unless otherwise stated. Recall that α is
the PIC-FLIP blending factor used in the particle velocity update, cf. Eq. (2.54).

To further test the algorithms, the tenth mode (n = 10) is investigated. The center
of mass velocities obtained with two mesh densities (one particle per element) are
depicted in Fig. 6.14. Figure6.15 depicts the energies for both standard/double-
mapping USL formulations.

6.15 Examples 189

Fig. 6.11 Vibration of a
continuum bar: comparison
of the MPM velocity
solution and the exact
solution for mode 1

0 20 40 60 80 100
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Time

Ve
lo

ci
ty

MPM
Exact

Fig. 6.12 Vibration of a
continuum bar: kinetic, strain
and total energies for mode 1

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Time

En
er

gy

kinetic
strain
total

6.15.2 Impact of Two Elastic Disks

As the first 2D MPM simulation, we advocate the collision problem proposed by
Sulsky et al. (1994). This problem involves the impact of two identical elastic disks
which move in opposite direction towards each other (Fig. 6.16). This is an ideal
test case for a 2D MPM code because of the following reasons. First, no boundary
conditions and external force are involved. Second, no inelastic material is present.
Third, before collision, the two disks are in a rigid bodymotion and thus the stress and
strain are identically zero (if they are not, then the calculation of the shape function
derivatives should be incorrect).

The computational domain is a 1 × 1 mm2 square, which is discretized into 20 ×
20 cells. A plane strain condition and no gravity are assumed. Themesh and the initial
irregular particle distribution are shown in Fig. 6.17. There are 320 particles for two
disks which are obtained bymeshing (using Gmsh) the two disks and take the centers
as the initial particle positions. Note that other authors (e.g. Sulsky et al. 1994; Buzzi

190 6 MPMat: A MPM Matlab Code

Fig. 6.13 Vibration of a bar: mode 1 case: PIC versus FLIP with USL algorithm used (16 cells,
PPC = 2). For this mode, USL and MUSL perform similarly (de Vaucorbeil et al. 2020)

et al. 2008) used a regular particle distribution. Initial condition for this problem is
the initial velocities of the particles, vp = v for lower-left particles and vp = −v
for upper-right particles. There is no boundary conditions in this problem since the
simulation stops before the particles move out of the computational box after impact.
The M-file of this simulation is example2D/mpm/mpm2DTwoDisks.m.

To check the energy conservation, the strain and kinetic energy are computed for
each time step. They are defined as

U =
np∑

p=1

u pVp, K = 1

2

np∑

p=1

vp · vpMp (6.20)

where u p denotes the strain energy density of particle p, u p = 1/2σp,i jεp,i j or explic-
itly as

u p = 1

4μ

[
κ + 1

4
(σ 2

p,xx + σ 2
p,yy) − 2(σp,xxσp,yy − σ 2

p,xy)

]

(6.21)

6.15 Examples 191

0 1 2 3 4 5 6
−4

−3

−2

−1

0

1

2

3

4

Time

Ve
lo

ci
ty

MPM
Exact

(a) USL,25 elements

0 1 2 3 4 5 6
−4

−3

−2

−1

0

1

2

3

4

Time

Ve
lo

ci
ty

MPM
Exact

(b) USL,50 elements

0 1 2 3 4 5 6
−4

−3

−2

−1

0

1

2

3

4

Time

Ve
lo

ci
ty

MPM
Exact

(c) MUSL,25 elements

0 1 2 3 4 5 6
−4

−3

−2

−1

0

1

2

3

4

Time

Ve
lo

ci
ty

MPM
Exact

(d) MUSL,50 elements

Fig. 6.14 Vibration of a continuum bar (mode 10): center of mass velocities (de Vaucorbeil et al.
2020)

0 1 2 3 4 5 6
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time

En
er

gy

kinetic
strain
total

(a) USL,cutoff

0 1 2 3 4 5 6
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time

En
er

gy

kinetic
strain
total

(b) USL,double mapping

Fig. 6.15 Vibration of a continuum bar (mode 10): evolution of energies in time according to
different USL formulations. The grid consists of 64 elements with one particle per element (de
Vaucorbeil et al. 2020)

192 6 MPMat: A MPM Matlab Code

Fig. 6.16 Impact of two
elastic bodies: problem
statement. The
computational domain is a
unit square and the radius of
the disks is 0.2 mm (de
Vaucorbeil et al. 2020)

A

B

Fig. 6.17 Impact of two
elastic bodies: Eulerian mesh
and initial particle
distribution

with μ and κ are the shear modulus and the Kolosov constant, respectively.
Also, only the algorithm using a cutoff value to detect small nodal masses was

presented. A time step of 0.001 s was used.
The movement of two disks is given in Fig. 6.18. The collision occurs in a physi-

cally realistic fashion, although no contact law has been specified. Figure6.19 plots
the evolution of the kinetic, strain and total energy. All of the initial energy is kinetic
energy. The initial kinetic energy is K = 2 × (0.5 × (v2 + v2) × ρ × π × r2) =
2.513. The kinetic energy decreases during impact and is then mostly recovered
after separation. The strain energy reaches its maximum value at the point of maxi-
mum deformation during impact and then decreases to a value associated with free
vibration of the disk. The result is identical to the ones reported in Sulsky et al. (1994),
Buzzi et al. (2008), Coetzee (2003) which confirms the implementation. However
the contact did occur earlier than it should have been. The correct contact time is
t = AB/(2

√
2v) = 1.5858 s where v = 0.1. In the simulation contact happened at

t = 1.3 s. This result is expected as the contact is resolved at the grid nodes not the
particles i.e., contact is detected even when the particles of the two bodies are one
cell separate. The situation is more severe if a C p−1 smooth basis function is used
as in GIMP or B-splines MPM where the nodal support is larger. A simple mesh
refinement can improve the result or a contact algorithm which is based on particle

6.15 Examples 193

time: 0.930000 time: 1.205000

time: 1.930000 time: 2.480000

Fig. 6.18 Impact of two elastic bodies: time snapshots of the bodies. Top figures: twp bodies move
towards each other and collide. Bottom figures: they bounce back and move far from each other.
These figures were created in Matlab using the scatter command

distance (Lemiale et al. 2010) or surface stress (Bardenhagen et al. 2001) should be
used. We refer to Chap.8 for more details on contact in the MPM.

Verification of CPDI-Poly. As a verification of the CPDI-Poly, we re-consider again
the Sulsky’s two disk problem. The disks are discretized by 500 Voronoi cells (Fig.
6.20). Results given in Fig. 6.21 verify the formulation and its implementation. The
M-file for this example is example2D/cpdi/ cpdiPolygonTwoDisks.m.

194 6 MPMat: A MPM Matlab Code

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

Time

En
er

gy

kinetic
strain
total

Fig. 6.19 Impact of two elastic bodies: evolution of strain, kinetic and total energies in time

A

B

Fig. 6.20 Impact of two elastic bodies: problemdescription andMPMsetup. There are 500 particles
or 500 Voronoi cells

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

Time

En
er

gi
es kinetic energy

strain energy
total energy

Time
0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

Fig. 6.21 Impact of two elastic bodies: simulation snapshot and evolution of energies. On the right,
the double mapping method of Sulsky was used to have better energy conservation

6.15 Examples 195

6.15.3 High Velocity Impact

We consider a high velocity impact problem in which an AISI 52-100 chromium
steel disk impacting an elastic-perfectly plastic target of 6061-T6 aluminum under
plane strain conditions (Fig. 6.22a). This problem, presented in Sulsky et al. (1995a),
Coetzee (2003), was inspired by the experiments carried out by Trucano and Grady
(1985). The steel disk is assumed to be linear elastic and the aluminum target to
be elastic-perfect plastic obeying a von Mises yield criterion. The boundary of the
computational domain is fixed.

We used a time step of Δt = 0.05
√
Es/ρs = 1.18 × 10−8 s where subscript s

denotes the steel disk. The total time t f is about 40 µs and thus there are about
40 000 time steps. The initial particle distribution and the grid is given in Fig. 6.22b.
We used the MUSL algorithm as the USL with cut-off value for small nodal masses
did not work if a proper value for the cut-off was not used; and this value is grid-
dependent. The M-file is example2D/mpm/mpm2DSteelDiskImpact.m.

The vonMises contour plot at different time frames is depicted in Fig. 6.23. As can
be seen the steel disk does not deform which is consistent with experiment carried
out by Trucano and Grady (1985). The penetration depth is in good agreement with
the MPM result reported in Coetzee (2003).

6.15.4 Large Deformation Vibration of a Compliant
Cantilever Beam

We now consider yet another problem that the FEM can solve easily but many MPM
variants strugglewith. This problem is the vibration of a cantilever beamwhich is soft
and subjected to a large gravity force (Fig. 6.24). Sadeghirad et al. (2011) presented

6061-T6 aluminium

(a) Problem setup (b) Grid and particles

Fig. 6.22 Impact of a steel disk into an aluminum target. The disk has an initial velocity of 1160m/s
and the disk’s diameter is 9.53 mm. The boundary represents the computational domain (50 × 50
elements). There are 6 700 particles for the aluminum target and 204 particles for the steel disk

196 6 MPMat: A MPM Matlab Code

Fig. 6.23 Impact of a steel disk into an aluminum target: von Mises stress distribution at different
time instances. The results are post-processed in VisIt

this example for the first time in the MPM literature but similar problems appeared
earlier in the SPH literature. We refer to Sect.D.4.3 for the accurate finite element
solutions obtained with a very coarse mesh.

The cantilver beam is made of a hyperelastic material, which is modeled by a
Neo-Hookean constitutive model described in Sect. 4.2. At t = 0 s a large gravity of
magnitude g = 10m/s2 is suddenly applied to the beam. And this enduces a large
displacement vibration of the beam. The material data are E = 106 Pa, ν = 0.3,
ρ = 1050kg/m3. This example is analyzed using constant time steps of 0.002 s,
which is about 0.2h/c where h denotes the element size, and real-time simulation is
T = 3s.

We are going to solve this problem with the ULMPM with cubic B-splines and
CPDI-Q4. For that only a 2Dversion of the problem is considered. For the 3Dversion,
we solve it using the CPDI-Tet4 formulation and the polyhedral CPDI.

On Fig. 6.25 we present two solutions obtained with the ULMPM: one with cubic
B-splines weighting functions and one with the CPDI-Q4 weighting function. There

6.15 Examples 197

Fig. 6.24 Vibration of a compliant beam: the left face (shaded) is fixed. The dot denotes the point
of which vertical displacement is tracked in time (Nguyen et al. 2017)

(a) ULMPM, FLIP, 3rd B-

splines

(b) ULMPM, FLIP, CPDI-Q4

Fig. 6.25 Vibration of a compliant beam: many ULMPM variants are prone to numerical fracture
a whereas ULMPM with CPDI is not (b). Certainly, the TLMPM does not suffer from numerical
fracture and thus works well for this problem (not shown here for brevity)

we observe that due to the large tensile stress on the top surface of the beam close
to the fixed support, the ULMPM in which the particle domains are not tracked
exhibits numerical fracture: the beam is suddenly broken into two pieces. GIMP is
also unstable for this problem, even though the problem is not as severe as the one
given in Fig. 6.25a (Sadeghirad et al. 2011).

For the results given in Fig. 6.25b the background grid consists of 16 × 16 ele-
ments while the beam is discretized with 26 × 4 squares. At t = 0 s, each grid cell
(within the solid domain) is populated with 3 × 3 CPDI-Q4 particles. The M-file of
this simulation is example2D/mpm/cpdiQ4VibratingBeam.m.

CPDI-Tet4 formulation. First, we validate the CPDI-Tet4 formulation. A reference
solution is constructed using the FEM with a refined mesh of about 1000 linear
tetrahedra. For the MPM simulations, two background grids of 16 × 16 × 2 and
64 × 64 × 2 cells are considered with four particle meshes in which the coarsest
contains 82 particles and the finest has 1000 particles (Fig. 6.26). The time evolution
of the vertical displacement of the tracked point from various analyses, shown in Fig.
6.27, indicates convergence towards the FEM solution. With a coarse background
grid more particles are needed for accurate results whereas less particles are required

198 6 MPMat: A MPM Matlab Code

Fig. 6.26 Vibration of a compliant beam (Nguyen et al. 2017): Background grid and the material
mesh. The computational domain is 8 × 8 × 2 m3 discretized by 16 × 16 × 2 cells. The cantilever
is meshed by 1000 tetrahedra on the left (created using Gmsh) and by 50 polyhedra on the right
(using Neper and a centroidal Voronoi tessellation, CVT, Du et al. (1999))

0 0.5 1 1.5 2 2.5 3
Time [s]

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

D
is

pl
ac

em
en

t [
m

]

CPDI-Tet4, 82 particles
CPDI-Tet4, 178 particles
CPDI-Tet4, 491 particles
CPDI-Tet4, 1000 particles
FEM-Tet4, 1000 elements

0 0.5 1 1.5 2 2.5 3
Time [s]

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
D

is
pl

ac
em

en
t [

m
]

CPDI-Tet4, 82 particles
CPDI-Tet4, 178 particles
CPDI-Tet4, 491 particles
FEM-Tet4, 1000 elements

Fig. 6.27 Vibration of a compliant beam: FEM versus CPDI-Tet4. On the left, the background
grid contains 16 × 16 × 2 (minimum grid spacing is 0.5 m) cells whereas on the right it consists of
64 × 64 × 2 cells (minimum grid spacing is 0.125 m). The smallest element size in the FEM mesh
is 0.0534 m (Nguyen et al. 2017)

when afine background grid is employed. Since the particlemeshwas generated inde-
pendently of the background grid, it is difficult to find an optimal relation between the
background mesh and the particles as it is the case for the standard MPM or uGIMP
where the rule of 3 particle (in each direction) per cell is usually encouraged (Sulsky
et al. 1995a). The M-file of this simulation is example3D/cpdi/cpdiBeamTet4.m.

Polyhedral CPDI. Next, we turn attention to the polyhedral CPDI. To reduce the
computational cost, a grid of 32 × 32 × 2 was adopted and two particle meshes of
82 and 500 polyhedra, obtained using a centroidal Voronoi tessellation (Du et al.
1999), were considered. The result given in Fig. 6.28 shows the convergence of
the CPDI results towards the FEM one. And Fig. 6.29 presents some simulation
snapshots showing the deformed beam. Finally, we consider a regular Voronoi tes-
sellation where the particles are not as regular as those obtained by a CVT. These

6.15 Examples 199

0 0.5 1 1.5 2 2.5 3
Time [s]

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

D
is

pl
ac

em
en

t [
m

]

CPDI-Polyhedron 82
CPDI-polyhedron 500
FEM

Fig. 6.28 Vibration of a compliant beam: FEM versus polyhedral CPDI. The background consists
of 32 × 32 × 2 cells (minimum grid spacing is 0.25 m). The smallest element size in the FEMmesh
is 0.0534 m (Nguyen et al. 2017)

Fig. 6.29 Vibration of a compliant beam (Nguyen et al. 2017): some simulation snapshots with
polyhedral CPDI (500 polyhedra)

particles can come directly from the microstructure of the material or they are the
deformed CVT particles. The result shown in Fig. 6.30 indicates that the polyhedral
CPDI still performs well with regular Voronoi cells. The M-file of this simulation is
example2D/mpm/cpdiBeamPolyhedra.m.

6.15.5 Lateral Compression of Thin-Walled Tubes

To evaluate the application of the MPM for the design of energy absorption systems,
Sinaie et al. (2018) carried out a series of 3D simulations on thin-walled tubes made
ofmild steel. Herein, we present one of their simulations to validate theMPMagainst
experiments. The simulation is a quasi-static compression test of thin-walled steel

200 6 MPMat: A MPM Matlab Code

0 0.5 1 1.5 2 2.5 3
Time [s]

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
D

is
pl

ac
em

en
t [

m
]

CPDI-Polyhedron 491, CVT
CPDI-polyhedron 491
FEM

Fig. 6.30 Vibration of a compliant beam represented by a regular Voronoi tessellation where the
particle domains are not as regular as those obtained by a CVT (Nguyen et al. 2017)

Fig. 6.31 Schematic of
quasi-static compression
tests by Xiang et al. (2017).
Inner diameter is 47.9 mm
and thickness is 1.48 mm
(Sinaie et al. 2018)

Load cell

Tube sample

Loading platen

tubes carried out by Xiang et al. (2017), see Fig. 6.31 for the set up. Along the way,
we provide details on the procedure of validation of a computational code against
experiment.

The procedure is as follows

• Select a material model that best describes the behavior of the material under
consideration.

• Calibrating the parameters of the selected material model using data from the
experiments.

• Carry out mesh-convergence analysis to ensure the numerical solution is indeed
trust worthy. Then, record the minimum number of elements (and particles for
particle methods) that is sufficient to get convergent result and use that for further
simulations.

The second item demands elaboration. First, it is recommended that experimentalists
provide all information required to conduct simulations. Second, material parameters

6.15 Examples 201

Table 6.1 Material properties of the quasi-static test

Variable Meaning Value

ρ Density 7800 kg/m3

E Elastic modulus 210.0 GPa

ν Poisson’s ratio 0.3

A Yield stress 310.0 MPa

b Hardening parameter 4.0

B Hardening parameter 150.0 MPa

calibration should be done using simple tests e.g. tensile/compressive tests and not
the test that the code is trying to reproduce.

Materialmodel calibration. Hereinweuse a J2 plasticitymodelwith linear isotropic
hardening i.e., σ f (εp) = A + B

(
εp

)n
. We need to find values for E , ν, ρ, A, B and

n using the tensile test result provided by Xiang et al. (2017). Poisson’s ratio ν and
density ρ of mild steel are set to their typical values reported in the literature. To
get other material parameters, we carry out a simple tension test with one grid cell
and 9 material points (3D) using some trial values for E , A, B and n. The stress
at one material point is compared with the experiment. The experimental result is
usually presented in the form of a graph, which can be digitalized using softwares
such asPlot Digitizer.3 After a few trials, thematerial parameters that yielded
matched results are given in Table 6.1.

Mesh convergence analysis. Figure6.32 shows the cross section of the tube, specif-
ically focusing on element density in terms of the number of CPDI-Tet4 particles
along the circumference and across the thickness of the tube. There is only one layer
of particle along the length direction and all the z-components of the nodal quanti-
ties are set to zero. All contacts between the sample and the load platens (or walls)
are no-slip. And thus, the inherent contact capability of the MPM was exploited.
Furthermore, the load platens are modeled as rigid bodies using rigid particles. The
numerical solution is indeed convergent as shown in Fig. 6.33. Then, we can focus
on the mechanics, for example the deformation and plastic hinges (Fig. 6.34).

Remark 37 We believe that CPDI-Tet4 does not perform well for bending and
GPIC with eight-node hexahedral elements would outperform CPDI-Tet4. In any
way, problems like this that involves moderately large deformation and few contacts
can be solved efficiently using the FEM. For problems involving lots of contacts see
Sect. 8.4.5 or the work of Sinaie et al. (2019).

3 http://plotdigitizer.sourceforge.net.

http://plotdigitizer.sourceforge.net

202 6 MPMat: A MPM Matlab Code

Fig. 6.32 Illustration of the simulated tube showing divisions along the circumference (360 parti-
cles) and divisions across the thickness (8 particle). Each blue box in the magnified view represents
a single CPDI-Tet4 particle (Sinaie et al. 2018)

Fig. 6.33 Simulated force-deformation curves in comparison to the experimental one. Each figure
corresponds with a value of lg–the grid cell size. The number of CPDI elements along the cir-
cumference and across the thickness are the values following C and T, respectively (Sinaie et al.
2018)

Fig. 6.34 Snapshots of the simulations carried out on thin walled tube under quasi-static compres-
sion (Sinaie et al. 2018)

We did not solve this problem using the describedMatlab code as it is too slow.We
used the code developed by Sinai Sinaie. But this example can be solved efficiently
either using the Julia code discussed in AppendixF or the C++ code Karamelo
to be presented in the next chapter.

References 203

References

Bardenhagen, S.G.: Energy conservation error in the material point method for solid mechanics. J.
Comput. Phys. 180(1), 383–403 (2002)

Bardenhagen, S.G., Guilkey, J.E., Roessig, K.M., Brackbill, J.U., Witzel, W.M., Foster, J.C.: An
improved contact algorithm for the material point method and application to stress propagation
in granular material. Comput. Model. Eng. Sci. 2(4), 509–522 (2001)

Buzzi, O., Pedroso, D.M., Giacomini, A.: Caveats on the implementation of the generalizedmaterial
point method. Comput. Model. Eng. Sci. 1(1), 1–21 (2008)

Coetzee, C.J.: The Modelling of Granular Flow Using the Particle-in-Cell Method. Ph.D. thesis,
University of Stellenbosch (2003)

de Falco, C., Reali, A., Vázquez, R.: GeoPDEs: a research tool for Isogeometric analysis of PDEs.
Adv. Eng. Softw. 42(12), 1020–1034 (2011)

de Vaucorbeil, A., Nguyen, V.P., Sinaie, S., Wu, J.Y.: Chapter two—material point method after 25
years: theory, implementation, and applications. Advances in Applied Mechanics, vol. 53, pp.
185–398. Elsevier (2020)

Du, Q., Faber, V., Gunzburger, M.: Centroidal voronoi tessellations: applications and algorithms.
SIAM Rev. 41(4), 637–676 (1999)

Lemiale, V., Nairn, J., Hurmane, A.: Material point method simulation of equal channel angular
pressing involving large plastic strain and contact through sharp corners. Comput. Model. Eng.
Sci. 70(1), 41–66 (2010)

Nguyen, V.P., Nguyen, C.T., Rabczuk, T., Natarajan, S.: On a family of convected particle domain
interpolations in the material point method. Finite Elem. Analys. Des. 126, 50–64 (2017)

Nguyen, V.P., Anitescu, C., Bordas, S., Rabczuk, T.: Isogeometric analysis: an overview and com-
puter implementation aspects. Math. Comput. Simul. 117, 89–116 (2015)

Sadeghirad, A., Brannon, R.M., Burghardt, J.: A convected particle domain interpolation technique
to extend applicability of thematerial point method for problems involvingmassive deformations.
Int. J. Numer. Methods Eng. 86(12), 1435–1456 (2011)

Shin, W., Miller, G.R., Arduino, P., Mackenzie-Helnwein, P.: Dynamic meshing for mateiral point
method computations. Int. J. Comput. Math. Sci. 4(8), 379–387 (2010)

Sinaie, S., Ngo, T.D., Kashani, A., Whittaker, A.S.: Simulation of cellular structures under large
deformations using the material point method. Int. J. Impact Eng. 134, 103385 (2019)

Sinaie, S., Ngo, T.D., Nguyen, V.P., Rabczuk, T.: Validation of the material point method for the
simulation of thin-walled tubes under lateral compression. Thin-Walled Struct. 130, 32–46 (2018)

Sulsky, D., Chen, Z., Schreyer, H.L.: A particle method for history-dependent materials. Comput.
Methods Appl. Mech. Eng. 5, 179–196 (1994)

Sulsky, D., Zhou, S.J., Schreyer, H.L.: Application of a particle-in-cell method to solid mechanics.
Comput. Phys. Commun. 87(1–2), 236–252 (1995)

Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M.: Polymesher: a general-purpose mesh
generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45(3), 309–328
(2012)

Trucano, T.G., Grady, D.E.: Study of intermediate velocity penetration of steel spheres into deep
aluminum targets. Technical Report, Sandia National Labs., Albuquerque, NM (USA) (1985)

Xiang, X.M., Lu, G., Li, Z.-X., Lv, Y.: Large deformation of tubes under oblique lateral crushing.
Int. J. Impact Eng. (2017)

Zhang, X., Sze, K.Y., Ma, S.: An explicit material point finite element method for hyper-velocity
impact. Int. J. Numer. Methods Eng. 66(4), 689–706 (2006)

Chapter 7
Karamelo: A Multi-CPU/GPU C++
Parallel MPM Code

The Matlab code presented in the previous chapter is best suited for people new
to the MPM who want to learn the method. This code is flexible, but slow. So
for long term research, a better code is needed. This chapter presents the design
and implementation of Karamelo—our open source multi-CPU/GPU parallel C++
package for the material point method. Karamelo has been designed to retain the
flexibility of small codes while being extremely fast and powerful (specially with the
recently added support of GPUs). The structure of this code is based on that of the
popular molecular dynamics simulator LAMMPS (Plimpton 1995). From LAMMPS it
inherits an impressive flexibility that allows users to easily add functionalities.

First,Karamelo’s code is outlined in Sect. 7.1. The code’s particular class system
inherited from LAMMPS is described in Sect. 7.2. Pre and post-processing is treated
in Sect. 7.3. Then, the user interface is introduced in Sect. 7.4 by detailing the input
file’s syntax.Karamelo is fully parallelized usingMPI (Message Passing Interface)
. The way this is done is explained in Sect. 7.5. Compiling an open-source project
is always a daunting operation. However, with Karamelo, compilation is easy as
you will later see in Sect. 7.6. Karamelo has been created to be easy to extend
for rapid prototyping of new ideas while using an efficient core. How to extend it
is presented in Sect. 7.7. Support for GPU is presented in Sect. 7.8. Finally, some
simulations performed with Karamelo involving large deformation and contacts
are presented in Sect. 7.9. More interesting simulations done with Karamelo are
presented in later chapters.

In Karamelo, symmetric strain and stress tensors are stored as 3 × 3 matrices
which is different from the common Voigt notation, often presented in FEM text-
books, where they are stored as column vectors. This is to make matrix operations
(such as polar decomposition of the deformation gradient tensor) easy.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. P. Nguyen et al., The Material Point Method, Scientific Computation,
https://doi.org/10.1007/978-3-031-24070-6_7

205

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24070-6_7&domain=pdf
https://doi.org/10.1007/978-3-031-24070-6_7

206 7 Karamelo: A Multi-CPU/GPU C++ Parallel MPM Code

7.1 Karamelo in a Nutshell

Karamelo is an explicit dynamics MPM code using a Cartesian background grid.
It implements various weighting functions including hat functions, cubic B-splines,
quadratic Bernstein, and CPDI. It can be used in an updated Lagrangian description
or in a total Lagrangian description in either 2D or 3D. For 2D problems, plane strain
and axi-symmetric conditions are supported. The simulation outputs are LAMMPS
dump files in either binary or compressed text format. These dumps can easily be
visualized using Ovito (Stukowski 2009). So far, the following material models are
supported:

• isotropic linear elastic material;
• Neo-Hookean hyperelastic material;
• small strain J2 elasto-plastic material;
• large strain hypoelastic plastic materials;
• EOS for weakly compressible fluids and gases.

This list is in constant evolution. Please check the code’s official webpage for the
updated list of supported materials: www.karamelo.org.

7.2 Hierarchical Class System

Karamelo is aC++ code that uses a hierarchical class systemdirectly inherited from
LAMMPS. At its center lies the Pointers class. All the main classes (to the exception
of the classes MPM and Var) are inherited from it as show in Fig. 7.1. This structure
allows all these classes to access elements from all the other classes, while being
independent.

When Karamelo is launched, it creates the class MPM which contains all the
pointers to the other main classes which are (see Fig. 7.1):

• Universe: sets up partitions of processors so that multiple simulations can be
run, each on a subset of the processors allocated for a run, e.g. by the mpirun
command.

Fig. 7.1 Class hierarchy within Karamelo source code. All classes are inherited from the class
Pointers. This diagram was automatically generated by Doxygen. Green arrows show parental
links, while the dashed purple ones show pointers (de Vaucorbeil and Nguyen 2021a)

www.karamelo.org

7.3 Pre and Post-processing 207

• Domain: stores the simulation dimensions (i.e. 2D or 3D), the simulation box
geometry, the list of the user defined geometric regions and solids, as well as the
background grid if the updated Lagrangian is used.

• Grid: stores all informations related to the background grid(s): number of cells
as well as all the nodes’ properties such as position, velocity, mass, etc. It also
updates the Grid updating step (Fig. 1.12).

• Material: stores all the user defined equations of state, elasto-plastic, damage,
and temperature laws as well as the different materials which are a combination
of the formers.

• Error: prints all error and warning messages.
• Input: reads an input script, stores variables, and invokes stand-alone commands
that are children classes of the other main classes.

• Modify: stores the list of Compute and Fixes classes, both of which are parent
styles.

• Update: stores everything related to time steps as well as the Scheme and
Method classes.

• Method: parent class of all the MPM methods supported: ULMPM, TLMPM,
ULCPDI and TLCPDI, to date.

• Scheme: parent class of all the computational cycle schemes supported: modified
update stress last to date.

• Group: manipulates groups that atoms are assigned to via the group command.
It also computes various attributes of groups of atoms.

• Log: it is used to generate the screen printed outputs and the log files.
• Output: it is used to generate 4 kinds of output from a simulation: information
printed to the screen and log file, dump file snapshots, plots, and restart files.

• Memory class handles allocation of all large vectors and arrays.

To alter properties of the system during timestepping “fixes” are used. They are the
Karamelo mechanism (directly inherited from LAMMPS) for tailoring the operations
of a time step for a particular simulation. Essentially everything that happens during
a simulation besides the regular MPM algorithm, and output, is a ‘fix’. Example of
operations are: setting boundary conditions or setting up a virtual indenter.

The computation of various attributes of particles or nodes during timestepping
are, however, done using “computes” rather than “fixes”. Some example of computes
are: calculating the total strain energy, or calculating the maximum plastic strain.

7.3 Pre and Post-processing

Karamelo supports two types of particle generation. For simple geometries, it can
directly generate the particles. The algorithm is simple: first, a Cartesian grid is
built, and the user decides how many particles will populate each cell. Then, the
code generates particles for all cells and discard those that fall outside the boundary
of the geometry. Supported geometries include spheres, cylinders and blocks in 3D.

208 7 Karamelo: A Multi-CPU/GPU C++ Parallel MPM Code

The corresponding 2D geometries are disks and rectangles. For complex geometries,
Karamelo can read a finite elementmesh and generate particles as centroids of these
elements. Currently it supports Gmsh—an open source unstructured mesh generator
(Geuzaine and Remacle 2009b).

Similar to LAMMPS, the simulation snapshots are visualized using Ovito
(Stukowski 2009). A typical LAMMPS dump file is shown in Listing 7.1.

Listing 7.1 LAMMPS dump file which can be processed by Ovito

1 ITEM: TIMESTEP
2 0
3 ITEM: NUMBEROFATOMS
4 334328
5 ITEM: BOXBOUNDS sm sm sm
6 −17 50
7 −25 25
8 −25 25
9 ITEM: ATOMS id type x y z damage s11 s22 s33 s12 s13 s23

10 0 1 10.5401 −1.50408 −0.647102 0 −16.9889 −19.2388 −13.7454 11.4435 4.68828 −2.59562
11 1 1 10.5759 −1.51475 −0.215365 0 −15.1273 −15.1966 −14.8969 8.70967 1.73124 −1.20511
12 2 1 10.5759 −1.51475 0.215365 0 −15.1273 −15.1966 −14.8969 8.70967 −1.73124 1.20511 3
13 . . .

7.4 Input Files

Interacting with Karamelo is performed through input files using an easy and flex-
ible syntax. One can for example intuitively add new variables that can be constant:

E = 211

or depend on internal variables such as time—using the time variable—or the
particle positions—using the x, y or z variables:

T = 1

r = sqrt(x*x+y*y)

g = sin(PI*time/T)

Everything else is controlled through functions. For instance, the global dimension-
ality of the simulation, the domain’s size, and the background grid cell size are set
by the dimension(…) command:

dimension(2, xlo, xhi, ylo, yhi, cellsize)

A typical input file is given in Listing 7.2. Basically, it performs the following
actions:

• define some constants (lines 4 to 8, 12 and 10, 14, 15, 18, 24, 30, 34 and 35);

7.4 Input Files 209

• define the method (ULMPMor TLMPMor CPDI) together with the basis function
(line 11);

• define the dimension together with the computational domain (line 16);
• define regions or geometries (lines 19 and 20). Simple geometries (blocks, cylin-
ders, spheres) are supported;

• define materials (line 22)
• define solids using regions and materials (lines 25 and 26);
• define particle and node groups (lines 28 and 29);
• define initial conditions and boundary conditions on the particle/node groups (lines
31 and 32);

• define outputs (lines 36 and 37).
• define the time increment and the total simulation time (lines 39 and 40);

Listing 7.2 A compact input file

1 ###
2 # UNITS: MPa, mm, s #
3 ###
4 E = 1e+3 # Young’s modulus
5 nu = 0.3 # Poisson’s ratio
6 rho = 1000 # Density
7 L = 1 # a dimension
8 hL = 0.5∗L
9 #−−−−−−−−−−−−−−−−−−−−−− SETMETHOD−−−−−−−−−−−−−−−−−−−−−#

10 alpha = 1.0 #PIC/FLIP mix (0 for ful l PIC, 1 for ful l FLIP)
11 method(ulmpm, FLIP, cubic−spline , alpha)
12 scheme(usl)
13 #−−−−−−−−−−−−−−−−−−−− SET DIMENSION−−−−−−−−−−−−−−−−−−−−#
14 N = 40 # 20 cells per direction
15 cellsize = L/N # cell size
16 dimension(2,−hL, hL, −hL, hL, cellsize) # 2D problem, which the computational domain is LxL
17 #−−−−−−−−−−−−−−−−−−−−− SET REGIONS−−−−−−−−−−−−−−−−−−−−−#
18 R = 0.2
19 region(rBall1 , cylinder , −hL+R, −hL+R, R)
20 region(rBall2 , cylinder , hL−R, hL−R, R)
21 #−−−−−−−−−−−−−−−−−−−− SETMATERIALS−−−−−−−−−−−−−−−−−−−−#
22 material(mat1, linear , rho , E, nu)
23 #−−−−−−−−−−−−−−−−−−−−−− SET SOLID−−−−−−−−−−−−−−−−−−−−−−#
24 ppc1d = 2
25 solid (sBall1 , region , rBall1 , ppc1d, mat1, cellsize ,0)
26 solid (sBall2 , region , rBall2 , ppc1d, mat1, cellsize ,0)
27 #−−−−−−−−−−−−−− IMPOSE INITIAL CONDITIONS−−−−−−−−−−−−−−#
28 group(gBall1 , particles , region , rBall1 , solid , sBall1)
29 group(gBall2 , particles , region , rBall2 , solid , sBall2)
30 v = 0.1
31 fix (v0Ball1 , initial_velocity_particles , gBall1 , v, v, NULL)
32 fix (v0Ball2 , initial_velocity_particles , gBall2 , −v, −v, NULL)
33 #−−−−−−−−−−−−−−−−−−−−−−−−OUTPUT−−−−−−−−−−−−−−−−−−−−−−−#
34 N_log = 50
35 dumping_interval = N_log∗2
36 dump(dump1, all , particle /gz , dumping_interval , dump_p.∗ .LAMMPS.gz, x , y , vx , vy, seq)
37 dump(dump2, all , grid /gz , dumping_interval , dump_g.∗ .LAMMPS.gz, x , y , vx , vy)
38 #−−−−−−−−−−−−−−−−−−−−−−−−−RUN−−−−−−−−−−−−−−−−−−−−−−−−−#
39 set_dt(0.001) # constant time increments of 0.001
40 run_time(3.5) # run for a period of 3.5 seconds

210 7 Karamelo: A Multi-CPU/GPU C++ Parallel MPM Code

7.5 Parallelization Using MPI

Karamelo supports multi-CPU and multi-GPU computations through the use of
MPI (Message Passing Interface). In Karamelo, the total domain defined by the
span of the background grid is equally split amongst the different CPUs (or GPUs)
used (see Fig. 7.2). The connection between the different sub-domains is performed
by the means of ghost nodes. The use of ghost nodes was preferred to that of ghost
particles since Ruggirello and Schumacher (2014) observed that the later is superior
over the former for scaling to large-scale problems. Therefore, the nodes making of
all the boundary mesh cells are shared amongst multiple CPUs (or GPUs) (Fig. 7.2).
First, the interaction between these nodes and the local particles (i.e., the particles
present in the domain allocated to the current CPU or GPU) are calculated. Then, the
results are reduced over all the CPUs (or GPUs) sharing the same nodes. In one time
step, reduction is done once after calculating the nodes’ mass, and everytime their
forces and velocities are computed. In the case of CPDI, however, as the domain
of a given particle can be overlapping multiple CPUs, both ghost nodes and ghost
particle’s approach is used.

For more detail concerning parallelization a MPM code, we refer to Huang
et al. (2008) who has described a parallel MPM using OpenMP for shared mem-
ory machines and Li and Sulsky (2000) presented a 3D parallel MPM code, written
in Fortran, modified from a serial MPM code using MPI.

CPU 1 CPU 2

CPU 3 CPU 4

Mesh boundaries
Real node
Ghost node

2

1 1

1 1

Fig. 7.2 Illustration of the mapping from particles to node order for nodes that are shared amongst
different CPUs. 1: mapping is done locally, 2: the mass, or forces and velocities are reduced. The
CPU that on which resides the real node is the one that manages the reduction (de Vaucorbeil and
Nguyen 2021a)

7.7 Extending Karamelo 211

7.6 Compilation

Building an open-source project can be a daunting task for many users. However,
with Karamelo, there is no hardship as building it has been made easy with the
use of CMake (https://cmake.org). CMake automatically checks dependencies and
generates the Makefile.

As Karamelo relies on two non-standard libraries that are gzstream (https://
www.cs.unc.edu/Research/compgeom/gzstream/) for the compression of dump files
and Kokkos (https://kokkos.org/) for GPU support, the only user intervention
needed to correctly build Karamelo is to make sure that these libraries’ source code
are present in the source directory via the dedicated git command:
git submodule update --init --recursive.

7.7 Extending Karamelo

Karamelo has been created to combine rapid prototyping of new ideas with the
use of efficient software engineering. This has been achieved using the ingenious
hierarchical class system inherited fromLAMMPS. ExtendingKaramelo is therefore
relatively easy as is explained in the following.

The easiest way to extend Karamelo is by the implementation of new fixes.
Using fixes, users can implement many operations that can alter the system such
as: changing particles or node attributes (position, velocity, forces, etc.), implement
boundary conditions, reading/writing data, or even saving information about particles
for future use (previous positions, for instance).
Adding a Fix. All fixes are derived from the class Fix and must have a constructor
with the signature: FixNew(class MPM *, vector<string>).

Every fix must be registered in Karamelo by writing the following lines of code
in the header before include guards:

#ifdef FIX_CLASS

FixStyle(fix_name,FixNew)

#else

where “fix_name” is a name of the fix in the script and FixNew is the name of its
class. This little piece of code allows Karamelo to find the new fix when it reads
an input file. In addition, the fix header must be included in the file “style_fix.h”.
Once this is done and the project build again, the fix can be used using the following
function:

fix(fix_ID, fix_name, arg_1, arg_2, ..., arg_N)

https://cmake.org
https://www.cs.unc.edu/Research/compgeom/gzstream/
https://www.cs.unc.edu/Research/compgeom/gzstream/
https://kokkos.org/

212 7 Karamelo: A Multi-CPU/GPU C++ Parallel MPM Code

Remark 38 The number of arguments the fix function takes is variable.

Adding a computational cycle schemes. New computational cycle schemes can be
added as easily as fixes. This could allow a given user to simply test a new scheme or
add one that is not currently supported. Schemes are derived from the class Scheme.
They must have constructor with the signature: SchemeNew(class MPM *,
vector<string>) and feature their own definition of the setup() and
run(Var condition) functions. The former is used to do any required setup
at the beginning of the simulation, before timestepping start. The later features the
implementation of the timestepping loop and takes a condition as only argument.

Similarly to fixes, every scheme must be registered by writing the following lines
of code in the header before include guards:

#ifdef SCHEME_CLASS

SchemeStyle(scheme_name,SchemeNew)

#else

where “scheme_name” is a name of the new scheme in the script and Scheme-
New is the name of its class. Also, the scheme header must be included in the file
“style_scheme.h”. The use of the new added scheme is done by invocated the follow:

scheme(scheme_name)

Remark 39 The scheme selected by default is modified update stress last (MUSL).

Adding an MPM variant. The same process used for adding fixes and schemes
is used to add MPM variants. The class corresponding to a variant is derived from
the class Method. It must have a signature of the type NewMPM(class MPM *,
vector<string>) and feature the definition of a number of functions corre-
sponding to the different steps of the algorithm. New variants must be registered as
follows:

#ifdef METHOD_CLASS

MethodStyle(newmpm,NewMPM)

#else

where “newmpm” is a name of the added variant. Just like for fixes and schemes its
header must be included in the file “style_method.h”. In the input file, the function
method defines the use of a given MPM variant. For example the function

method(newmpm, PIC, linear)

tells Karamelo to use the “newmpm” variant of MPM with the PIC integration
scheme and linear shape functions.

7.9 Some Simulations 213

7.8 GPU Support

With MPM’s ability to handle robustly complex simulation problems, there is a
demand and need for faster and efficientMPMcodes.Karamelowas originally cre-
ated as only a multi-CPU support. This enabled Karamelo to handle more complex
problems than single-CPU codes. However, even though its parallel performances
are honest, they are far from that of codes that use GPUs.

GPUs are modern massively parallel simulation hardware now readily available
for desktop machines which are able to generate three order of magnitude speed
gains compared to CPU based MPM codes (Dong and Grabe 2018). To harvest these
performances, the standard approach (and still the most efficient) is to write code
directly in CUDA.

Codes written in CUDA can only be run on Nvidia GPUs. Nvidia is currently the
leader of this marker, but other players such as AMG are catching up. CUDA is not
the only single-platform; moreover, it is also hard to write in. Therefore, using it for
Karamelo would not only limit its hardware compatibility but also the ease with
which users can add functionalities or change the code.

An elegant solution is to use Kokkos. The Kokkos ecosystem as a C++ library
implements a manycore portable programming model that provides abstracted par-
allelization and memory management (Edwards et al. 2014). Basically, Kokkos
allows to harvest the parallel capabilities of different hardware without writing code
that is machine specific. As a C++ library, no other language needs to be used.

With the use of Kokkos, Karamelo’s code is fully parallelized and can run
easily on multiple CPUs or GPUs. With GPUs, speed-ups are of the order of one or
two orders of magnitude compared to CPUs, depending on the problem simulated.

7.9 Some Simulations

This section presents simulations that involve large deformation and contacts which
are signature application of the MPM. Furthermore, these simulations are practical
engineering problems of which experiments have been conducted. Concretely, the
following problems are presented

• Taylor anvil test (Sect. 7.9.1);
• Upsetting of a cylindrical billet (Sect. 7.9.2);
• Cold spraying (Sect. 7.9.3)
• Scability test (Sect. 7.9.4)

All results were obtained with the MUSL formulation with the blending PIC/FLIP
parameter α = 0.99. We refer to Sect. F.3 for a simple 3D problem if you need to
verify your 3D MPM implementation.

214 7 Karamelo: A Multi-CPU/GPU C++ Parallel MPM Code

7.9.1 Taylor Anvil Test

The Taylor anvil test is a well suited problem to evaluate the performance of elasto-
plastic constitutive models and numerical codes when large plastic deformations
occur (Wilkins and Guinan 1973; Johnson and Holmquist 1988; Predebon et al.
1991). This test involves a OFHC Copper cylinder of original length L0 = 25.4 mm,
and original diameter D0 = 7.6 mm, hitting a stationary rigid wall at a high velocity
v0 = 190 m/s. It was used by Johnson and Holmquist (1988) to compare various
constitutive models for both OFHC Copper and Armco Iron. In their work, they
performed experiments to determine the material parameters for these two materials
using different constitutive models. They also performed numerical simulations to
compare the models.

Herein, we are interested in how the MPM prediction of the deformed bar in
terms of the final diameter, bulge and length (see Fig. 7.3 for an illustration of these
quantities) compares with the experiments. This problem is now solved using the
ULMPM and the TLMPM. In the literature, this test has been studied using the
axi-symmetric ULMPM (Sulsky and Schreyer 1996) and recently by Liang et al.
(2019).

TheOFHCCoppermaterial is modeled using the elasto-plastic constitutivemodel
presented in Sect. 4.3, but without damage and temperature effects. The material
parameters used are taken from Sulky’s work and are listed in Table 7.1. The perfor-
mance of the MPM is accessed using the error measure introduced by Johnson and
Holmquist (1988) and defined as:

�̄ = 1

3

[|�L|
LT

+ |�D|
DT

+ |�W |
WT

]
(7.1)

Fig. 7.3 Taylor bar impact for an elasto-plastic OFHC copper cylinder given an initial downward
velocity of 190 m/s

7.9 Some Simulations 215

Table 7.1 Material parameters for the OFHC Copper material used in the simulation of the Taylor
bar impact test

Material parameters Parameters for Johnson-Cook model Parameters for EOS

Density 8940 kg/m3 A 65 MPa c0 3933 m/s

Young’s modulus 115 GPa B 356 MPa Sα 1.5

Poisson’s ratio 0.31 C 0.013 �0 0

n 0.37

Fig. 7.4 Taylor anvil test:
initial particle distribution
and grid of ULMPM and
TLMPM. Note that the
cylinder axis is in the x
direction and for the
TLMPM there is no gap
between the cylinder and the
wall

(a) ULMPM (b) TLMPM

where LT , DT and WT are the length, diameter and bulge measured experimentally
and �L = L f − LT , �D = D f − DT and �W = W f − WT . The MPM length,
diameter and bulge are denoted by L f , D f and W f , respectively. All these lengths
are measured based on the distances between particles marked in Fig. 7.3. As it is
impossible to have particles at exact locations defining the bulge W , our prediction
for W is worse than the length and the diameter. Locating these particles and their
distances were done manually using tools provided in Ovito (Stukowski 2009).

Figure 7.4 shows the distribution of the material points and the grid used in the
ULMPM and TLMPM. As can be seen, the TLMPM requires a grid just encom-
passing the solid in its initial undeformed configuration, while for the ULMPM the
grid must cover a larger space that will cover the entire deformation space of the
solid. For the TLMPM (linear shape functions), the cell size is h = 0.25 mm with
1 material point per element for a total of 74052 points. For the ULMPM (or just
MPM) we use the hat functions and the cubic B-spline functions (BSMPM). Eight
particles per cell are used for both cases. The presence of the wall is simulated by
zeroing vx I of the bottom nodes (where the wall is located).

Figure 7.5 presents the geometry (looking from the bottom) of the deformed
cylinder at the end of the simulation i.e., t ≈ 63 µs when the kinetic energy is close
to zero. All MPM variants perform very well and much better than LS-DYNA SPH
given in Ma et al. (2009b). Figure 7.6 presents the deformed configuration of the bar.
The predicted values by TLMPM and ULMPM (MPM and BSMPM) for the final
diameter, bulge and length are given in Table 7.2. Also presented is the results from
Sulsky and Schreyer (1996), just for reference.

216 7 Karamelo: A Multi-CPU/GPU C++ Parallel MPM Code

(a) TLMPM (b) MPM (c) BSMPM

Fig. 7.5 Final configurations of the Taylor bar (bottom view). The black squares denote the back-
ground grids

(a) TLMPM (b) MPM (c) BSMPM

Fig. 7.6 Taylor anvil test. Deformed configurations obtained with different MPM variants. The
color presents the equivalent plastic strain. Visualization done with Ovito (Stukowski 2009)

Table 7.2 Results of the Taylor anvil test

Experiment TLMPM MPM BSMPM MPM
(Sulsky)

Diameter D [mm] 13.5 13.9 14.4 13.9 14.6

Bulge W [mm] 10.1 9.4 8.9 9.5 9.12

Length L [mm] 16.2 16.2 17.2 16.5 18.3

�̄ [–] n/a 0.03 0.08 0.04 0.1

Immediately upon impact, elastic waves followed by plastic waves are generated
at the impact interface, and travel back and forth between the bottom and top surfaces.
The bottompart of the cylinder bulges out due to compressionwhile the top part keeps
almost undeformed. This deformation of the cylinder shows a familiar mushroom-
like deformation mode in the Taylor test.

7.9 Some Simulations 217

Fig. 7.7 Final configuration of the Taylor bar with v0 = 750 m/s. GPIC (TL) set up: computational
domain is 40 × 28 × 40 discretized by a Eulerian grid of 50 × 60 × 50 cells with 52920 eight-node
hexahedral elements for the cylinder

Remark 40 It was this Taylor anvil test that led Ma et al. (2009b) to conclude that
explicit MPM is faster than LS-DYNA ULFEM, but with a slightly lower accuracy.
In our humble opinion, having a faster method would not make industry people to
choose it. This is simple as people are so familiar to the FEM and there are excellent
FEM packages with user friendly user interfaces for both pre and post processing.
For the MPM to be used by industry the MPM community should consider solving
problems that the FEM struggle to solve. Sadly, up to now, no such simulations are
published.

We turn now to the case in which the cylinder velocity is 750 m/s, to see if
MPM/TLMPM/GPIC can capture the extreme deformation. For this high velocity,
we are not aware of any experiments, so we just evaluate the robustness of different
MPMs. The results given in Fig. 7.7 indicates that GPIC is robust for solvingmassive
deformation (the TLMPM is also robust). The deformed shape is similar to the one
obtained by the OTM (a trulymeshfreemethod) in Li et al. (2010). On the other hand,
the MPM with linear functions exhibits numerical fractures i.e., particle separation
not due to a physical fracture model, see Sect. 2.6.1 for a simple demonstration; using
a smoother basis such as quadratic B-splines improves the solution (Fig. 7.8).

In theMPM, numerical fracture is treated by a ’remeshing’ technique called parti-
cle splitting in which a particle is split into many particles when the particle spacing
is large relatively to the grid cell size (Ma et al. 2009b). However, there exists more
than one splitting criteria to determine when one should perform particle splitting
(Gracia et al. 2019).

218 7 Karamelo: A Multi-CPU/GPU C++ Parallel MPM Code

(a) Linear basis (b) Quadratic B-splines

Fig. 7.8 Final configuration of the Taylor bar with v0 = 750 m/s: numerical fracture obtained with
the ULMPM. Details: 50220 particles on a grid with 50 × 60 × 50 cells

Fig. 7.9 Final configuration of the Taylor bar with v0 = 190 m/s: axis-symmetric GPIC (TL): the
model (left), the result (middle) and processed result in Paraview to have a full model (right).
See Fig. 7.10 for how to do this

Axi-symmetric formulations. Toverify the implementationof axi-symmetricMPM,
we solve this Taylor anvil test again using an axi-symmetric model, see Fig. 7.9. We
only present the results obtainedwithGPIC (TL and eight-node hexahedral elements)
but ULMPM and TLMPM behave similarly.

7.9.2 Upsetting of a Cylindrical Billet

In upsetting, a cylindrical billet is compressed between two platens. This process is
used in manufacturing as a means to pre-form workpieces prior to applying another
operation such as rolling or extrusion. The benchmark problem consists of a steel
cylinder 20 mm in diameter and 30 mm in height. Due to symmetry, only half of the

7.9 Some Simulations 219

Fig. 7.10 From axi-symmetric model to 3D in Paraview: this is achieved using this sequence
of filters: (1) Transform with rotation w.r.t x 90 degrees (to make the cylinder axis aligned with z
direction as the cylinder was aligned in the y direction in our code), (2) Extract Surface and (3)
Rotational Extrusion with resolution equals 64

(a) Full 3D model (b) 2D axi-symmetric model

Fig. 7.11 Upsetting of a cylindrical billet: initial particle distribution (de Vaucorbeil and Nguyen
2021a)

cylinder is modeled. The initial distribution of the particles is shown in Fig. 7.11 for
both 3D and axi-symmetric simulations.

The platen starts above the workpiece and moves down at a constant velocity of 1
m/s, compressing the billet. For simplicity, it is assumed that there is no slip between
the platen and the cylindrical workpiece. The billet is made of steel with a Young’s

220 7 Karamelo: A Multi-CPU/GPU C++ Parallel MPM Code

Fig. 7.12 Upsetting of a cylindrical billet: results in terms of deformed shape and load-deflection
curves. The deflection is the averaged displacement of the particles on the top surface of the cylinder
and the load is computed as a sum of all nodal internal force in the cylinder direction of all nodes
locating on the bottom surface of the cylinder

modulus of 200 GPa, Poisson’s ratio of 0.3, density of 7800 kg/m3, and an initial
yield strength of 0.70 GPa with a strain hardening slope of 0.30 GPa. That is, in
the Johnson-Cook model (Johnson and Cook 1985), A = 0.70 GPa, B = 0.30 GPa,
C = 0 and n = 1.0.

The 3D simulation consists of 47744 particles (including the rigid particles mod-
eling the platen) whereas the axi-symmetric one contains only 696 particles. And yet,
their results, given in Fig. 7.12, are very similar to that of Sulsky and Kaul (2004).

7.9.3 Cold Spraying

Cold spraying (CS) is a coating deposition method in which solid powders (1 to 50
micrometers in diameter) traveling at velocities up to 1200m/s impingeon a substrate.
During this impact, particles undergo plastic deformation and adhere to the surface.
Unlike thermal spraying techniques, e.g., plasma spraying, flame spraying, or high
velocity oxygen fuel, the powders are not melted during the spraying process.

The coating is formed from many individual feedstock impact events. Therefore,
the understanding of a single feedstock impact and its resulting morphology is vital
to shed lights on the key parameters affecting bulk coating properties. It is very
difficult to observe the whole deformation process via experiments because of the
extremely short impact time scale. Numerical simulations thus play an important
role in studying the spray powder deformation process. Common numerical meth-
ods include Lagrangian FEM, see e.g. Assadi et al. (2003), Eulerian methods (Li

7.9 Some Simulations 221

Table 7.3 Material parameters copper (Assadi et al. 2003)

Elastic parameters JC model EOS Damage Temperature

Density 8960 kg/m3 A 90 MPa c0 3940 m/s D1 0.54 Tr 298 K

Young modulus 124 GPa B 292 MPa Sα 1.489 D2 4.89 Tm 1356 K

Poisson ratio 0.34 C 0.025 �0 2.02 D3 –3.03

n 0.31 D4 0.014

m 1.09 D5 1.12

Fig. 7.13 Cold spraying
with a single impact: 2D
axi-symmetric model and 1/4
3D model. The bottom
surface of the substrate is
fixed whereas in the
symmetric planes, the nodes
are fixed in the direction
normal to these planes. The
green dots denote the
background grid nodes
(de Vaucorbeil and Nguyen
2021a)

(a) axi-symmetrica model (b) 1/4 3D model

et al. 2016) and Smoothed Particle Hydrodynamics (SPH), see e.g. Mason (2015),
Gnanasekaran et al. (2019) have been used for cold spraying simulations. From the
review article of Yin et al. (2010), Eulerian and SPHmethods are more accurate than
the FEM.

The most common scenario considered in the literature is a single impact: a
spherical powder particle impacts a cylinder substrate. The spherical powder has a
radius r of 10 µm and the cylindrical substrate is 8r in diameter and 3r in height.
Both the powder and the substrate are made of copper, as it is the most widely
used material in cold spray simulations. The material parameters used are given in
Table 7.3 taken from Assadi et al. (2003).

Both 2D axi-symmetricmodel and 3Dmodel are considered, see Fig. 7.13.As heat
conduction is not yet coded in Karamelo, only adiabatic condition is considered
and the temperature increase is due only to plastic deformation. Note that the contact
between the powder and the substrate is no-slip contact—the default contact in the
MPM.

Some results are shown in Figs. 7.14 and 7.15. Figure 7.15 presents the evolution
of the plastic strain and temperature in time. The axi-symmetric and 3D results are
quite similar.

222 7 Karamelo: A Multi-CPU/GPU C++ Parallel MPM Code

Fig. 7.14 Cold spraying with a single impact: evolution of plastic strain and temperature

Fig. 7.15 Cold spraying with a single impact: deformation process (3D model)

7.9.4 Scalability Tests

As Moore’s law is flattening (the power of CPUs do not double every two years
anymore), chip manufacturer are relying on packing more computational cores onto
a single chip to increase their computational power. Modern application therefore
need to be fully parallized tomake the best use of the technology available nowadays.
In Sects. 7.5 and 7.8, the way Karamelo was parallelized using both CPUs and
GPUs has been presented. Here, the speedup gain obtained as the number of CPU
cores increases and by the use of GPUs are presented, using the well known Taylor
bar impact test. These tests are done using both TLMPM and ULMPM.

Similarly to what was done in the work by de Vaucorbeil et al. (2020), the mesh
cell size is h = 0.25mmwith 1material point per element for a total of 74052 points.
Moreover, linear shape functions are used. The initial velocity is set at v0 = 190 m/s.
When using the ULMPM, the simulation cell is 25.4 × 15.0 × 15.0 mm3. All sim-
ulations are ran for a total of 20000 steps.

CPU. The CPU scalability tests have been performed using a Xeon-E5-2667-v3 chip
made of 16 cores. The same simulations for TLMPMandULMPM, respectivelywere
performed using numbers of core varying from 1 to 16. The simulation times were
recorded and divided by those obtained when using a single core. As one can see in
Fig. 7.16, the speedup gain for ULMPM and TLMPM is comparable. The increase of

7.10 Conclusions 223

Fig. 7.16 Scalability of the TLMPM and the ULMPM compared using a Xeon-E5-2667-v3 type
CPUs. The black line corresponds to the maximum possible speedup gain (de Vaucorbeil and
Nguyen 2021a)

speed is substantial when the number of cores is lower than 10. When this number is
higher, though the performances tend to plateau. This suggest that the computation
time is dominated by the time passing messages, or waiting for messages.

GPU. The GPU speedup tests were conducted using a single Nvidia Tesla Volta
V100-SXM2-32GBGPU. The time it took to run the same simulation was compared
with that of a single CPU. With ULMPM, the simulation ran 141 times faster on the
GPU than on a single CPU. With TLMPM, the speedup factor was 34.

GPUs are amazing parallel computing devices and Karamelo can make great
use of this power. But not everyone has access to them. For those, Karamelo will
remain CPU compatible.

7.10 Conclusions

While we are happy with Karamelo, specially its GPU support, there is room to
improve the MPI parallelization and it only supports explicit dynamics. It only has
a few constitutive models, but you can help with that! However, for completeness
sake’s, its is important to briefly present other MPM implementations.

Amongst the CPU codes, there is Uintah developed by Parker (2002). It is a
parallel MPM code usingMessage Passing Interface (MPI) with excellent scalability
of more than 1000 processors (16 million particles) as demonstrated in Parker et al.
(2006). A large number of constitutive models is implemented in Uintah with

224 7 Karamelo: A Multi-CPU/GPU C++ Parallel MPM Code

implicit solvers. Ma et al. (2010) described an object-oriented C++ implementation
of MPM and Sinaie et al. (2017) presented a MPM implementation using Julia.

A couple of GPU codes also exists like ep2-3De an explicit GIMP implementa-
tion forGPUs developed byWyser et al. (2021) for elasto-plastic problems inGeome-
chanics. We would also like to mention the impressive multi-GPU Claymore code
developed by computer scientists for computer animations (Wang et al. 2020). This
code is unfortunately not designed for physical simulations and is extremely com-
plex. This makes Karamelo the only easy to run and easy to modify open source
GPU MPM code for engineering simulations.

We refer back to Sect. 1.7 for a list of MPM codes.

References

Assadi, H., Gärtner, F., Stoltenhoff, T., Kreye, H.: Bonding mechanism in cold gas spraying. Acta
Mater. 51(15), 4379–4394 (2003)

Carter Edwards, H., Trott, C.R., Sunderland, D.: Kokkos: enabling manycore performance porta-
bility through polymorphic memory access patterns. J. Parallel Distrib. Comput. 74(12),
3202–3216 (2014). ISSN 0743-7315. https://doi.org/10.1016/j.jpdc.2014.07.003. http://www.
sciencedirect.com/science/article/pii/S0743731514001257. Domain-Specific Languages and
High-Level Frameworks for High-Performance Computing

de Vaucorbeil, A., Nguyen, V.-P., Hutchinson, C.R.: A total-Lagrangian material point method for
solid mechanics problems involving large deformations. Comput. Methods Appl. Mech. Eng.
360, 112783 (2020). https://doi.org/10.1016/j.cma.2019.112783

de Vaucorbeil, A., Nguyen, V.P.: Karamelo: an open source parallel C++ package for the material
point method. Comput. Particle Mech. 8, 767–789 (2021a)

Dong, Y., Grabe, J.: Large scale parallelisation of the material point method with multiple gpus.
Comput. Geotech. 101, 149–158 (2018)

Geuzaine, C., Remacle, J.F.: Gmsh: a three-dimensional finite element mesh generator with built-in
pre- and post-processing facilities. Int. J. Numer. Meth. Eng. 79(11), 1309–1331 (2009)

Gnanasekaran, B., Liu, G.-R., Yao, F.,Wang, G., Niu,W., Lin, T.: A smoothed particle hydrodynam-
ics (sph) procedure for simulating cold spray process-a study using particles. Surface Coatings
Technol. 377, 124812 (2019)

Gracia, F., Villard, P., Richefeu, V.: Comparison of two numerical approaches (DEM and MPM)
applied to unsteady flow. Comput. Particle Mech. 1–19 (2019)

Huang, P., Zhang, X., Ma, S., Wang, H.K.: Shared memory OpenMP parallelization of explicit
MPM and its application to hypervelocity impact. Comput. Model. Eng. Sci. 38(2), 119–147
(2008)

Johnson, G.R., Cook, W.H.: Fracture characteristics of three metals subjected to various strains,
strain rates, temperatures and pressures. Eng. Fract. Mech. 21(1), 31–48 (1985)

Johnson, G.R., Holmquist, T.J.: Evaluation of cylinder? impact test data for constitutive model
constants. J. Appl. Phys. 64(8), 3901–3910 (1988)

Li, X., Sulsky, D.: A parallel material-pointmethodwith application to solidmechanics. In: Brebbia,
C.A., Ingber, M., Power, H. (eds.), Computational Science–ICCS 2002. Applications of High-
Performance Computing in Engineering VI, vol. 2331. WIT Press, Southampton (2000)

Li, B., Habbal, F., Ortiz, M.: Optimal transportation meshfree approximation schemes for fluid and
plastic flows. Int. J. Numer. Meth. Eng. 83(12), 1541–1579 (2010)

Li,W.Y., Yang, K., Yin, S., Guo, X.P.: Numerical analysis of cold spray particles impacting behavior
by the Eulerian method: a review. J. Therm. Spray Technol. 25(8), 1441–1460 (2016)

https://doi.org/10.1016/j.jpdc.2014.07.003
http://www.sciencedirect.com/science/article/pii/S0743731514001257
http://www.sciencedirect.com/science/article/pii/S0743731514001257
https://doi.org/10.1016/j.cma.2019.112783

References 225

Liang, Y., Zhang, X., Liu, Y.: An efficient staggered grid material point method. Comput. Methods
Appl. Mech. Eng. 352, 85–109 (2019)

Ma, S., Zhang,X., Lian,Y., Zhou,X.: Simulation of high explosive explosion using adaptivematerial
point method. Comput. Modeling Eng. Sci. (CMES) 39(2), 101 (2009)

Ma, Z.T., Zhang, X., Huang, P.: An object-oriented MPM framework for simulation of large defor-
mation and contact of numerous grains. Comput. Model. Eng. Sci. 55(1), 61–87 (2010)

Mason, L.S.: Modelling cold spray splat morphologies using smoothed particle hydrodynamics.
PhD thesis, Heriot-Watt University (2015)

Parker, S.G.: A component-based architecture for parallel multi-physics pde simulation. In: Sloot,
P.M.A., Hoekstra, A.G., Kenneth Tan, C.J., Dongarra, J.J. (eds.), Computational Science – ICCS
2002. Lecture Notes in Computer Science, vol. 2331, pp. 719–734. Springer, Berlin (2002)

Parker, S.G., Guilkey, J., Harman, T.: A component-based parallel infrastructure for the simulation
of fluid-structure interaction. Eng. Comput. 22(3–4), 277–292 (2006)

Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1),
1–19 (1995)

Predebon, W.W., Anderson, C.E., Walker, J.D.: Inclusion of evolutionary damage measures in
Eulerian wavecodes. Comput. Mech. 7(4), 221–236 (1991)

Ruggirello, K.P., Schumacher, S.C.: A comparison of parallelization strategies for thematerial point
method. In: 11th World Congress on Computational Mechanics, pp. 20–25 (2014)

Sinaie, S., Nguyen, V.P., Nguyen, C.T., Bordas, S.: Programming the material point method in Julia.
Adv. Eng. Softw. 105, 17–29 (2017)

Stukowski, Alexander: Visualization and analysis of atomistic simulation data with ovito-the open
visualization tool. Model. Simul. Mater. Sci. Eng. 18(1), 015012 (2009)

Sulsky, D., Kaul, A.: Implicit dynamics in the material-point method. Comput. Methods Appl.
Mech. Eng. 193(12–14), 1137–1170 (2004)

Sulsky, D., Schreyer, H.L.: Axisymmetric form of the material point method with applications to
upsetting and Taylor impact problems. Comput. Methods Appl. Mech. Eng. 139, 409–429 (1996)

Wang, X., Qiu, Y., Slattery, S.R., Fang, Y., Li, M., Zhu, S.-C., Zhu, Y., Tang, M., Manocha, D.,
Jiang, C.: Amassively parallel and scalable multi-gpumaterial point method. ACMTrans. Graph.
39(4) (2020)

Wilkins, M.L., Guinan, M.W.: Impact of cylinders on a rigid boundary. J. Appl. Phys. 44(3), 1200–
1206 (1973)

Wyser, E., Alkhimenkov, Y., Jaboyedoff, M., Podladchikov, Y.Y.: An explicit gpu-based material
point method solver for elastoplastic problems (ep2-3de v1.0) (2021)

Yin, S., Wang, X., Bao-peng, X., Li, W.: Examination on the calculation method for modeling
the multi-particle impact process in cold spraying. J. Therm. Spray Technol. 19(5), 1032–1041
(2010)

Chapter 8
Contact and Fracture

Up to this point, a basicMPMformulation for solidmechanics and its implementation
has been presented. A tutorial code written in Matlab and a research-oriented code
written inC++were provided.Actually, if you arewilling to learn a newprogramming
language, we present inAppendix F anotherMPMcodewritten in Julia.While this
is sufficient for simulating various interesting problems in solid mechanics, topics
such as frictional contacts and fracture were not throughly discussed.

This chapter is devoted to such topics. We present the most widely used contact
algorithm for the updated LagrangianMPM in Sect. 8.1. This is followed by a contact
model for the total Lagrangian MPM in Sect. 8.2 and for GPIC in Sect. 8.3. Next, we
provide some contact simulations in Sect. 8.4 to evaluate the performance of the two
contactmodels. Finally,we discuss fracturemodeling in Sect. 8.5. Recent advances in
fracture mechanics including variational fracture theories and their approximations
(phase-field approximation and eigendeformation approximation) are presented.

8.1 Contacts in the ULMPM

This section presents the contact algorithm of Bardenhagen et al. (2000) for
deformable bodies. The case of contact between deformable bodies and rigid bod-
ies will be treated subsequently as simplification. This contact algorithm might be
viewed as a predictor-corrector scheme, in which the (trial) nodal velocities are
predicted from the solution of each body separately (as if no contact occurred) and
then corrected using a contact model. The contact algorithm applies only for contact
nodes which are defined as those who receive contribution from particles of more
than one body, cf. Fig. 8.1. For simplicity, the discussion is confined to contacts
between different bodies, self-contact requires a special treatment and is discussed
in Homel and Herbold (2017).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. P. Nguyen et al., The Material Point Method, Scientific Computation,
https://doi.org/10.1007/978-3-031-24070-6_8

227

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24070-6_8&domain=pdf
https://doi.org/10.1007/978-3-031-24070-6_8

228 8 Contact and Fracture

Fig. 8.1 Two bodies come
into contact. Contact or
overlapped nodes (black
solid square) are those who
receive contribution from
particles of both bodies

For each body k = 1, 2, . . . n where n denotes the number of bodies, one solves
the standard MPM problem

mt,(k)
I =

n(k)
p∑

p=1

φI pm p, vt,(k)I = 1

mt,(k)
I

n(k)
p∑

p=1

φI pm pvp

at,(k)I = f (k)
I

mt,(k)
I

ṽt+Δt,(k)
I = vt,(k)I + Δtat,(k)I

(8.1)

where n(k)
p denotes the number of particles making up body k. Note that the tilded

velocity field is not final and needs to be corrected for contact nodes. The corrected
velocity vt+Δt,(k)

I (without a tilde) will be used for updating particle’s stress, position
and velocity.

The next step after getting ṽt+Δt,(k)
I is to detect, at contact nodes, whether two

bodies are approaching or departing each other. In what follows the presentation is
restricted to two bodies for sake of simplicity. The algorithm is general and can be
applied to multiple bodies though. Bardenhagen et al. (2000) proposed an algorithm
which is linear in the number of bodies1:

(
ṽt+Δt,(k)
I − vcmI

)
· n(k)

I =
{

≥ 0 contact

< 0 release
(8.2)

where a · b = aibi is the dot product of two vectors, and vcmI is the so-called center
of mass velocity field which is given by

vcmI = (mI ṽI)t+Δt,(1) + (mI ṽI)t+Δt,(2)

mt,(1)
I + mt,(2)

I

(8.3)

1 Actually York, in his Ph.D. dissertation York (1997), proposed to use center-of-mass velocities.

8.1 Contacts in the ULMPM 229

which is the velocity obtained from the contribution of the particles of the two bodies.
One can refer to this velocity as the system velocity field. The key to the algorithm
is not to consider pairwise interactions of bodies, but rather use a common frame
(global quantities) so that contact of all bodies can be achieved at once. In Eq. (8.2),
n(k)
I is the normal vector of body k at node I . This is a crucial quantity in contact

calculations and will be discussed in Sect. 8.1.4.
If Eq. (8.2) determines that the two bodies are getting closer to each other, the

velocities ṽt+Δt,(k)
I need to be corrected to get the final one vt+Δt,(k)

I . Otherwise they
are kept unchanged. How to correct the grid velocities depends on the contact model
(to be discussed in Sect. 8.1.1 for the case of non-slip contact and in Sect. 8.1.2 for
the case of Coulomb frictional contact). Afterwards, the particle velocity, position
and stresses are updated using the following equations

at+Δt,(k)
I = vt+Δt,(k)

I − vt,(k)I

Δt

xt+Δt,(k)
p = xt,(k)p + Δt

n(k)
p∑

p=1

φI (xtp)v
t+Δt,(k)
I

vt+Δt,(k)
p = vt,(k)p + Δt

n(k)
p∑

p=1

φI (xtp)a
t,(k)
I

(8.4)

where the first equation is to compute the corrected accelerations (only needed for
contact nodes). Note that the stress update was skipped as it is standard and that the
above discussion corresponds to the USL formulation.

After the frictionless and frictional contactmodels have been presented, the overall
algorithm of the MPM contact will be presented in Sect. 8.1.5 for implementation.
Thismodel for contacts between deformable solids is simplified to the case of contact
between a deformable solid and a rigid one in Sect. 8.1.6. Then, we provide a Matlab
implementation of these contact algorithms in Sect. 8.1.7. Finally, we discuss the
differences of MPM contact with other contact models in Sect. 8.1.8.

8.1.1 Contact Without Friction

The contact-release algorithm applied for a contact node I is quite simple. If contact
is occurring, the nodal velocity is corrected so that the normal component of the
body velocity is set equal to the normal component of the center-of-mass velocity.
Otherwise, the two bodies move in their own velocities. Mathematically, one writes

vt+Δt,(k)
I =

⎧
⎨

⎩
ṽt+Δt,(k)
I −

[(
ṽt+Δt,(k)
I − vcmI

)
· n(k)

I

]
n(k)
I contact

ṽt+Δt,(k)
I release

(8.5)

230 8 Contact and Fracture

If there is no friction between the bodies, then the above adjustment of the normal
component of the body velocity, Eq. (8.5), is all that is required for contact treatment.
The tangential component of the body velocity is unconstrained.

Remark 41 The fact that the normal component of the body velocity is equal to the
normal component of the center-of-mass velocity can be proved as:

vt+Δt,(k)
I · n(k)

I = ṽt+Δt,(k)
I · n(k)

I −
{[(

ṽt+Δt,(k)
I − vcmI

)
· n(k)

I

]
n(k)
I

}
· n(k)

I

= ṽt+Δt,(k)
I · n(k)

I −
(
ṽt+Δt,(k)
I − vcmI

)
· n(k)

I

= ṽt+Δt,(k)
I · n(k)

I − ṽt+Δt,(k)
I · n(k)

I + vcmI · n(k)
I = vcmI · n(k)

I

The fact that the tangential component of the corrected entity velocity is the same as
the tangential component before the correction can be proved as:

vt+Δt,(k)
I − [vt+Δt,(k)

I · n(k)
I]n(k)

I = ṽt+Δt,(k)
I −

[(
ṽt+Δt,(k)
I − vcmI

)
· n(k)

I

]
n(k)
I − (vcmI · n(k)

I)n(k)
I

= ṽt+Δt,(k)
I − (ṽt+Δt,(k)

I · n(k)
I)n(k)

I

8.1.2 Contact with Coulomb Friction

In the case of frictional sliding, one needs to modify the tangential component of
the grid velocity. To apply Coulomb friction, first calculate the force necessary to
cause the bodies to stick completely. This force can be determined from the rela-

tive tangential velocity:
(
ṽt+Δt,(k)
I − vcmI

)
−

[(
ṽt+Δt,(k)
I − vcmI

)
· n(k)

I

]
n(k)
I = n(k)

I ×
[(

ṽt+Δt,(k)
I − vcmI

)
× n(k)

I

]
. This allows us to compute the stick force and then the

Coulomb friction force. From that, the corrected velocity field is given by Barden-
hagen et al. (2001) (see Sect. 8.1.3 for detail)

vt+Δt,(k)
I = ṽt+Δt,(k)

I −
[
Δv · n(k)

I

] (
n(k)
I + μ′n(k)

I × ω
)

(8.6)

where

Δv := ṽt+Δt,(k)
I − vcmI , ω =

[
Δv × n(k)

I

]

∣∣∣
∣∣∣Δv × n(k)

I

∣∣∣
∣∣∣
, μ′ = min

⎡

⎣μ,

∣∣∣
∣∣∣Δv × n(k)

I

∣∣∣
∣∣∣

Δv · n(k)
I

⎤

⎦

(8.7)

where the symbol ||•|| denotes the norm of a vector i.e., ||a|| =
√
a21 + a22 + a23 , and

a × b = ||a|| ||b|| sin θn is the cross product, θ is the angle between a and b in the

8.1 Contacts in the ULMPM 231

plane containing them, n is a unit vector perpendicular to the plane containing a and
b in the direction given by the right-hand rule.

For 2D problems, Eq. (8.6) is explicitly given as

[
v
t+Δt,(k)
x I

v
t+Δt,(k)
y I

]
=

[
ṽ
t+Δt,(k)
x I

ṽ
t+Δt,(k)
y I

]
− D

([
n(k)
x I

n(k)
y I

]
+ μ′

||C||

[
n(k)
y I (Δvxn

(k)
y I − Δvyn

(k)
x I)

−n(k)
x I (Δvxn

(k)
y I − Δvyn

(k)
x I)

])

(8.8)
with μ′ = min(μ, ||C|| /D), D = ΔvI · n(k)

I . This equation is obviously reduced to
Eq. (8.5) for a frictionless contact if μ = 0 and D > 0 since μ′ = 0.

8.1.3 Derivation

In order to apply the Coulomb friction one needs to compute the normal force cor-
responding to the corrected velocity in Eq. (8.5). This normal force is given by

fnormal,(k)
I = −m(k)

I

Δt

[(
ṽt+Δt,(k)
I − vcmI

)
· n(k)

I

]
n(k)
I (8.9)

where m(k)
I is the nodal mass associated with body k.

The relative tangential velocity is given by

(
ṽt+Δt,(k)
I − vcmI

)
−

[(
ṽt+Δt,(k)
I − vcmI

)
· n(k)

I

]
n(k)
I = n(k)

I ×
[(

ṽt+Δt,(k)
I − vcmI

)
× n(k)

I

]

(8.10)
where use was made of the relation a × (b × c) = (a · c)b − (a · b)c with a,b, c
being arbitrary vectors.

From Eq. (8.10) we can get the stick force f stick,(k)I as

f stick,(k)I = −m(k)
I

Δt
n(k)
I ×

[(
ṽt+Δt,(k)
I − vcmI

)
× n(k)

I

]
(8.11)

Next, we determine the friction force. This friction force equals the sticking force
if the magnitude of the sticking force is small. That is, friction just balances the
tangential force and prevents relative tangential motion, when the magnitude of the
tangential force is small. For larger tangential forces, the magnitude of the friction
force is proportional to the magnitude of the normal force. Limiting the frictional
force to have magnitude less than the sticking force allows tangential slip between
the contacting bodies since the applied frictional force is not sufficient to prevent
relative tangential motion. Therefore, the Coulomb friction force is written as

f fric,(k)I = f stick,(k)I∣∣∣
∣∣∣f stick,(k)I

∣∣∣
∣∣∣
min

(
μ

∣∣∣
∣∣∣fnorm,(k)

I

∣∣∣
∣∣∣ ,

∣∣∣
∣∣∣f stick,(k)I

∣∣∣
∣∣∣
)

(8.12)

232 8 Contact and Fracture

where μ denotes the coefficient of friction. Next, we compute the different terms in
this expression.

Using Eq. (8.11) one can write

f stick,(k)I∣∣∣
∣∣∣f stick,(k)I

∣∣∣
∣∣∣

= −
n(k)
I ×

[(
ṽt+Δt,(k)
I − vcmI

)
× n(k)

I

]

∣∣∣
∣∣∣
(
ṽt+Δt,(k)
I − vcmI

)
× n(k)

I

∣∣∣
∣∣∣

(8.13)

And it can be shown

min
(
μ

∣∣∣
∣∣∣fnorm,(k)
I

∣∣∣
∣∣∣ ,

∣∣∣
∣∣∣fstick,(k)I

∣∣∣
∣∣∣
)

= mk
I

Δt

(
μ

(
ṽt+Δt,(k)
I − vcmI

)
· n(k)

I ,

∣∣∣
∣∣∣n(k)

I ×
[(

ṽt+Δt,(k)
I − vcmI

)
× n(k)

I

]∣∣∣
∣∣∣
)

= mk
I

Δt

(
μ

(
ṽt+Δt,(k)
I − vcmI

)
· n(k)

I ,

∣∣∣
∣∣∣
(
ṽt+Δt,(k)
I − vcmI

)
× n(k)

I

∣∣∣
∣∣∣
)

= mk
I

Δt

⎛

⎝μ,

∣∣∣
∣∣∣
(
ṽt+Δt,(k)
I − vcmI

)
× n(k)

I

∣∣∣
∣∣∣

(
ṽt+Δt,(k)
I − vcmI

)
· n(k)

I

⎞

⎠
(
ṽt+Δt,(k)
I − vcmI

)
· n(k)

I

(8.14)
where use was made of Eqs. (8.9) and (8.11) and the fact that (ṽt+Δt,(k)

I − vcmI) ·
n(k)
I > 0 (as contact is happening).
Upon substitution of Eqs. (8.13) and (8.14) into Eq. (8.12), one obtains

f fric,(k)I = −mk
I

Δt

n(k)
I ×

[(
ṽt+Δt,(k)
I − vcmI

)
× n(k)

I

]

∣∣∣
∣∣∣
(
ṽt+Δt,(k)
I − vcmI

)
× n(k)

I

∣∣∣
∣∣∣

μ′
[(

ṽt+Δt,(k)
I − vcmI

)
· n(k)

I

]

= −mk
I

Δt
μ′

[(
ṽt+Δt,(k)
I − vcmI

)
· n(k)

I

] (
n(k)
I × ω

)

(8.15)
where μ′ is given by

μ′ = min

⎡

⎣μ,

∣∣∣
∣∣∣
[(

ṽt+Δt,(k)
I − vcmI

)
× n(k)

I

]∣∣∣
∣∣∣

[(
ṽt+Δt,(k)
I − vcmI

)
· n(k)

I

]

⎤

⎦ (8.16)

and the unit vector ω

ω =
[(

ṽt+Δt,(k)
I − vcmI

)
× n(k)

I

]

∣∣∣
∣∣∣
[(

ṽt+Δt,(k)
I − vcmI

)
× n(k)

I

]∣∣∣
∣∣∣

(8.17)

The correction term for the tangential velocity is determined from the friction
force given in Eq. (8.15). It is given by

8.1 Contacts in the ULMPM 233

[(
ṽt+Δt,(k)
I − vcmI

)
· n(k)

I

]
μ′n(k)

I × ω (8.18)

Combining this term and Eq. (8.5) the final corrected velocity can bewritten as where
both normal and tangential components of the body velocity was corrected

vt+Δt,(k)
I = ṽt+Δt,(k)

I −
[(

ṽt+Δt,(k)
I − vcmI

)
· n(k)

I

] (
n(k)
I + μ′n(k)

I × ω
)

(8.19)

8.1.4 Calculation of Normal Vector

Determining the normal vector at grid nodes for each body n(k)
I is necessary to

complete the contact algorithm. The way it is calculated has a crucial impact on the
accuracy of the results (Lemiale et al. 2010; Nairn 2007b).

The usual practice for finding the normal is to handle each body separately with
relation to the system velocities. Thus, the normal is found from the mass gradient
of the material under consideration. For each entity, the particle mass is interpolated
to the element centers, xc and divided by the element volume Ve, to obtain a density
ρc. The gradient of ρc evaluated at the grid nodes provides the normal direction at
the surface of each body (Sulsky and Brackbill 1991; York 1997; Bardenhagen et al.
2000).

The cell-centered density is defined by

ρc = 1

Ve

np∑

p=1

mpS
2(xp − xc) (8.20)

where S2 are bi-quadratic B-spline functions. In two dimensions, they are defined by
S2 = Sx (x)Sy(y) where the one-dimensional quadratic B-spline function is given
by

Sx (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2h2x
x2 + 3

2hx
x + 9

8
, − 3

2hx
≤ x ≤ − 1

2hx

− 1

h2x
x2 + 3

4
, − 1

2h
≤ x ≤ 1

2hx

1

2h2x
x2 − 3

2hx
x + 9

8
,

1

2hx
≤ x ≤ 3

2hx

0, otherwise

(8.21)

where hx denotes the cell spacing in the x direction. Figure 8.2 depicts some quadratic
B-splines on a one-dimensional mesh. As it can be seen, in 1D, each particle con-

234 8 Contact and Fracture

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

elementnodecell center particle

Fig. 8.2 Quadratic B-spline functions used in defining cell center density (de Vaucorbeil et al.
2020)

Fig. 8.3 Computation of
grid normal using Eq. (8.22)

cell center

tributes to three cells–the one it which it is located and the two neighboring cells. In
2D and 3D, each particle contributes to 9 and 27 cells, respectively.

The grid normal vector is then given by

nI =
∑

c

∇φI (xc)ρc, nI = nI

||nI || (8.22)

where ∇φI denotes the gradient of the MPMweighting functions. Note that the sum
is performed on the cells that have the node under consideration in their connectiv-
ity, cf. Fig. 8.3. This way of computing the normals is similar to SPH (Randles and
Libersky 1996).

Example on calculation of grid normals. Let us consider a circular disk which is
represented by particles and a background grid. We are going to use Eqs. (8.20) and

8.1 Contacts in the ULMPM 235

(a) Normals of a circle (b) Violation of collinearity
of n

Fig. 8.4 An example of normal vectors (red lines) defined at boundary nodes for a circular disk
(a). The disk is represented by unconnected points or particles (black dots). Cyan squares are the
boundary elements which are defined as those cut by the circle. Also shown are unneeded grid
normals. Violation of collinearity of normal vectors in the MPM (b)

(8.22) to compute the normal vectors at boundary grid nodes. First, the density at
the cell centers are computed using Eq. (8.20). Next, we identify boundary elements
which are those cut by the circle and are not empty. Finally,we loop over the boundary
elements and their nodes and use Eq. (8.22) to compute the grid normals. Figure 8.4
shows the result. Themost important result is that the normal vectors are not collinear
which leads to the non-conversation of momentum (Bardenhagen et al. 2001). This
occurred because contacts are not handled at the true contact points but rather at the
grid nodes which do not locate on either body. In the literature some tricks have been
proposed; for example one trick is to use the average of the two normals, the other
is to use the normal of the body which is more rigid. In Fig. 8.8 we demonstrate the
importance of having good normals for modeling contacts.

Remark 42 Recent works adopts a simpler method to compute the normals (Lemi-
ale et al. 2010; Huang et al. 2011; Homel and Herbold 2017). In this method, the
normals are simply calculated from the gradient of the particle mass:

nI =
∑

p

∇φI (xp)mp, nI = nI

||nI || (8.23)

There is no need to define the cell-centered density. We have tested both ways (Eqs.
(8.22) and (8.23)) and found that they provide identical normals.

8.1.5 Algorithm

The previously presented contact algorithm can be incorporated into the standard
MPM algorithm quite straightforwardly. Algorithm 13 is the algorithm for non-
friction contact described in Sect. 8.1.1. One just need to modify line 21 for Coulomb

236 8 Contact and Fracture

friction. Even though the USF is shown, modification for USL is easy. One mod-
ification to the standard MPM code is that each grid node now contains the body
velocity, mass and the system mass and velocity.

Algorithm 13 Solution procedure of an explicit contact MPM (USF).
1: Solve momentum equations for body b
2: Mapping from particles to nodes (P2G)
3: Compute nodal mass mt,(b)

I = ∑
p φI (xtp)mp

4: Compute nodal momentum (mv)t,(b)I = ∑
p φI (xtp)(mv)tp

5: Compute body nodal velocities vt,(b)I = (mv)t,bI /mt,(b)
I

6: Compute gradient velocity Lt
p = ∑

I ∇φI (xp)v
t,(b)
I

7: Compute gradient deformation tensor Ft
p = (I + Lt

pΔt)Ft
p

8: Update volume V t
p = det Ft

pV
0
p

9: Update stresses σ t+Δt
p = σ t

p + Δσ p

10: Compute external force fext,t,(b)I , internal force f int,t,(b)I = −∑n p
p=1 V

t
pσ

t+Δt
p ∇φI (xtp)

11: Compute nodal force f t,(b)I = fext,t,(b)I + f int,t,(b)I
12: end
13: Update the body momenta (mv)t+Δt,(b)

I = (mv)t,(b)I + f t,(b)I Δt

14: Update the system momenta (mv)t+Δt
I = (mv)t+Δt

I + (mv)t+Δt,(b)
I

15: Update the system mass mt
I = mt

I + mt,(b)
I

16: end
17: Correct velocity for contact nodes
18: for contact node I of body b do
19: Compute normal to b, n(b)

I

20: Retrieve center of mass velocity vcmI = (mv)t+Δt
I /mt

I

21: Check contact or release α =
(
vt+Δt,(b)
I − vcmI

)
· n(b)

I

22: If α ≥ 0: vt+Δt,(b)
I = vt+Δt,(b)

I − αn(b)
I

23: If α < 0: keep vt+Δt,(b)
I

24: Compute nodal acceleration at+Δt,(b)
I = (1/Δt)(vt+Δt,(b)

I − vt,(b)I)

25: end for
26: end
27: Update particle positions and velocities (G2P)
28: Update particle velocities vt+Δt,(b)

p = vt,(b)p + Δt
∑

I φI (xtp)a
t+Δt,(b)
I

29: Update particle positions xt+Δt,(b)
p = xt,(b)p + Δt

∑
I φI (xtp)v

t+Δt,(b)
I

30: end

Remark 43 To the best of our knowledgeMUSL stress update has not yet been used
with frictional contacts. We anticipate that the reason for this is efficiency concerns.
In the MUSL, one would need to do the contact treatment twice.

8.1 Contacts in the ULMPM 237

8.1.6 Contact Between a Deformable Solid and a Rigid Wall

In this section, the general contact algorithm previously presented for deformable
solids is specialized to the case of contact between a solid and a rigid body. Rigid
bodies can be stationary such as rigid walls or moving rigid tools such as indenters
in machining processes. Some examples are shown in Fig. 8.5. These rigid bodies
are discretized by the so-called rigid particles, cf. Fig. 8.6.

Let us denote the velocity of a rigid body by vr, which is apparently zero for
rigid walls and vr(t) for moving bodies. Since a rigid body has an infinite mass,
the center-of-mass velocity defined in (8.3) is actually vr(t). Therefore, the contact
algorithm previously presented also applies with the following minor modifications:

• in the P2G step, for rigid bodies, one just computes the normal vectors (i.e., no
mass, momentum, forces projection);

• the center-of-mass velocity is the velocity of the rigid body;
• in the step of velocity correction, skip rigid bodies;
• update the position of moving rigid bodies.

8.1.7 Matlab Implementation

Herein, we present a simple, easy to understand implementation of the previously
presented MPM contact formulation. The implementation is general as it can handle

(a) (b)

Fig. 8.5 Contact between a deformable body and rigid walls: (a) moving ball impacting on a rigid
wall, (b) silo discharging problem and (c) metal cutting

Fig. 8.6 Rigid wall is
represented by rigid particles

rigid particles contact nodes
rigid wall

rigid wall

238 8 Contact and Fracture

Fig. 8.7 Data structure of a
multiple body MPM: each
body contains (i) the
particles, (ii) the elements
the body occupy and (iii) the
indices of the particles each
element contain. Note that
the data structure evolves in
time as the body moves

body particles

elements of body

contacts of N bodies but at any grid node, it only allows contact of two bodies. Fur-
thermore, frictional self-contacts are not coded. No-slip self contacts are, certainly,
included by the built-in contact of the MPM.

Data structures. For multiple bodies simulations it is more convenient to have a
proper data structure for the bodies, the particles, the nodes and the cells. Figure 8.7
shows the data structures to be used. Each body contains (i) the particles making
up the body (actually the particle information such as position, mass, stress etc.),
(ii) the elements (cells) which contain particles of the body under consideration,
(iii) the indices of particles in each element and (iv) the indices of the nodes of
the cells. Listing 8.1 gives an implementation to create these data structures for an
example of two bodies. Listing 8.2 is the code snippet used to build the elements
and nodes of all the bodies in the system for 2D (extension of the code given in
Listing 6.1 to multiple bodies). This is called at the beginning of the simulation and
at the end of every time steps. The grid data structure is created using Listing 8.3.
Arrays nmass and nmomentum store the grid mass and momentum for a body.
They are overwritten when the code iterates to the next body. Arrays nmassS and
nmomentumS store the grid mass and momentum for the system. They store the
accumulation of arrays nmass and nmomentum for all bodies. Array nvelo stores
the updated (t + Δt) grid velocities for all bodies and the system velocity–the first
two columns are the grid velocities of body 1 and so on. Array nvelo0 stores the
previous (t) grid velocities for all bodies. Array nacce stores the grid accelerations
for all bodies–the first two columns are the grid accelerations of body 1 and so on.

8.1 Contacts in the ULMPM 239

Listing 8.1 Matlab code to build the body data structure.

1 %volume, mass, coord have been computed
2 body1.volume = volume; % volume
3 body1.volume0 = volume; %pCount: no of particles per body
4 body1.mass = mass; %mass
5 body1.coord = coord; % position
6 body1.deform = repmat([1 0 0 1] ,pCount,1); % gradient defor. F
7 body1.stress = zeros(pCount,3); % stress
8 body1.strain = zeros(pCount,3); % strain
9 body1.velo = ones(pCount,2)∗v; % velocity

10 % the same is done for particles of body2
11 % store them into bodies
12 bodies = cell(2,1);
13 bodies{1} = body1;
14 bodies{2} = body2;

Listing 8.2 Matlab code to generate element/particle lists for each body.

1 for ib=1:length(bodies)
2 body = bodies{ ib } ;
3 elems = ones(length(body.volume) ,1) ;
4 % for each particle of body " ib " , find element contains i t
5 for ip=1:length(body.volume)
6 x = body.coord(ip ,1) ; y = body.coord(ip ,2) ;
7 e = floor (x / deltax) + 1 + numx2∗floor (y / deltay) ;
8 elems(ip) = e;
9 end

10 bodies{ ib } .elements = unique(elems) ;
11 % for each element, find particles i t contains
12 mpoints = cell (elemCount,1) ;
13 for ie=1:elemCount
14 id = find (elems==ie) ;
15 mpoints{ ie}=id ;
16 end
17 bodies{ ib } .mpoints = mpoints ;
18 end

Listing 8.3 Matlab code to build grid data structures

1 nmassS = zeros(nodeCount,1) ; % nodal mass vector of the system
2 nmomentumS= zeros(nodeCount,2) ; % nodal momentum vector of the system
3 nmass = zeros(nodeCount,1) ; % nodal mass vector of each body
4 nmomentum = zeros(nodeCount,2) ; % nodal momentum vector of each body
5 niforce = zeros(nodeCount,2) ; % nodal internal force of each body
6 neforce = zeros(nodeCount,2) ; % nodal external force of each body
7 % nodal velocit ies (body1,body2, . . . , center of mass)
8 nvelo = zeros(nodeCount,2∗(bodyCount+1));
9 nvelo0 = nvelo ;

10 nacce = zeros(nodeCount,2∗bodyCount) ;

240 8 Contact and Fracture

Solution. Listing 8.4 gives the code used to compute ṽt+Δt,(k)
I for all bodies i.e.,

body velocities without contact. Detection of contact nodes and the correction of its
velocities are next performed using the code given in Listing 8.5. Finally particle
update is achieved using Listing 8.6. Note that the code snippets are not complete
in the sense that some parts irrelevant to contact (identical to a standard MPM) are
skipped for brevity. Furthermore, the presentation is for the USL formulation. Again
some C++ operators such as += and –= are utilized to gain spaces: In C++, a += b
means a = a + b.

Listing 8.4 Matlab code for updating momentum for all bodies without contact

1 nvelo (:) = 0; nmassS(:) = 0; nmomentumS(:) = 0;
2 for ib=1:bodyCount %loop over bodies (update nodal momenta w/o contact)
3 %% reset grid data (body contribution)
4 nmass(:) = 0; nmomentum(:) = 0;
5 niforce (:) = 0; neforce (:) = 0;
6 body = bodies{ ib } ; elems = body.elements; mpoints = body.mpoints ;
7 for ie=1:length(elems) % loop over computational cells or elements
8 e = elems(ie) ;
9 esctr = element(e , :) ; % element connectivity

10 enode = node(esctr , :) ; % element node coords
11 mpts = mpoints{e} ; % particles inside element e
12 for p=1:length(mpts) % loop over particles
13 pid = mpts(p) ;
14 xp = body.coord(pid , :) ; Mp=body.mass(pid) ; . . .
15 stress = bodies{ ib } . stress (pid , :) ;
16 for i =1:length(esctr) % loop over nodes of element " ie "
17 id = esctr (i) ;
18 dNIdx = dNdx(i ,1) ; dNIdy = dNdx(i ,2) ;
19 nmass(id) = nmass(id) + N(i)∗Mp;
20 nmomentum(id , :) = nmomentum(id , :) + N(i)∗Mp∗vp;
21 niforce (id ,1) −= Vp∗(stress(1)∗dNIdx + stress(3)∗dNIdy) ;
22 end
23 end
24 end
25 activeNodes = bodies{ ib } .nodes;
26 nvelo(activeNodes,2∗ ib−1) = nmomentum(activeNodes,1).∗massInv;
27 nvelo(activeNodes,2∗ ib) = nmomentum(activeNodes,2).∗massInv;
28 % update nodal momenta (for body ib)
29 % body velocity (v_I^{ t +\Delta t , (k) } and acceleration
30 nmomentum(activeNodes , :) += niforce (activeNodes, :)∗dtime;
31 massInv = 1./nmass(activeNodes) ;
32 nvelo(activeNodes,2∗ ib−1) = nmomentum(activeNodes,1).∗massInv;
33 nvelo(activeNodes,2∗ ib) = nmomentum(activeNodes,2).∗massInv;
34 nacce(activeNodes,2∗ ib−1) = niforce (activeNodes,1).∗massInv;
35 nacce(activeNodes,2∗ ib) = niforce (activeNodes,2).∗massInv;
36 % store system momentum and mass
37 nmomentumS(activeNodes , :) += nmomentum(activeNodes , :) ;
38 nmassS (activeNodes) += nmass(activeNodes) ;
39 end

8.1 Contacts in the ULMPM 241

Listing 8.5 Matlab code to detect contact nodes and correct velocities (frictionless contact).

1 %% detection of contact nodes
2 contactNodes = intersect (bodies{1}.nodes,bodies{2}.nodes) ;
3 i f ~isempty(contactNodes)
4 for ib=1:bodyCount
5 body = bodies{ ib } ;
6 nodes = body.nodes;
7 [cellDensity ,normals] = computeGridNormal(grid ,body) ;
8 bodies{ ib } .normals = normals;
9 end

10 end
11 %% correct contact node velocit ies
12 for ib=1:bodyCount
13 for in=1:length(contactNodes)
14 id = contactNodes(in) ;
15 velo1 = nvelo(id ,2∗ ib−1:2∗ib) ; % body velocity
16 velocm = nmomentumS(id , :) /nmassS(id) ; % system velocity
17 nI = bodies{ ib } .normals(id , :) ; nI = nI / norm(nI) ;
18 alpha = dot(velo1 − velocm, nI) ;
19 i f (alpha >= 0)
20 nvelo(id ,2∗ ib−1:2∗ib) = velo1 − alpha∗nI ;
21 nacce(id ,2∗ ib−1:2∗ib) = (1/dtime)∗(nvelo(id ,2∗ ib−1:2∗ib) − . . .
22 nvelo0(id ,2∗ ib−1:2∗ib)) ;
23 end
24 end
25 end

Listing 8.6 Matlab code to update particles.

1 for ib=1:bodyCount
2 body = bodies{ ib } ; elems = body.elements; mpoints = body.mpoints ;
3 % loop over computational cells or elements
4 for ie=1:length(elems)
5 e = elems(ie) ;
6 esctr = element(e , :) ; % element connectivity
7 enode = node(esctr , :) ; % element node coords
8 mpts = mpoints{e} ; % particles inside element e
9 % loop over particles

10 for p=1:length(mpts)
11 pid = mpts(p) ;
12 xp = body.coord(pid , :) ; . . .
13 Lp = zeros(2 ,2);
14 for i =1:length(esctr)
15 id = esctr (i) ;
16 vI = nvelo(id ,2∗ ib−1:2∗ib) ; % body corrected velocity
17 aI = nacce(id ,2∗ ib−1:2∗ib) ; % body corrected acceleration
18 vp = vp + dtime ∗ N(i)∗aI ;
19 xp = xp + dtime ∗ N(i)∗vI ;
20 Lp = Lp + vI ’∗dNdx(i , :) ;
21 end
22 bodies{ ib } . velo(pid , :) = vp;
23 bodies{ ib } . coord(pid , :)= xp;
24 % update stress last
25 end
26 end
27 end

242 8 Contact and Fracture

8.1.8 Differences of MPM Contacts with Other Contacts

Classically, contacts are treated directly by handling the contacts on the contact
surface i.e., the common surface of two contacting solids. As contacts are mostly
solved using finite elements, we are talking actually about contact between two
finite element meshes. It is where algorithms such as node-to-segment, segment-to-
segment etc. were developed, see Wriggers (2006) for a nice discussion. The most
time consuming step in these direct contact algorithms is the contact search where
one needs to find which segment is in contact with which node (in the context of
segment-to-node algorithm). We do not go into details on how contact is actually
treated such as penalty or Lagrangian multiplier or mortar method.

The expensive contact search can be avoided using indirect contact models. The
idea is to mesh the empty space between the solids. Oliver et al. (2009) presented a
contact domain method where the contact surface is regularized by a contact domain.
Wriggers et al. (2013), on the other hand, discretized the entire empty space with
finite elements (they called it a third medium) and contact is implicitly treated by the
deformation of this third medium. In computer graphics, a similar idea was pursued:
Müller et al. (2015) presented an air mesh method for contact.

8.1.9 Final Remarks

The MPM can handle contacts quite efficiently as there is no need to find the contact
surfaces and master/slave nodes commonly used in the FEM.We have just presented
the most basic algorithm. There are refinements such as how to improve the normal
vector calculation, see e.g. Lemiale et al. (2010); Nairn et al. (2018), and better
contact detection criteria, see Bardenhagen et al. (2001).

To demonstrate the important role of the normal vectors in contact calculations,
we consider the problem of a cylinder rolling down an inclined plane (Fig. 8.8).
In this case where one of two contacting bodies is more rigid than the other, the
best option is to use the normal vector of the rigid body (assume it is body (2)) i.e.,
n(1)
I = −n and n(2)

I = n, where n = (0, 1) for this particular rolling example.

8.2 Contacts in the TLMPM

With the removal of numerical fracture, TLMPM lost the inherent ability that the
MPM has to simulate no slip, no penetration contacts out-of-the-box. Indeed, in the
TLMPM, each solid has its own background grid which covers only the area where
the solid lies in the reference configuration (Fig. 8.9). As multiple solids do not share
a common grid, the algorithm is unable to identify when contacts occur.

8.2 Contacts in the TLMPM 243

Fig. 8.8 Vital role of
accurate normal vectors in
contact modelling: a cylinder
rolling down an inclined (θ)
rigid plane, see Sect. 8.4.4
for detail. Top: GPIC set up
and plot of the displacement.
Bottom: center-of-mass
position in time for θ = π/3
and friction coefficient
μ = 0.3. The result on the
left was obtained using the
normal vector of the disk and
the one on the right was
obtained using the normal
vector of the rigid plane

0 0.05 0.1 0.15 0.2 0.25
0.5

0.55

0.6

0.65

0.7

0.75

0.8

Time [s]

ce
nt

er
 o

f m
as

s
po

si
tio

n
[m

]

stick−analytical
stick−MPM
slip
slip

0 0.05 0.1 0.15 0.2 0.25
0.5

0.55

0.6

0.65

0.7

0.75

0.8

Time [s]

ce
nt

er
 o

f m
as

s
po

si
tio

n
[m

]

stick−analytical
stick−MPM
slip
slip

Fig. 8.9 Multiple grids in
the TLMPM: each solid is
associated with its own grid
(de Vaucorbeil et al. 2020)

The TLMPM is not the only particle based method that needs addition numerical
treatment to handle contact. This is also the case of Smooth Particle Hydrodynamics,
see for instance Campbell et al. (2000). Contact algorithms have long been available
for this method. The contact algorithm developed here is directly adapted from what
is done in SPH.

To overcome this limitation and following the pinball contact algorithm of
Belytschko and Neal (1991)—which was inspired by the discrete element method
de Vaucorbeil and Nguyen (2021b) performed contact detection at the particle level.
Each particle is assumed to be a sphere of radius Rp = 1/2V 1/3

P where Vp is the vol-
ume attached to particle p. Contact happens when penetration exists between two
particles p and q, i.e.,

244 8 Contact and Fracture

δ := Rp + Rq − ||xq − xp|| ≥ 0 (8.24)

where Rp and Rq are the radii of particles p and q, respectively.
Based on the non-penetration condition, we compute the contact forces with and

without friction (Sect. 8.2.1). The resulting algorithm is presented in Sect. 8.2.2.

8.2.1 Enforcing Non-penetration

By just applying a contact force, we are not checking that the non-penetration con-
dition of a normal contact is satisfied. Let’s consider the problem where particles p
and q from solids 1 and 2, respectively, enter in contact at step n (total time t). The
penetration is checked at the beginning of the step and reads:

δt = Rp + Rq − ||xtq − xtp|| (8.25)

The idea is to find the contact forces Fpq and Fqp applied by the particle q onto p,
and vice-versa (Fig. 8.10) such that if applied directly, the penetration at the end of
the time step δt+Δt is zero. The position and velocity of the particles would therefore
be:

xt+Δt
p = xtp + Δt2

Fpq

m p
(8.26)

xt+Δt
q = xtq + Δt2

Fqp

mq
(8.27)

Fig. 8.10 Contact forces
between two contacting
particles p and q,
respectively from solid 1 and
2, in the TLMPM
(de Vaucorbeil and Nguyen
2021b)

8.2 Contacts in the TLMPM 245

where mp and mq are the masses of the particles p and q, respectively and Δt is the
time step.

Upon substitution of Eqs. (8.26) and (8.27) into Eq. (8.25), and enforcing con-
servation of local linear momentum by using Fpq = −Fqp, we obtain the non-
penetration condition as

δt+Δt = Rp + Rq −
∥∥∥∥x

t
q − xtp − Δt2Fpq

m p + mq

mpmq

∥∥∥∥ = 0 (8.28)

of which the solution is:

Fpq = 1

Δt2
mpmq

mp + mq

(
1 − Rp + Rq

‖xtpq‖

)
xtpq (8.29)

Force given in Eq. (8.29) is the contact force for a contact without friction. The
effect of friction can be straightforwardly included by adding a tangential force such
that

Fpq = 1

Δt2
mpmq

mp + mq

(
1 − Rp + Rq

‖xtpq‖

)
[
xtpq + μ‖xtpq‖mt

pq

]
(8.30)

whereμ is the friction coefficient,mt
pq = vt,Tpq /‖vt,Tpq ‖ is the directionof the difference

of velocity between particles p and q in the plane normal to xtpq , and with

vt,Tpq = vtpq − (xtpq · vtpq)xtpq
‖xtpq‖2

(8.31)

where vtpq = vtq − vtp.

8.2.2 Complete Algorithm

Check for contacts occurs at the beginning of each time step. Once contact occurs
between particles p and q, i.e., δt ≥ 0, a force Fpq is applied at the center of particle
p and the opposite force Fqp = −Fpq is applied at the center of particle q. These
forces are added to the external forces of both solids:

fext,tI =
∑

p

φI (xp)mpb(xp) + 1

mI

∑

p

∑

q

φI (xp)mpFpq (8.32)

fext,tJ =
∑

q

φJ (xq)mqb(xq) + 1

mJ

∑

q

∑

p

φJ (xq)mqFqp (8.33)

246 8 Contact and Fracture

where I and J correspond to nodes of solid 1 and 2, respectively. The rest of the
algorithm is identical to that of the TLMPM. Therefore the complete algorithm of
TLMPM with contact is as given in Algorithm 14.

Remark 44 From the double sum in Eqs. (8.32) and (8.33), one can see that the
computation time of TLMPM with contacts scales asO(n2). This is the main disad-
vantages of this algorithm compared to the built-in no-splip no-penetration contact
in the ULMPM. Computation time could be reduced by performing the double sums
in Eqs. (8.32) and (8.33) only over the surface particles. However, this would require
to detect the surface particles, which is not the subject of this paper.

Algorithm 14 Solution procedure of explicit TLMPM (MUSL) with contacts.
1: Initialization
2: Set up particle data: Xp, v0p, σ

0
p,F

0
p, V

0
p ,mp, ρ

0
p

3: Compute nodal mass mI = ∑
p φI (Xp)mp

4: Compute and store weighting and gradient φI (Xp) and ∇0φI (Xp)

5: end
6: while t < t f do
7: Reset grid quantities: (mv)tI = 0, fext,tI = 0, f int,tI = 0
8: Compute contact forces fc,tp
9: Mapping from particles to nodes (P2G)
10: Compute nodal momentum (mv)tI = ∑

p φI (Xp)(mv)tp
11: Compute external force fext,tI = ∑

p φI (Xp)
(
mpbtp + fc,tp

)

12: Compute internal force f int,tI = −∑n p
p=1 V

0
p P

t
p∇0φI (Xp)

13: Compute nodal force f tI = fext,tI + f int,tI
14: end
15: Update the momenta (mṽ)t+Δt

I = (mv)tI + f tIΔt

16: Fix Dirichlet nodes I e.g. (mṽ)t+Δt
I = 0 and (mv)tI = 0

17: Update particle velocities and grid velocities (double mapping)
18: Get nodal velocities ṽt+Δt

I = (mṽ)t+Δt
I /mt

I

19: Update particle velocities vt+Δt
p = α

(
vtp + ∑

I φI (Xp)
[
ṽt+Δt
I − vtI

]) + (1 −
α)

∑
I φI (Xp)ṽ

t+Δt
I

20: Update grid velocities (mvI)t+Δt = ∑
p φI (Xp)(mv)t+Δt

p

21: Fix Dirichlet nodes (mv)t+Δt
I = 0

22: end
23: Update particle (G2P)
24: Compute Ḟt+Δt

p = ∑
I ∇0φI (Xp)v

t+Δt
I

25: Updated gradient deformation tensor Ft+Δt
p = Ft

p + ΔtḞt+Δt
p

26: Velocity gradient Lt+Δt
p = Ḟt+Δt

p (Ft+Δt
p)−1

27: Update stresses σ t+Δt
p = σ t

p + Δσ p

28: Covert stresses to 1st PK stresses Pt+Δt
p = Jσ t+Δt

p (Ft+Δt
p)−T

29: Update particle positions xt+Δt
p = xtp + Δt

∑
I φI (Xp)v

t+Δt
I

30: end
31: end while

8.3 Contact in GPIC 247

8.3 Contact in GPIC

As GPIC offers some advantages (smooth stress field, material interfaces and easy
boundary condition handling) compared with other MPM variants, we present a
frictional contact algorithm for GPIC. The contact treatment follows the predictor-
corrector formulation presented in Sect. 8.1. For computer implementation, we
present the full algorithm in Algorithm 15. The presentation was only for frictionless
contact.

Algorithm 15 Solution procedure of an explicit contact GPIC (TL).
1: Solve momentum equations for body b
2: Mapping from particles to nodes (M2G)
3: Compute nodal momentum (mv)t,(b)I = ∑

J φI (xtJ)(mv)tJ
4: Compute external force fext,t,(b)I = ∑

J φI (xtJ)f
ext,t
J

5: Compute internal force f int,t,(b)I = −∑
J φI (xtJ)f

int,t
J

6: Compute nodal force f t,(b)I = fext,t,(b)I + f int,t,(b)I

7: Update the body momenta (mv)t+Δt,(b)
I = (mv)t,(b)I + f t,(b)I Δt

8: Update the system momenta (mv)t+Δt
I = (mv)t+Δt

I + (mv)t+Δt,b
I

9: Update the system mass mt
I = mt

I + mt,(b)
I

10: end
11: end
12: Correct velocity for contact nodes
13: for contact node I of body b do
14: Compute normal to b, n(b)

I

15: Retrieve center of mass velocity vcmI = (mv)t+Δt
I /mt

I

16: Check contact or release α =
(
vt+Δt,(b)
I − vcmI

)
· n(b)

I

17: If α ≥ 0: vt+Δt,(b)
I = vt+Δt,(b)

I −
[
(vt+Δt,(b)

I − vcmI) · n(b)
I

]
n(b)
I

18: If α < 0: keep vt+Δt,(b)
I

19: end for
20: end
21: Update particle velocity, position & displacement for body b (G2M)
22: Get nodal velocities vt+Δt,(b)

I = (mv)t+Δt,(b)
I /mt

I

23: Update mesh velocities vt+Δt,(b)
J = vt,(b)J + ∑

I φI (xtJ)
[
vt+Δt,(b)
I − vt,(b)I

]

24: Update mesh positions xt+Δt,(b)
J = xt,(b)J + Δt

∑
I φI (xtJ)v

t+Δt,(b)
I

25: Update mesh incremental displacement dut+Δt,(b)
J = Δt

∑
I φI (xtJ)v

t+Δt,(b)
I

26: Fix Dirichlet nodes K : vt+Δt,(b)
K = 0,dut+Δt

K = 0, xt+Δt
K = XK

27: end
28: Update stress and forces on the FE mesh for body b (UMF)
29: Update Cauchy stress at element center σ (ξ0)

30: Convert Cauchy stress to 1st PK stress P(ξ0) = Jσ (ξ0)(F(ξ0))
−T

31: Compute internal force f int,tJ = P(ξ0)∇0φ
FE
J (ξ0)w(ξ0)

32: Compute external force fext,tJ
33: end

248 8 Contact and Fracture

Fig. 8.11 Normal vectors in
GPIC

With GPIC it is more straightforward to get contact nodes. From the finite ele-
ment meshes, we can get surface nodes,2 and the Eulerian grid nodes to which these
surface nodes contribute are potential contact nodes. Actual contact nodes are then
those of these potential contact nodes that have contribution from more than one
bodies.

Normal vectors in GPIC. We compute the normals a bit differently than the MPM
because of the FE mesh. For each element on the surface of a solid, we compute the
normal to this element at its centroid, n0, by computing the two tangent vectors and
take the cross product of them (Fig. 8.11):

n0 = s × t, s =
∑

J=1

∂φFE
J

∂ξ
xJ , t =

∑

J=1

∂φFE
J

∂η
xJ (8.34)

We, then, interpolate these normals at the centroids to the Eulerian grid. Alternatively,
we can also compute the normals at the FE nodes. This is more involved as one needs
to find the unique normals at the nodes (each node has more than 1 normal). One
crucial issue here is the surface elements must be such oriented that the normals are
poining outward, see Fig. 8.12.

8.4 Contact Simulations

To demonstrate the performance of the MPM for contact simulations, we present the
following tests

• Test 1: collision of two compressible Neo-Hookean rings (Sect. 8.4.1)
• Test 2: high velocity impact of a steel disk to an alloy sample (Sect. 8.4.2)
• Test 3: contact of a rigid sphere with a half plane (Sect. 8.4.3)
• Test 4: cylinder rolling on an inclined plane (Sect. 8.4.4)
• Test 5: stress wave in a granular material (Sect. 8.4.5)

2 Which are simply the nodes of the elements locating on the surface.

8.4 Contact Simulations 249

Fig. 8.12 The mesh must be created such that the normals are pointed outward. In Gmsh—a
popular mesh generator—one can see the normals by going to Option/Mesh/Visibility/Normals and
tangents. The normal direction can be changed by manually adding a minus sign to the surface
definition in the geometry file

• Test 6: 3D version of Test 2 (Sect. 8.4.6)
• Test 7: scratch test (Sect. 8.4.7)

All these tests are popular problems in the MPM literature, except Test 7 which
simulates the scratching of metals; scratch test is a popular experiment to determine
the hardness of certain solid material. We will evaluate the performance of TLMPM,
ULMPM and GPIC. And for Test 7, a comparison with SPH is given.

8.4.1 Test 1: Collision of Two Compressible Neo-Hookean
Rings

This example problem involves a collision of two hollow elastic cylinders, under the
assumption of plane strain (Fig. 8.13). This example was used in Gray et al. (2001)
to show that SPH suffers from numerical fracture due to tensile instability. A similar
problem involving one ring was solved by Sulsky et al. (1995) using the standard
MPM i.e., ULMPM with linear weighting function. The setup used here and shown
in Fig. 8.13 was given in Huang et al. (2011). The material is a compressible Neo-
Hookean with bulk modulus K = 121.7 MPa, shear modulus G = 26.1 MPa and
density ρ = 1010 × 10−12 kg/mm3. The magnitude of the rings initial velocity is
v0 = 30 m/s.

The aim of this example are multi-fold: (1) to show that the ULMPM stress field
is noisy and the TLMPM can solve this stress noisy problem, and (2) to show that
better energy conservation is obtained using the TLMPM than the ULMPM and (3)
GPIC is the best in terms of energy conservation.

This problem is solved with both the ULMPM and the TLMPM using the hat
weighing function. For both simulations the cell size is 1.25 mm (that is the grid
consists of 160 × 120 cells. The rings are formed by inserting four particles per cell
at the location of the Gauss quadrature points. Though, only the particles lyingwithin

250 8 Contact and Fracture

Fig. 8.13 Impact of two elastic bodies: problem description. Dimensions are in millimeters
(de Vaucorbeil et al. 2020)

t = 0 ms t = 0.82 ms t = 1.57 ms

t = 2.36 ms t = 3.14 ms t = 3.97 ms

30 MPa.mm

0

σeq

Fig. 8.14 Snapshots of the impact of two compressible Neo-Hookean rings using the ULMPM
(hat functions) (de Vaucorbeil et al. 2020)

the boundaries of the rings are kept. The simulations are run until the time lapsed
reaches 5.5 ms, or when using the ULMPM, until the particles leave the simulation
domain.

A time-lapse of the ULMPM and TLMPM simulations are given in Figs. 8.14
and 8.15. There we observe that in the first half of the simulation (i.e., t < 2 ms), the
results are very similar. However, in the second half, when using the ULMPM, the
rings have difficulties to separate from each other (see Fig. 8.14). This is due to con-
tacts not being unilateral in the ULMPM. This can be fixed using the multi-material
contact algorithm of Bardenhagen et al. (2000). However, the here-proposed contact
algorithm for TLMPM is unilateral: when the penetration between two particles is
null or negative, no force is applied.

We present the geometries of the two rings as well as the different stress fields
obtained at t = 1.59 ms, i.e., during impact, by both ULMPM and TLMPM in
Fig. 8.16. The observation is two-fold: (a) a significant gap exists between the two
ringswhen using theULMPMand no gap is visible in theTLMPMresult (Fig. 8.16b),
(b) the TLMPM stress field is much smoother than that obtained with the ULMPM.

8.4 Contact Simulations 251

t = 0 ms t = 0.87 ms t = 1.59 ms

t = 2.33 ms t = 3.09 ms t = 3.97 ms

30 MPa.mm

0

σeq

Fig. 8.15 Snapshots of the impact of two compressible Neo-Hookean rings using the TLMPM (hat
functions) (de Vaucorbeil et al. 2020)

(a) ULMPM (b) TLMPM

30 MPa.mm

0

σeq

Fig. 8.16 Comparison of the stress field obtained at t = 1.59 ms of the impact of two compressible
Neo-Hookean rings using ULMPM and TLMPM with hat weighting functions (de Vaucorbeil and
Nguyen 2021b)

Of course, it is well known that the ULMPMwith hat functions present cell-crossing
instabilities which are the root cause of the noisy stress field seen in Fig. 8.16a
(Bardenhagen and Kober 2004). However, Steffen et al. (2008a) showed that using
cubic B-splines instead can reduce these instabilities. And indeed, when doing so,
the stress field obtained in this example is smoother as can be seen in Fig. 8.17.
But little improvement can be seen for the results when using TLMPM with cubic
B-splines. The use of cubic B-splines do not improve the contact gap in ULMPM,
and its use does not create a gap when using the TLMPM. This shows that in the
TLMPM, unlike in the MPM, the separation of two solids in contact is independent
of the type of the weighting function used.

Remark 45 Our discussion on the contact gap present in the MPM was applied
only for the built-in no-slip no-penetration contact. It is certain that this gap can be
removed when extra contact algorithm is added to the MPM, see e.g. Huang et al.
(2011).

252 8 Contact and Fracture

(a) ULMPM (b) TLMPM

22 MPa.mm

0

σeq

Fig. 8.17 Comparison of the stress field obtained at t = 1.59 ms of the impact of two compress-
ible Neo-Hookean rings using TLMPM and ULMPM with cubic B-spline weighting functions
(de Vaucorbeil and Nguyen 2021b)

0 1 2 3 4 5

Time (ms)

0

500

1000

1500

2000

E
ne
rg
y
(J
)

Ek

Es

Etot

(a) ULMPM

0 1 2 3 4 5

Time (ms)

0

500

1000

1500

2000
E
ne
rg
y
(J
)

Ek

Es

Etot

(b) TLMPM

Fig. 8.18 Impact of two compressible Neo-Hookean rings: comparison of the evolution of the
kinetic, strain and total energies, respectively Ek , Es and Etot using a ULMPM and b TLMPM.
Both simulations use the linear (hat) weighing functions (de Vaucorbeil and Nguyen 2021b)

As the contact between these two rings is purely elastic, perfect energy conser-
vation is sought. Although the energy before impact is the same when using both
the ULMPM and TLMPM, a substantial loss of energy is observed when using
the ULMPM with the hat weighting functions (Fig. 8.18). In the same conditions,
the TLMPM exhibits much better energy conservation. Energy conservation can be
improved by using cubic B-splines with the ULMPM (see Fig. 8.19). However, this
increases the energy loss with the TLMPM. This is due to the interpolation of the
contact forces onto the background grid nodes. Indeed, when using B-splines, this
interpolation distributes these forces onto nodes that are further from the contact
surface than when using the hat functions. This shows that amongst the methods
presented here, for this example, TLMPM with hat weighting functions is the most
efficient.

Finally we solve this problem using GPIC (Fig. 8.20). In GPIC, the strain and
kinetic energy Es and Ek are computed as

8.4 Contact Simulations 253

0 1 2 3 4 5

Time (ms)

0

500

1000

1500

2000

E
ne
rg
y
(J
)

Ek

Es

Etot

(a) ULMPM

0 1 2 3 4 5

Time (ms)

0

500

1000

1500

2000

E
ne
rg
y
(J
)

Ek

Es

Etot

(b) TLMPM

Fig. 8.19 Impact of two compressible Neo-Hookean rings: comparison of the evolution of the
kinetic, strain and total energies, respectively Ek , Es and Etot using a ULMPM and b TLMPM.
Both simulations use the cubic B-splines weighting functions (de Vaucorbeil and Nguyen 2021b)

Fig. 8.20 Collision of two compressible rubber rings: GPIC set-up with four-node quadrilateral
elements for the rings. The mesh of the rings is created using Gmsh (Geuzaine and Remacle 2009a).
The dots are the nodes of the Eulerian grid (Nguyen et al. 2021)

Es =
∑

g=1

ugVg, Ek = 1

2

∑

J=1

vJ · vJm J (8.35)

where ug denotes the strain energy density of quadrature point g, ug = 1/2σ g::εg;
εg is the strain tensor; vJ and mJ denote the velocities and mass at node J of the
solid mesh.

Remarkably, GPIC performs better in terms of energy conservation than TLMP-
M/ULMPM (Fig. 8.21). The performance of GPIC is close to Abaqus. In GPIC,
thanks to the mesh only a coarse discretization of 6 368 four-node quadrilateral ele-
ments (or particles) were sufficient to accurately represent the curved boundaries.
Thus, GPIC is a very efficient MPM version.

254 8 Contact and Fracture

Time (ms)
0.0 1.0 2.0 3.0 4.0

E
ne

r
gy

(N
.m

m
)

2000

1500

1000

500

0

Ek
Es
Etot

(a) (b)

Fig. 8.21 Impact of two compressible Neo-Hookean rings: energy profiles of FEM (left) and GPIC
(right). GPIC: Eulerian grid of 80 × 40 cells and 6 368 four-node quadrilateral elements. Abaqus:
20 000 eight-node hexahedral elements with one point quadrature (we did a 3D analysis in Abaqus).
Note that the total energy in Abaqus consists of not only Es and Ek but also the hourglass energy
(Nguyen et al. 2021)

8.4.2 Test 2: High Velocity Impact of a Steel Disk Onto an
Aluminum Target

Thehighvelocity impact problemof a steel disk onto an aluminum target is interesting
as this problem involves non-elastic contacts. In this problem, presented in Fig. 8.22,
an AISI 52-100 chromium steel disk impacts an elastic-perfectly plastic target made
out of 6061-T6 aluminum under plane strain conditions. This problem, introduced
in Sulsky et al. (1995); Coetzee (2003), was inspired by the experiments carried out
by Trucano and Grady (1985). The steel disk is assumed to be linear elastic and the
aluminum target to be elastic-perfect plastic and obeying a vonMises yield criterion.
The boundary of the computational domain is fixed.

This test shows the capabilities of the TLMPM in the simulation of high velocity
impacts and large deformations. The simulation is run for 40µs, it uses hat weighting
functions and the results are compared with the same setup run with the ULMPM.

Fig. 8.22 Impact of a steel
disk into an aluminum target.
The disk has an initial
velocity of 1160 m/s and the
disk’s diameter is 9.53 mm.
Units are N, mm, and s

6061-T6 aluminium

8.4 Contact Simulations 255

t = 9.35μs t = 14.6μs t = 19.8μs

t = 27.4μs t = 32.4μs t = 39.7μs

300 MPa.mm

0

σeq

Fig. 8.23 Impact of a steel disk into an aluminum target: snapshots of the simulation performed
with TLMPM using linear shape functions and two particles per cell. The cell size is 1 mm for the
target and 0.953 mm for the disk (de Vaucorbeil and Nguyen 2021b)

The time-lapse of the simulations are shown in Figs. 8.23 and 8.24, when per-
formed with TLMPM and ULMPM, respectively. In both cases, the simulation is
stable. However, the stress field obtained by the TLMPM is much smoother than that
obtained with the ULMPM.Moreover, the deformed surface of the aluminium target
also looks smoother when TLMPM is used.

The disk penetration as a function of time is given in Fig. 8.25 and shows that
results obtained with both methods are in good agreement with each other. The lack
of experimental data for the example does not allow to check which solution is the
more realistic, though.

8.4.3 Test 3: Contact of a Rigid Sphere with a Half Plane

As the expression of the force needed to cause a penetration δs of a rigid sphere into
an elastic half plane is known analytically, this problem is used to assess how well
the contact forces are predicted using the TLMPM. The problem setup is as shown
in Fig. 8.26. The diameter of the substrate is much larger than that of the contact
surface and its height much larger than the penetration of the sphere, thus boundary
effects are negligible.

256 8 Contact and Fracture

t = 9.45μs t = 14.3μs t = 19.4μs

t = 27.3μs t = 32.3μs t = 39.7μs

300 MPa.mm

0

σeq

Fig. 8.24 Impact of a steel disk into an aluminum target: snapshots of the simulation performed
with ULMPM using linear shape functions and two particles per cell. The cell size is 1 mm in the
whole domain (de Vaucorbeil and Nguyen 2021b)

Fig. 8.25 Impact of a steel
disk into an aluminum target:
comparison of the disk
penetration as a function of
time as predicted by
TLMPM and ULMPM
(de Vaucorbeil and Nguyen
2021b)

0 5 10 15 20 25 30 35 40

Time (μs)

0

2

4

6

8

10

12

14

D
is
k
pe

ne
tr
at
io
n
(m

m
)

ULMPM
TLMPM

Fig. 8.26 Contact of a rigid
sphere with a half plane,
problem setup (de Vaucorbeil
and Nguyen 2021b)

8.4 Contact Simulations 257

The force applied on the sphere to obtain a penetration δs into the half plane is
given by the Hertz theory as

F = 4

3

E

1 − ν2

√
d

2
δ

3
2
s (8.36)

where E is the half plane’s Young’s modulus, ν its Poisson’s ratio, and d the sphere’s
diameter.

As the problem is axisymmetric around the vertical axis passing through the center
of the sphere, an axisymmetrical model is used here to reduce simulation time as
we will do a mesh convergence analysis. The sphere being rigid, it is modeled as a
spherical shell which thickness is a few cell sizes. The TLMPM with hat weighing
functions and one particle per cell is used, and its convergence towards the analytical
solution given in Eq. (8.36) is studied as a function of the background grid cell size.
The error made in the prediction of the applied force is calculated as

e = max
δts

(|Fsim(δts) − Fth(δ
t
s)|)/Fth(δ

t
s,m) (8.37)

where δts,m is the penetration at which |Fsim(δts) − Fth(δ
t
s)| ismaximizedwith Fsim(δts)

and Fth(δ
t
s) are the predicted and theoretical applied force for a given depth δts . The

same simulations are performedwith theULMPMusing both hat and cubicB-splines.
The force-penetration profiles obtained using the TLMPM are smooth as one can

see in Fig. 8.27. Although the applied force is always over-predicted, it converges
towards the analytical solution as the background grid cell size decreases. The force-
penetration profiles obtained using the ULMPM with hat weighting functions, on
the other hand, presents high levels of noise (see Fig. 8.28), which are believed to
come from cell-crossing instabilities. This generates a much higher error than the
TLMPM, though convergences can still be seen.

0 2 4 6 8 10 12

Penetration (μm)

0

20

40

60

80

100

120

Fo
rc
e
(N

)

0.01
0.005
0.0025
0.0017
0.00125
Analytical

10−3 10−2

Cell size (mm)

2 × 10−1

3 × 10−1

4 × 10−1

E
rr
or

Fig. 8.27 Effect of the cell size on the applied force penetration profile of the sphere into the half
plane when using TLMPM with linear shape functions and one particle per cell (de Vaucorbeil and
Nguyen 2021b)

258 8 Contact and Fracture

0 2 4 6 8 10 12

Penetration (μm)

0

20

40

60

80

100

120

Fo
rc
e
(N

)

0.01
0.005
0.0025
0.0017
0.00125
Analytical

10−3 10−2

Cell size (mm)

100

2 × 100

E
rr
or

Fig. 8.28 Effect of the cell size on the force penetration profile of the sphere into the half planewhen
using ULMPM with linear shape functions and one particle per cell at the start of the simulation
(de Vaucorbeil and Nguyen 2021b)

ULMPM TLMPM
20 GPa

0

σeq

Fig. 8.29 Comparison of the equivalent stress field due to the contact between a rigid indenter and
an elastic half plane using ULMPM and TLMPM. These results were obtained using linear shape
functions and one particle per cell with a cell size of 0.0025 mm when the indentation force equals
120 N. One can clearly see that with ULMPM, the stress is not smooth (de Vaucorbeil and Nguyen
2021b)

Just like what was seen in the test cases 1 and 2 (Sects. 8.4.1 and 8.4.2), the
stress field obtained using the TLMPM is much smoother than that obtained with the
ULMPM (when using hat functions) as one can see in Fig. 8.29.

The noise observed in the force-penetration profiles obtained with ULMPM could
be significantly reduced by using cubic B-splines (Fig. 8.30). In this case, the applied
force is under-predicted, which is the opposite behavior from that seen when using
TLMPM. Even though the error monotonically decreases with the cell size, for
high cell size (larger than 2 × 10−3 mm), the error is larger than that given by the
TLMPM with hat weighting functions (see Fig. 8.31). This demonstrates that the
contact algorithm for the TLMPM with hat weighing functions performs well: low
error is made in the prediction of the applied forces. There is no need here to use
cubic B-splines as they increase the problem’s complexity.

8.4 Contact Simulations 259

0 2 4 6 8 10 12

Penetration (μm)

0

20

40

60

80

100

120

Fo
rc
e
(N

)

0.01
0.005
0.0025
0.0017
0.00125
Analytical

10−3 10−2

Cell size (mm)

2 × 10−1

3 × 10−1

4 × 10−1

6 × 10−1

E
rr
or

Fig. 8.30 Effect of the cell size on the force penetration profile of the sphere into the half plane
when using ULMPM with cubic B-splines shape functions and one particle per cell at the start of
the simulation (de Vaucorbeil and Nguyen 2021b)

Fig. 8.31 Comparison of the
error made by
ULMPM—using both linear
(blue curve) and cubic
B-splines (red curve)—and
TLMPM (green curve) onto
the prediction of the force
penetration of a sphere into a
half plane when using one
particle per cell
(de Vaucorbeil and Nguyen
2021b)

10−3 10−2

Cell size (mm)

10−1

100

E
rr
or

ULMPM - Linear
ULMPM - Cubic
TLMPM - Linear

8.4.4 Test 4: Cylinder Rolling on an Inclined Plane

To test the frictional contact algorithm, the problem of a cylinder rolling on an
inclined plane is considered (Fig. 8.32a), which is probably the simplest test for
frictional contact. This problem has been studied by many authors in the MPM
literature e.g. Bardenhagen et al. (2000, 2001); Huang et al. (2011). The plane is
inclined at an angle θ from the horizontal, while gravity points vertically downward.
Figure 8.32b shows the computational model in which the inclined plane is aligned
with the boundary of the computational mesh and gravity makes an angle θ to the
vertical.

A rigid disk on an inclined surface will roll, and stick or slip at the contact point
depending on the angle of inclination θ and the friction coefficient μ. For an initially
stationary, rigid disk, the x-component of the center-of-mass position xcm(t) is given
by Bardenhagen et al. (2000)

260 8 Contact and Fracture

(a) (b)

Fig. 8.32 Cylinder rolling on an inclined plane (de Vaucorbeil and Nguyen 2021b): a problem
description and b computational configuration. The radius of cylinder is R = 0.5 m, and the com-
putational domain is a rectangle of length 1.625m and a width of 1.250m. Themagnitude of gravity
g is taken to be 10 m/s2. The cylinder is considered elastic with a bulk modulus of 10 MPa, a shear
modulus of 2.5 MPa and a density of 3 g/cm3. The plane is modeled as a rigid material. Actually
there is no need to include the plane in the MPM simulation as the contact nodes are known prior
to simulations and this was also done in Bardenhagen et al. (2000); Coetzee (2003)

xcm(t) =
⎧
⎨

⎩

x0 + 0.5gt2(sin θ − μ cos θ) tan θ > 3.5μ (slip)

x0 + 1

3
gt2 sin θ tan θ ≤ 3.5μ (stick)

(8.38)

where x0 denotes x-component of the initial center-of-mass position.

Solving with the TLMPM. The inclined surface is modeled as an impenetrable half
domain (not discretized). Followingwhat has been done in Sect. 8.2.1, the penetration
is:

δt = Rp − dp (8.39)

where dp is the distance between the particle p and the rigid surface. Similarly to
Eq. (8.29), the force necessary to enforce δt = 0 is:

Fp = mp

Δt2
(
Rp − dt

p

)
nt = mp

Δt2
δtnt (8.40)

wherent is the normal to the surface at time step t .WithCoulomb friction, it becomes:

Fp = mp

Δt2
δt

[
nt − μ

(
vtp − vtp · nt

‖vtp‖

)]
(8.41)

where μ is the friction coefficient. Note that this formulation is equivalent to the
contact between a particle with an infinite radius and a normal particle p.

We adopt a plane strain 2Dmodelwith a uniform grid of equal spacing h = 25mm
in all directions and one material points per cell (resulting in 1 264 deformable
particles with 25 cells across the cylinder). The gravity is modeled as a body force
which is given by

b = [
g sin θ −g cos θ

]T
(8.42)

8.4 Contact Simulations 261

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
P
os
it
io
n
(m

)
TLMPM
Analytical

(a) μ = 0.3

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
os
it
io
n
(m

)

TLMPM
Analytical

(b) μ = 0.6

Fig. 8.33 Cylinder rolling on an inclined plane (de Vaucorbeil and Nguyen 2021b): comparison
of the position of the center of mass of the cylinder as predicted by the TLMPM and the theoretical
solution from Eq. (8.38)

Fig. 8.34 Cylinder rolling
on an inclined plane: GPIC
set-up: the cylinder is
meshed with 1 297 four-node
quadrilateral elements, the
rigid plane meshed with 60
Q4 elements and the
Eulerian grid meshed with
50 × 30 cell. There are about
25 cells across the cylinder

And during the simulation, we record the center of mass position of the cylinder
which is defined by

xnumcm =
∑

p m pxp∑
p m p

(8.43)

where the sum is over the cylinder particles.
The incline angle is chosen to be θ = π/3 and two friction coefficients are tested:

μ = 0.3 andμ = 0.6. The first corresponds to rolling-slip case and the second to the
rolling-stick case. In both cases, excellent agreement was obtained (Fig. 8.33).

Solving with GPIC. Even though for this problem there is no need to explicitly
model the rigid plane, we still do that. This is because for other problems the rigid
bodies might have complex geometries. The GPIC set-up is shown in Fig. 8.34.
The normal vectors at contact nodes are determined using the normal vectors to the
rigid plane. In the calculation, only the nodes on the boundary of the rigid plane are
needed, that is why only one layer of elements across the plane thickness is required.
Figure 8.35 confirms the implementation of frictional contact in GPIC.

262 8 Contact and Fracture

Fig. 8.35 Cylinder rolling
on an inclined plane:
comparison of the position of
the center of mass of the
cylinder as predicted by
GPIC (Eq. (8.43) applied to
the FE nodes) and the
theoretical solution from Eq.
(8.38)

0.0 0.1 0.2 0.3

time [s]

0.50

0.55

0.60

0.65

0.70

0.75

0.80

po
si
ti
on

[m
]

exact,slip
GPIC, slip

0.0 0.1 0.2 0.3

time [s]

0.50

0.55

0.60

0.65

0.70

0.75

0.80

po
si
ti
on

[m
]

exact,stick
GPIC, stick

8.4.5 Test 5: Stress Wave in a Granular Material

All previous tests featured the contact between only two solids. However, the MPM
contact algorithm is able to handle multiple contacts efficiently. To demonstrate this,
we reproduce in this section two interesting simulations of stress wave propagation in
a granular media presented in Bardenhagen et al. (2001). The first problem consists
of four identical collinear disks impacted by a striker from the right traveling at a
speed of 5.6 m/s which is summarized graphically in Fig. 8.36. Both the disks and
the impactor are considered as made of linear elastic material. As there is no sliding
in this set up no frictional contactwas used tomodel the interaction between the disks.

Solving using TLMPM. Each background grid has a cell size of h = 1.25 mm.
One particle per cell is used for both the disks and the impactor. The total number of
particles is thus 20 896. The simplest of weighting functions is used: hat functions. In
the experiments, the stress distribution in the disks is evaluated using photoelasticity.
This process generates dark fringes at contours of constant maximum difference in
the principal stresses.

Fig. 8.36 Stress wave in
granular media: problem
configuration. The impactor
is given a constant velocity
of 0.0006 cm/s to the left
(de Vaucorbeil and Nguyen
2021b)

r = 50 mm

Disks:
K = 102 GPa
G = 72 GPa
ρ = 1.9x10−6 kg/mm3

Impactor:
K = 10.2 GPa
G = 7.2 GPa
ρ = 1.9x10−4 kg/mm3

8.4 Contact Simulations 263

Fig. 8.37 Stress wave in a
granular material.
Comparison between the
stress fringes obtained by
experiments and using total
Lagrangian and Updated
Lagrangian MPM at
t = 0.0659 ms after impact
(de Vaucorbeil and Nguyen
2021b)

(a) Experiments. Reprinted under the Creative Commons Attribu-
tion 4.0 International License from Bardenhagen et al. [2001] Copy-
right ©2001 Tech Science Press

(b) TLMPM

(c) ULMPM

In the simulations, fringes are generated by the following equation

1 − sin2
(
k f (σ1 − σ3)

)
(8.44)

with k f is an unknown optical parameter that controls the finge density taken here
as k f = π/0.07 GPa−1, and the difference of in-plane principal stress is given by

σ1 − σ3 = 2R =
√
4τ 2

xy + (σx − σy)2 (8.45)

where R denotes the radius of the Mohr’s circle.
The fringe pattern obtained with the TLMPM and ULMPM is shown alongside

the experimental results in Fig. 8.37. The results from the TLMPM (Fig. 8.37b) are
in good agreement with the experiments (Fig. 8.37a) and those from the ULMPM are
not as good. This is once again due to the cell-crossing instabilities. Therefore, the
TLMPM with the present contact algorithm allows for a smoother stress field than
the ULMPM when using hat weighing functions. Of course one could use cubic B-
splines and get a smoother stress field with the ULMPM, but even with the simplest
of shape functions, the TLMPM gives good stress predictions. Thus, the degree of
computational complexity is decreased.

As the contact algorithm for the TLMPM can model frictional contacts, it allows
the simulation of stress wave propagation in a granular material which involves
frictional contacts between the different grains. To show this, we consider a problem
in which five disks contacting each other at 45◦ are impacted by a striker from the
right, traveling at the same speed as before: 5.6 m/s. The disks are prevented from
moving out of their position by a rigid box (Fig. 8.38). The disk, the impactor, as

264 8 Contact and Fracture

Fig. 8.38 Stress wave in
granular media: problem
configuration. The impactor
is given a constant velocity
of 0.0006 cm/s to the left
(de Vaucorbeil and Nguyen
2021b)

r = 50 mm

Disks:
K = 102 GPa
G = 72 GPa
ρ = 1.9x10−6 kg/mm3

Impactor:
K = 10.2 GPa
G = 7.2 GPa
ρ = 1.9x10−4 kg/mm3

Fig. 8.39 Stress wave in a
granular material.
Comparison between the
stress fringes obtained by
experiments and using total
Lagrangian MPM at
t = 0.12 ms after impact
(de Vaucorbeil and Nguyen
2021b)

(a) Experiments Reprinted under the Creative Commons Attribution
4.0 International License from Bardenhagen et al. [2001] Copyright
©2001 Tech Science Press

(b) TLMPM

well as their material properties are the same as in the four collinear disk problem.
The discretization of the problem is identical as before, i.e., the background grid cell
size is h = 1.25 mm and one particle per cell, resulting in a total of 25 910 particles.
The sides of the box are simulated as unpenetrable surfaces, just like what was done
for the inclined surface in Sect. 8.4.4. As the ULMPM algorithm does not allow
frictional contact (without adding an extra contact algorithm), only the TLMPM is
used here. And just as for the previous problem, it features hat weighing functions.

Just like in the case of the 4 disks, as one can see in Fig. 8.39 good agreement
is obtained between the simulation and the experiments. One might observe that the
stress field in the first impacted disk (the one on the far right side of the picture) ismore

8.4 Contact Simulations 265

noisy than in the others. This is attributed to the use of a high PIC/FLIPmixing factor
(i.e., α = 0.99). Indeed, FLIP is known for being prone to instabilities. However, PIC
would be far too dissipative, this is why such a value for α was chosen and good
results are nonetheless obtained.

8.4.6 Test 6: Penetration of a Steel Sphere Into an
Aluminium Cylinder

This test consists of an elastic sphere impacting an elastic-perfectly plastic target
(Fig. 8.40). Sulsky et al. (1995) considered this problem in a 2D setting. Herein, we
extend it to 3D, consider a higher impact velocity and study the robustness of GPIC
for penetration problems.

This test is solved with MPM (hat functions and the modified update stress last
of Sulsky and Schreyer (1996)) and GPIC. The two models are given in Fig. 8.41.

Fig. 8.40 Impact of a steel disk into an aluminum target. The disk (whose center is 10 mm from
the cylinder top surface) has an initial velocity of 2000 m/s. Length in mm (Nguyen et al. 2021)

Fig. 8.41 Impact of a steel disk into an aluminum target: model set-ups. MPM: computational
domain is 60 × 60 × 60 discretized by a Eulerian grid of 60 × 60 × 60 cells with 182 808 particles
for both the cylinder and sphere. GPIC (TL): computational domain is 60 × 60 × 60 discretized by
a Eulerian grid of 60 × 60 × 60 cells with 113 825 eight-node hexahedral elements for the cylinder
and 21 848 four-node tetrahedral elements for the sphere (Nguyen et al. 2021)

266 8 Contact and Fracture

Fig. 8.42 Impact of a steel
disk into an aluminum target:
final configurations obtained
with MPM and GPIC
(Nguyen et al. 2021)

Fig. 8.43 Impact of a steel
disk into an aluminum target:
penetration curves (Nguyen
et al. 2021)

0 5 10 15 20 25 30 35 40 45

time in microsecond

0

5

10

15

20

25

pe
ne

tr
at
io
n
[m

m
]

MPM
GPIC

All the faces of the Eulerian grid are fixed. As the geometry is simple, setting up the
MPM model is easier and quicker than GPIC (which requires to use gmsh).

The final configurations shown in Fig. 8.42 indicate that the MPM and GPIC
are robust for high velocity penetration simulations. They yield qualitatively similar
results. However, the penetration curves are different: MPM gives a final penetration
of 25 mm and GPIC gives a penetration of 23 mm (Fig. 8.43). This difference might
come from different discretizations as Sulsky et al. (1995) showed that there is no
convergence for this problem due to the ill-posedness of the problem under the
assumption of perfect plasticity.

8.4 Contact Simulations 267

8.4.7 Test 7: Scratch Test

Scratch tests are carried out to determine the abrasive wear resistance of a material.
The goal of these simulations is to check how well the MPM can simulate the sin-
gle scratch test. To assess the performance of our codes, the simulation results are
checked against the experimental data published by Leroch et al. (2016). For detail,
we refer to de Vaucorbeil et al. (2022a).

Experiments. Experimentally, the scratch tests were done using high purity copper
samples (99.999% pure). These samples are rectangular with the following dimen-
sions: length 70 mm, width 30 mm and height 10 mm. The scratch test rig used
is formed by a loading unit controlling the displacement/load of the indenter in the
vertical direction (assumed to be z here) and a sample holder that move the horizontal
direction (assumed to be x here). The scratch tests were performed in two steps:

1. indentation: the sample is fixed while the indenter is lowered until the desired
load is reached,

2. scratching: the load of the indenter is kept constant while the sample holdermoves
horizontally.

Thus these scratches were performed under load-controlled conditions. These
scratches were produced at velocities of up to 10 mm/s. The exact velocities have,
however, not been reported. The indenter used is a diamond of standard Rockwell-C
geometry (200µm tip radius super-imposed on a 120◦ cone). This entails a spherical
contact geometry until ≈ 30 µm scratch depth, while the cone geometry must be
taken into account for deeper scratches. In the SPH simulations published in the
same paper, the indenter was considered to be only a sphere of radius 200 µm even
though depths higher than 30 µm (60 µm) were reached.

In these SPH simulations as well as in the experiments, the temperature was
assumed to remain at room temperature, i.e., heating along the scratch was neglected.
Leroch et al. argued that due to the combination of a small scratch velocity and
the high thermal conductivity of copper any increase of temperature due to plastic
deformation can be neglected.

Four different loading conditions were tested: 10 N, 20 N, 30 N and 50 N. The
length of all scratches were around 11 mm. The width and depth of the groove as
well as the height of the ridge (Fig. 8.44) generated were reported (see Table 8.1).

Materials and simulation set up. The material parameters used are given in
Table 8.2. Simulating a whole sample would be too computationally demanding,
therefore a smaller sample of dimensions 4 × 1 × 0.5 mm3 is used instead (Fig.
8.45). These dimensions where chosen such that (a) the simulation domain is as
small as possible to minimise the computational cost, (b) the simulation box is big
enough for the effects of the boundary conditions to be negligible and (c) that the
scratching distance is high enough for a steady state to be reached. Moreover, not-
ing that the xz plane including the centre of the indenter is a plane of symmetry,

268 8 Contact and Fracture

Fig. 8.44 Schematic of a
typical scratch cross-section
(in the xy plane) displaying
how the scratch width w,
depth d and the ridge height
h are measured

w

h

d

Table 8.1 Experimental scratch topography results (Leroch et al. 2016)

Test load (N) Scratch width w (μm) Scratch depth d (μm) Ridge height h (μm)

10 232.3 16.4 20.3

20 315.5 27.6 26.5

30 365.7 37.5 35.0

50 440.9 50.2 40.8

Table 8.2 Material parameters for the OFHC Copper material (Leroch et al. 2016)

Material parameters Flow stress parameters Parameters for EOS

Density 8960 kg/m3 A 90 MPa c0 3933 m/s

Young’s
modulus

120 GPa B 292 MPa Sα 1.5

Poisson’s ratio 0.36 C 0.0 Γ0 1.99

Reference
temperature

294 K n 0.31

Melting
temperature

1356 K m 1.09

ε̇0 1.0 1/s

only half of the specimen is considered in the simulations (Fig. 8.45). For boundary
conditions, all sides except the plane of symmetry and the top face (+z) are fixed,
i.e., the velocity of the background grid nodes coincident with these boundaries are
set to zero. The symmetry is imposed by setting the velocity of the background grid
nodes coincident with the plane of symmetry to zero along the y axis. The simula-
tion domain is uniformly discretized, the background grid cell size being constant
throughout the domain and equal to 0.0125 mm (Fig. 8.45). And with one particle
at the centre of each cell we have a total of about one million particles. Adaptive
grid refinement would drastically reduce the number of particles, but we have not
implemented this yet.

Contrary to the experiments, the indenter is velocity controlled and not load con-
trolled. This means that the simulation steps are slightly different from the exper-

8.4 Contact Simulations 269

y

z

x

Plane of symmetry

Ly = 1 mm

Lz = 0.5 mm

Lx = 4 mm

y

z

xx
Ly = 1 mm

Lx = 4 mm

PlaPlaPlanenene oooff symsymsysymmet
met
memetryryryry

Plane of symmetry

MPM Particles

Fig. 8.45 Simulation box (bold lines), plane of symmetry (orange) and particles (de Vaucorbeil
et al. 2022a)

Indenter

Lx=4 mm

Lz=0.5 mm

R=0.2 mm

0.5 mm

v

x

z

0.2 mm

Fig. 8.46 Schematic cut view in the xz plane of the scratch tests setup (de Vaucorbeil et al. 2022a)

imental ones. At the start of the simulation, the indenter is at the limit of being in
contact with the top surface of the sample. Thus, the centre of the indenter is located
0.2 mm above the surface, at a distance 0.5 mm of the back surface of the sample
(see Fig. 8.46) and in the plane of symmetry of the problem (i.e., xz plane). The three
steps of the simulation are as follows:

1. Indentation phase, 0 ≤ t ≤ t1: the indenter is lowered until the desired load is
reached. Its vertical velocity is: vz = −v0(1 − exp(−t)), while its horizontal posi-
tion is kept unchanged: vx = 0.

2. Scratching phase, t1 ≤ t ≤ t2: the indenter is moved horizontally with a velocity
of vx = v0(1 − exp(−(t − t1))) while its vertical position is kept constant, i.e.,
vz = 0. This phase ends when the indenter is at 0.5 mm from the front surface.

3. Unloading phase, t2 ≤ t ≤ t3: the indenter’s horizontal motion is stopped, i.e.,
vx = 0 and is raised: vz = v0(1 − exp(−(t − t2))).

The time t1 corresponds to the time at which the vertical load reaches the desired
load. There are no analytical solution for it. As one can see, the velocity profile of the

270 8 Contact and Fracture

indenter was choosen such that at the beginning of every step, the acceleration is zero
in order to avoid the creation of compressive shock-waves. The maximum velocity
v0 was chosen to 50 m/s. This velocity is much higher than the maximum speed
registered during the experiments. However, Leroch et al. (2016) showed that the
average forces are independent of the indenter speed. Therefore, since no strain rate
effect are taken into account, i.e., C = 0, a high value of v0 was chosen to decrease
the necessary computational time.

Virtual indenter. To decrease the computational cost, the spherical indenter is not
modelled explicitly as a solid. Instead, it is modelled as a force f indp exerted on all
particles. This is different from Leroch et al. (2016) who modelled the indenter
explicitly.

Following Leroch et al. (2016), the indenter is supposed to be a perfect sphere.
Therefore, in the absence of friction, f indp can naturally be derived from the contact
force between two particles in TLMPM described in Sect. 8.2. In the frictionless
contact algorithm for TLMPM, we recall that the contact force between two particles
p and q is given by:

fpq =
⎧
⎨

⎩

1
Δt2

mpmq

mp + mq

(
1 − Rp + Rq

‖xpq‖
)
xpq; if δ = Rp + Rq − ‖xpq‖ ≥ 0

0; otherwise
(8.46)

where mp and mq are their respective masses, Rp and Rq their respective radii and
xpq = xq − xp, and Δt the time-step. Considering that the mass of the indenter is
much larger than that of a particle, from Eq. (8.46), one gets:

f ind,np =
⎧
⎨

⎩

mp

Δt2

(
1 − Rp + Rind

‖xpind‖
)
xpind; if δ = Rp + Rind − ‖xpind‖ ≥ 0

0; otherwise
(8.47)

where Rind is the radius of the indenter, and xpind = xind − xp is the distance between
the centre of the indenter and the particle, respectively. The radius of a particle p
is here taken as Rp = (1/2)Vp

1/3, with Vp the volume of the particle. We use the
superscript n i.e., f ind,np to emphasize that the tangential force is zero. Actually for
frictionless contact f ind,np is the total force applied on particle p.

In Eq. (8.47), no friction term is present. de Vaucorbeil and Nguyen (2021a)
proposed an extension of Eq. (8.46) for modelling frictional contacts. However, a
direct adaptation of this model for the forces exerted by the indenter onto particles
proved unstable. Instead, the frictional term is derived according to the algorithm
proposed by Wang and Chan (2014) for frictional contact in SPH:

8.4 Contact Simulations 271

f ind,τp =

⎧
⎪⎨

⎪⎩

mp

Δt
vτ
pind; if |vτ

pind| ≤ μ|vnpind|
μ
mp

Δt
vnpind

vτ
pind

|vτ
pind|

; otherwise
(8.48)

where μ is the friction coefficient, vnpind = [
(vind − vp) · xpind

]
xpind and vτ

pind =
(vind − vp) − vnpind are the normal and tangential difference of velocity between the
indenter and particle p, respectively. The total force applied on particle p is then the
sum of f ind,np and f ind,τp .

A quantity of interest is the normal and tangential forces that the indenter exert-
ing on the substrate. We compute them as follows. Since the scratching direc-
tion is x and the out-facing normal of the upper surface of the substrate is z (see
Fig. 8.46), the normal and tangential scratching forces are respectively: find,v =
−∑Np

p=1

[
f ind,np + f ind,τp

] · z and find,h = −∑Np

p=1

[
f ind,np + f ind,τp

] · x with Np being
the total number of particles in the domain. Note the negative signs to match what
Leroch et al. (2016) did. Therefore, the scratching forces are the forces exerted by
the substrate onto the indenter, and not the opposite.

Results: forces. To compare the SPH, TLMPM and the experiments, we plot in
Fig. 8.47, the change in the average magnitude of the tangential forces as a func-
tion of that of the normal scratching forces for the experiments (blue circles), our
TLMPM simulations (green squares) as well as Leroch et al. (2016) SPH simulations
(magenta triangles). Even though the magnitude of the tangential scratching force is
constantly under-predicted by our TLMPM simulations (without friction), the trend
is correctly captured. The constant offset seen between the experimental andTLMPM
simulations was suggested by Villumsen and Fauerholdt (2008) to be due to the lack
of friction in the simulations. The SPH simulations which were performed without
friction do not follow the same trend. While they tend to under-predict the tangential
forces at low normal scratching force, they are more accurate at predicting the former

Fig. 8.47 Magnitude of the
average tangential forces as a
function of the average
normal scratching force. The
discrepancy is likely to be
due to the presence of
friction between the indenter
and the substrate in the
experiments that is not taken
into account in the
simulations (de Vaucorbeil
et al. 2022a)

272 8 Contact and Fracture

Fig. 8.48 Comparison between the simulated (without friction) and the experimental topographic
yz-sections obtained for nominal normal loads of 20 and 30 N (the plane at the middle of the
substrate) (de Vaucorbeil et al. 2022a)

at higher loads. However, data is missing to understand what would happen for loads
higher than 40 N. If the same trend is followed, however, tangential forces would
then be over-predicted. Based on these results, Leroch et al. (2016) argued that the
effect of friction is greater at low normal scratching forces, but the results obtained
with TLMPM do not suggest that.

Results: scratch groove topologies. As wear manifests itself by the volume of
material displaced, it is important to ensure that the simulations are able to capture
the profile of scratch grooves. Indeed, a good agreement between the simulations
and the experiments is reached (see Fig. 8.48, the cross-section of the scratch groove
for respective nominal loads of 20 and 30 N are compared to their experimental
counterparts). Importantly, one can observe when comparing Fig. 8.48a and b that
the scratch depth, width and shoulder height all increase with the load. Hence, so
does the volume of material displaced as expected.

When looking at how the groove profiles evolve along the scratching direction,
one can distinguish two different scratch topologies. On the one hand, at low nominal
normal loads, i.e., lower or equal to 30 N, the groove is smooth (Fig. 8.49a) and the
groove cross section is constant, once the steady state is reached. On the other hand,
for higher nominal loads, oscillations in the groove profile appear. These oscillations
echo those seen in the force profiles (Fig. 8.49b). The origin of such oscillations
seem to be related to the height of the lip formed in front of the moving indenter.
During the simulation, it can be clearly seen that the lip starts forming and then is
pushed down by the indenter. This suggests that at these simulated loads the rate
of formation of the lip is not high enough to form a chip. However, marks of such
oscillations cannot be clearly identified from the experimental results published by
Leroch et al. (2016). But, oscillations in the retained stresses were observed from
their SPH simulations.

8.4 Contact Simulations 273

Fig. 8.49 Scratch tests topology obtained with TLMPM without friction considered. Please note
that the space between particles do not represent any material separation as the radius of a particle
is constant in all representations here (de Vaucorbeil et al. 2022a)

Results: oscillation in scratch groove topologies. Some of the TLMPM simulation
results presented above feature oscillatory groove and force patterns. These kinds
of oscillations are sometimes observed experimentally (Lin et al. 2001; Wang et al.
2006).Theseoscillations are nonetheless interesting.Theydevelop at nominal normal
loads higher or equal than20Nand40N respectively for simulationswith andwithout
friction and shine by its regularity (see Fig. 8.50). They also depend on the load as
one can see by comparing Fig. 8.50a and b. The lower the load, the higher the period.
Moreover, it has been observed that this trend is independent of the presence of
friction.

By observing the results of all the simulations presenting oscillations, it has been
found that if at some point in time the equivalent plastic strain at the highest point
of the lip formed in front of the indenter reaches a value of 1.5 or above, oscillations
will form. In the contrary, if the strain does not reach this threshold value, no oscil-
lation will appear. Moreover, the severity of these oscillations is linked to the work
hardening rate. Indeed, the higher the work hardening rate, the lower the severity of
these oscillations for a given nominal load. This is not surprising as strain hardening
works against local changes so low hardening rates allow bifurcation of the material
path in front of the indenter, and high hardening rates prevent such bifurcation to
take place.

274 8 Contact and Fracture

Fig. 8.50 Mesh reconstruction of the deformed upper surface of two samples showing the oscil-
latory groove topologies obtained with TLMPM with the smallest and highest loads. The colors
correspond to the displacement normal to the underformed surface (i.e., in the z direction). Done
using Paraview (de Vaucorbeil et al. 2022a)

8.5 Fracture Modeling

As discussed in Sect. 1.5.7, within the framework of continuum mechanics, there
are basically two approaches to fracture modeling: a discontinuous approach and a
continuous approach. The former approach, which is based on the theory of fracture
mechanics, treats cracks as strong discontinuities i.e., real material separation. On the
other hand, in a continuous approach, which is mostly based on continuum damage
mechanics, strong discontinuities cannot be captured; instead the material properties
(such as Young’s modulus) are degraded according to some damage laws while the
displacement field is always kept continuous everywhere.

To demonstrate the pros and cons of the continuous and discontinuous approach
to fracture modeling, let us consider the problem of the growth of ten cracks in a
square plate subjected to a bi-axial tension (Fig. 8.51). The crack geometry was taken
from Budyn et al. (2004) and tabulated in Table 8.3 for completeness. The material
properties are also given in Fig. 8.51 (the fracture toughness Kc = √

EGc for the
assumed plane stress condition).

We solve this problem usingXFEM–a typical discontinuous approach and a phase
field method (PFM), a continuous approach. For the XFEM (extended finite element
method) (Moës et al. 1999), we have used the model and code described in Sutula
et al. (2017). The code is a serial Matlab code. For the phase field method, we
adopt feFRAC–a parallel C++ code introduced in Nguyen et al. (2020).

There exists some slight discrepancies in the obtained crack patterns (Fig. 8.52),
which we cannot explain as there is no experimental result to verify the results. But
this is not the point here. The point is that the XFEM code runs very fast compared
with the PFM code even though the latter used multiple CPUs and the former is only

8.5 Fracture Modeling 275

Fig. 8.51 A square plate, of 2 × 2 mm2, with 10 random cracks under bi-axial tension

Table 8.3 A plate with 10 random cracks: crack geometry data

Crack ID x1 y1 x2 y2

1 0.308514 1.531184 0.488788 1.711458

2 0.605291 1.511563 0.713210 1.332516

3 1.128942 1.518921 1.359495 1.694289

4 1.517694 1.412228 1.673441 1.229502

5 0.268045 0.819902 0.411528 0.991591

6 0.829713 0.903294 1.087246 0.957253

7 1.456377 0.994043 1.592502 0.819902

8 0.326910 0.368605 0.482656 0.520673

9 0.908199 0.465487 1.090925 0.346531

10 1.436755 0.364926 1.624387 0.493693

(a) PFM [Wu et al., 2019] (b) XFEM [Sutula et al., 2017]

Fig. 8.52 A square plate with 10 random cracks under bi-axial tension: PFM versus XFEM. For
both analyses, an FE mesh of 300 × 300 Q4 elements is adopted and for the PFM the length scale
is b = 0.01 mm. In the legend, “phi” denotes the damage field; thus where damage is close to one,
that region denotes the diffuse cracks

276 8 Contact and Fracture

Fig. 8.53 Three dimensional
non-planar cracks can be
obtained seamlessly with a
phase field fracture model
(Wu et al. 2021)

a serial code. The distinct pros of XFEM is its coarse mesh efficiency. The cons of
XFEM are (1) intricate implementation and (2) the extension to 3D complex crack
patterns is difficult. Phase field fracture model is exactly the opposite; it works in
2D and 3D (Fig. 8.53), the implementation is quite straightforward. However the
computational cost is huge (Wu et al. 2019).

8.5.1 Fracture Modeling Within the MPM Framework

It is a common misunderstanding that it is easy to model cracks as strong disconti-
nuities in the MPM as it is classified as a meshfree method. On the contrary, it is the
fixed background grid in this method that makes it difficult to handle discontinuities
in the displacement/velocity fields. To allow discontinuities, one has to introduce
multiple velocity fields at the grid nodes in the same manner to duplicated nodes in
the FEM. That is why only simple fracture problems, usually 2D ones, are solved
using this discontinuous approach (Nairn 2003; Tan and Nairn 2002; Nairn 2007a;
Guo and Nairn 2004; Gilabert et al. 2011; Wang et al. 2005). We believe that these
problems are better to be solved using the FEM which is more accurate and more
efficient. The problem of fracture mechanics is how to represent non-planar 3D crack
surfaces. This is more difficult when one considers the merging and branching of
these surfaces.

In contrast to other meshfree methods such as EFG, enrichment method using the
Partition of Unity is not really picked up by the MPM community. There are only a
few work on this topic. For instance, Liang et al. (2017) did present an XFEM way
in GIMP, but again analyzed simple 2D fracture problems.

Let us recall the signature applications of the MPM. There are only two: (1)
problems involving contacts and very large strain (note that FEMcan solve efficiently
large displacement fracture problems, see Fig. 8.54) and (2) problems with very
complex geometries which are difficult to be converted into good quality FEmeshes.

Actually, the MPM is not good for fracture modeling as long as the issue of poor
stress accuracy has not been resolved. If a better stress field can be obtained, the
MPM can be a promising tool for tackling problems involving fracture, contacts
and large deformation. Some problems fall into this category that come to our mind:

8.5 Fracture Modeling 277

Fig. 8.54 Finite element modeling of large displacement fracture of biological tissues using a
phase-field fracture model (Mandal et al. 2020b)

wearing, drilling, and penetration. Li et al. (2021) have recently presented a 3DMPM
framework for modeling snow avalanches. The model adopts a continuous approach
to fracture.

We are left with the continuous approach to fracture which is mostly based on
damage mechanics. In its simplest form σ = (1 − d)σ̄ where d is a scalar damage
field and σ̄ is the effective stress tensor. Even though this damage based model is
simple, it suffers from mesh bias and mesh dependence i.e., the results are sensi-
tive to the mesh. Nonlocal models can overcome this issue and we present varia-
tional fracture models in Sect. 8.5.2 including the phase-field approximation, the
eigen-erosion approximation and a gradient enhanced Johnson-Cook damage model
(Sect. 8.5.4).

8.5.2 Variational Fracture Theories

Griffith’s fracture theory. In 1921, Griffith conducted experiments on fracture of
glass fibers Griffith (1920). He found two things: (1) the fracture strength of glass
is significantly smaller than the theoretical value (coming from breaking the atomic
bonds) and (2) small glass fibers are stronger than larger fibers. He concluded that
small naturally occurring defects existing in the fibers make them weak. Precisely
these defects amplify the stress field in front of their tips and thus rendering the
fracture stressmuch smaller comparedwith the theoretical strength. Actually Griffith
was aware of the work of Charles Inglis conducted seven years ago about stress
concentration due to an elliptical hole (Inglis 1913).

With defects now in his mind, he made specimens with artificial surface cracks (to
overcome natural defects) of varying sizes and quantified the relationship between
the remote tensile stress σ and the crack size or length a. What he found is an
inverse relation between the strength and the crack length. In symbols, he found that
σ
√
a = C whereC is a constant. To find this constant, he carried out an energy-based

analysis that basically led to the born of what is now known as fracture mechanics.

278 8 Contact and Fracture

Griffith computed the energy of the system which consists of the stored elastic
strain energy and the surface energy i.e., energy due to the creation of the new crack
surfaces. He considered a unit thickness infinite plate with a surface crack of length a
subjected to a remote tensile stress σ normal to the crack. The energy of this system
is given by

U = U0 − πa2
σ 2

2E0
+ 2aγs (8.49)

where he used Inglis’ solution to obtain −πa2σ 2/(2E0) the elastic strain energy
released due to the crack’s presence;U0 is the elastic strain energy of the platewithout
crack. What is interesting here is the last term 2aγs the surface energy associated
with a crack of length a where γs is the energy required to creare a unit surface area.

The first derivative of U with respect to the crack length a is

∂U

∂a
= −2πa

σ 2

2E0
+ 2γs (8.50)

And the vanishing derivative condition gives us

∂U

∂a
= 0 =⇒ πa

σ 2

2E0
= γs =⇒ σ =

√
2E0γs

πa
(8.51)

which is the well-known Griffith’s equation relating the remote stress to the crack
length.

The work of Griffith which is applicable only to brittle materials (e.g. glasses) was
ignored for almost 20 years. It was not until the modifications made by Orowan and
particularly George Rankin Irwin (1907–1998) that, a new field has emerged: Linear
Elastic Fracture Mechanics (LEFM). Irwin introduced the concept of energy release
rate G which is the negative of the derivative of the elastic strain energy with respect
to the crack length and he andOrowan replaced γs byGc — the critical energy release
rate or fracture energy — to take into account other dissipative processes such as
plastic deformation, i.e.,

G = − ∂

∂a

(
U0 − πa2

σ 2

2E0

)
= 2πa

σ 2

2E0
, Gc = γs (8.52)

Another significant contribution to fracture mechanics was made by James Rice in
1968, the famous J -integral Rice (1968) which is equal to the fracture energy release
rate G.

By recalling the irreversibility of the crack propagation, ȧ ≥ 0, the Griffith crack
propagation criterion is given then:

G − Gc ≤ 0, ȧ ≥ 0, ȧ
(G − Gc

) ≡ 0 (8.53)

8.5 Fracture Modeling 279

That is, for quasi-static loading case, the crack propagates (i.e., ȧ > 0) if G = Gc

and otherwise remains stationary ȧ = 0 for G < Gc.
Fracture mechanics has been a great success as it provides the engineers a contin-

uummechanics tool to quantitatively predict the structural integrity of large structures
using data such as fracture toughness (a concept introduced by Irwin which is related
to the fracture energy) which can be experimentally measured using laboratory scale
specimens. Furthermore it helps material scientists to improve existing materials and
design new ones by looking at their fracture toughness.

In conclusion, Griffith presented an energy approach to modeling fracture of brit-
tle solids in which fracture is the outcome of the competition between the elastic
energy stored in an elastic solid and the surface energy. This was a milestone in the
field of mechanics of solids as it started a field coined fracture mechanics. However,
Griffith’s model is incapable of treating crack nucleation (i.e., a crack is initiated
in an intact solids). Furthermore, it is not self-contained as it must be used together
with a fracture criterion that tells in which direction a crack would go.

Variational fracturemechanics. To solve these issues, Francfort andMarigo (1998)
has presented a variational fracture model, in which one seeks simultaneously the
displacement fieldu(x, t) and the crack setsΓ (t) byminimizing the following energy
functional

E (u, Γ) =
∫

Ω

ψ0(ε(u))dV +
∫

Γ

GcdA − P(u) (8.54)

where Gc is the fracture energy. The above energy functional consists of three terms:
the first term is the stored strain energy, the second is the surface energy and the final
term is the force energy. This variational approach to fracture can be referred to as a
generalization of Griffith’s theory for brittle fracture. Unfortunately, it is difficult to
directly solve Eq. (8.54) and thus various approximations of the variational fracture
model have been developed. In what follows, we discuss the two most popular ones:
phase-field fracture and eigen-erosion. The commonality of these two approxima-
tions is the introduction of another field and the approximation of the crack surfaces
Γ by a volume.

Phase-field fracture. Bourdin et al. (2000) presents a regularization of Francfort
and Marigo‘s model by introducing a scalar field 0 ≤ d(x, t) ≤ 1 defined over the
entire solid Ω and approximate the troubling surface integral

∫
Γ
GcdA by a volume

one. The energy functional is now given by

E (u, d) =
∫

Ω

ω(d)ψ0(ε(u))dV +
∫

Ω

Gcγ (d, b; ∇d)dV − P(u) (8.55)

where ω(d) is a degradation function to reduce the strain energy when d > 0 (as
this part was converted to the surface energy); γ (d, b; ∇d) is the crack surface

280 8 Contact and Fracture

density function with b being a small positive number playing the role of a length
scale. One must define γ (d, b; ∇d) such that

∫
Ω
Gcγ (d, b; ∇d)dV = ∫

Γ
GcdA as

b approaches zero. Section 8.5.3 defines γ .
The problem of solving a fracture problem be it crack nucleation, propagation,

branching ormerging boils down to solving a two-field PDEdefined by the functional
given in Eq. (8.55):

⎧
⎪⎨

⎪⎩

∇ · σ + f = ρ0ü in Ω0

ω′(d)
Ȳ

Gc/cα

+
(

1
bα

′(d) − 2bΔd

)
+ ξ ḋ ≥ 0 ḋ ≥ 0 in Ω0

(8.56a)

with natural boundary conditions,

{
σ · n = t∗ on ∂Ωt
2b
cα

∇0d · n = 0 on ∂Ω
(8.56b)

where ξ is a damping parameter (Kuhn andMüller 2010). Note that one can perfectly
use ξ = 0; the role of ξ is merely numerical: it stablizes the algorithm and it allows
an explicit solver. We refer to the review of Wu et al. (2019) for details.

Eigen-erosion fracture. Schmidt et al. (2009) presented a two-field approximation
of Eq. (8.54) using the eigendeformation ε∗. The energy functional now reads

E (u, ε∗) =
∫

Ω

ψ0(ε(u) − ε∗)dV + Gc
|Cκ |
2κ

− P(u) (8.57)

where |Cκ | is the volume of the approximate crack surface Cκ (Fig. 8.55), and κ is
a length scale similar to b in a PFM. By limiting the eigendeformation to a binary
state consisting of zero for intact material and ε(u) for fractured material, Pandolfi
and Ortiz (2012); Pandolfi et al. (2014) have introduced an eigen-erosion method for
brittle fracture.

Thanks to this binary state one does not need to solve an extra PDE to determine
the crack surfaces as in the PFM (see Sect. 8.5.3 for detail). Actually, whether a
material point is fractured or not is simply based on a calculation of the particle
energy as follows (Li et al. 2012)

Fig. 8.55 Approximation of
the crack surface by a
continuous phase-field
d(x, t) and a binary 0-1
eigendeformation (right).
Black dots represent
fractured (or eroded)
particles PFM

8.5 Fracture Modeling 281

Gp = βκ

m̄ p

∑

q∈C p
κ

mqψ0(εq), m̄ p =
∑

q

mq (8.58)

where β is a normalizing constant, C p
κ denotes the κ—neighborhood of p, which is

a circle/sphere centered at p with a radius of κ for 2D and 3D, respectively. Note
that this κ—neighborhood of p excludes eroded particles.

The fracture criterion is then simply as

Gp ≥ Gc ⇒ p is eroded (8.59)

and when a particle is eroded, its stress is zero.

8.5.3 Implementation of Variational Fracture Phase-Field
Model

Let us confine to second-order phase-fieldmodels inwhich the crack density function
is generally written as (Wu 2017; Wu and Nguyen 2018)

γ (d; ∇0d) = 1

cα

[
1

b
α(d) + b∇0d · ∇0d

]
(8.60)

in which concrete expressions for α(d), cα and ω(d) are given in Table 8.4 for
common models. The models are called second order because Eq. (8.60) involves
the second spatial derivative of the damage field. We refer to Mandal et al. (2019b)
for a comparative study of these different models.

As the MPM flowchart is more suitable for a staggered solver than a monolithic
solver, we only present the staggered solver herein, and thus we focus on the damage
sub-problem (the displacement sub-problem is solved using the usual MPM way).

Table 8.4 Common phase field models for brittle and cohesive fracture. TSL is short for traction-
separation law, see e.g. Elices et al. (2002). Irwin’s internal length is defined as lch := E0Gc/ f 2t ,
with E0 being Young’s modulus of the material; ft and Gc being the failure strength and fracture
energy, respectively. Notice that the models were presented in chronological order

Model α(d) ω(d) Fracture type Length-scale Parameters

AT2 d2 (1 − d)2 Brittle b = 27

256
lch E0, ν0,Gf, b

AT1 d (1 − d)2 Brittle b = 3

8
lch E0, ν0,Gf, b

PF-CZM 2d − d2
(1 − d)p

(1 − d)p + Q(d)
Brittle/cohesive Numerical num. E0, ...+ TSL

282 8 Contact and Fracture

We introduce a viscosity term to the fracture energy so that the damage sub-problem
becomes a parabolic equation instead of an elliptic one. The reason for that is that
we can advance the damage problem in time using an explicit solver. We refer to
Kakouris and Triantafyllou (2017a, b); Cheon and Kim (2019) for a coupling of
an explicit MPM with an implicit phase-field damage. In the computer graphics
community, a similar idea has been recently proposed in Wolper et al. (2019) but for
ductile fracture.

The weak form for the modified damage sub-problem is given by (note that we
adopt a total Lagrangian for the damage equation)

∫

Ω0

[
ω′(d)Ȳ δd + Gc

cα

(
α′(d)

b
δd + 2b∇0d · ∇0δd

)
+ ξ ḋδd

]
dV = 0 (8.61a)

where Ȳ (ε) is the effective crack driving force, in the simplest case it is simply the
elastic energy i.e., Ȳ = ψ0(ε). Using the usual FE approximation for δd = NI δdI ,
one gets the following equation at node I

∫

Ω0

[
ω′(d)Ȳ NI + Gc

cα

(
α′(d)

b
NI + 2b(∇0d · ∇0NI)

)
+ ξ ḋ NI

]
dV = 0 (8.62a)

Then, we use the forward Euler method for ḋ to arrive at the final equation as

mI d
t+Δt
I = mI d

t
I − Δt

ξ

∫

Ω0

[
ω′(dt)Ȳ NI + Gc

cα

(
α′(dt)

b
NI + 2b(∇0d · ∇0NI)

)]
dV

(8.63)

where mI is the pseudo-mass at node I , which is given by (obtained using the well
known row-sum method similar to the mass matrix)

mI :=
∫

Ω0

NIdV (8.64)

In the MPM, Eq. (8.63) is solved on the Eulerian grid, and thus NI = φI . In GPIC,
we solve this equation on the FE mesh, so NI = φFE. Herein we only present the
details for ULMPM.

Finally, the integral in Eq. (8.63) is evaluated using particles as integration points.
This results in the final equation to update the grid damage:

dt+Δt
I = dtI − Δt

m I ξ

∑

p

[
ω′(dt)Ȳ NI (Xp) + Gc

bcα

(
α′(dt)NI (Xp) + 2b2(∇0d · ∇0NI (xp))

)]
V 0
p

(8.65)

For implementation, we provide the complete ULMPM-PFM algorithm in
Algorithm 16.

8.5 Fracture Modeling 283

Algorithm 16 Solution procedure of explicit ULMPM-PFM.
1: while t < t f do
2: Solving the displacement problem: 2 changes
3: f int,tI = −∑

p ω(dtp)V
t
pσ

t
p∇φI (xtp)

4: In G2P step, also update the crack driving force Ȳ for all particles
5: end
6: Solving the damage equation
7: Update damage force 1: F1I = ∑

p ω′(dt)Ȳ NI (Xp)

8: Update damage force 2: F2I = ∑
p
Gc/bcα

(
α′(dt)NI (Xp) + 2b2(∇0d · ∇0NI (xp))

)

9: Update damage force FI = F1I + F2I
10: Update grid damage: dt+Δt

I = dtI − Δt
mI ξ

FI

11: Update particle damage: dt+Δt
p = ∑

I NI (Xp)d
t+Δt
I

12: end
13: Advance time t = t + Δt
14: end while

We only implemented this phase field model in our Julia MPM code which
is not parallelized; the code is slow for intensive phase field simulations. Thus, we
do not present examples on this. We refer to Kakouris and Triantafyllou (2017a, b);
Cheon and Kim (2019) for the performance of MPM-PFM.

8.5.4 Nonlocal Johnson-Cook Damage Models

The Johnson-Cook viscoplastic-damage model is widely used to model the deforma-
tion and fracture of metals. It is assumed that the inclusion of strain rate in the model
helps to regularize the problems caused by strain localization. However, this is not
true.We tested this hypothesis by simulating the fracture of aW700E asymmetrically
notched specimen loaded in tension. We used the model described in Sect. 4.3. The
results given Fig. 8.56 show that the result is mesh dependent and the crack pattern
is a bit biased by the mesh orientation.

Tomitigate the mesh-related issues of this local model, we present herein a nonlo-
cal gradient enhanced formulation of the Johnson-Cookmodel described in Sect. 4.3.
In this nonlocal model, the damage variable is given by de Vaucorbeil et al. (2022b)

D =
{
0 when 0 ≤ 〈Dinit〉 < 1

10 (〈Dinit〉 − 1) when 〈Dinit〉 ≥ 1
(8.66)

where 〈Dinit〉 = ∑〈ΔDinit〉 is the nonlocal damage initiation variable.
The gradient enhanced nonlocal damage formulation is obtained by adding a

second order differential equation linking the nonlocal variable to the local variable

284 8 Contact and Fracture

Fig. 8.56 Failure of a W700E asymmetrically notched specimen loaded in tension using a local
damage model with strain rate for both the flow stress and the damage criteria taken into account: a.
Stress-strain curves obtained for different background grid cell size illustrating the non-convergence
of the onset of damage. Mesh bias is still there as illustrated in b. A regular square grid was used
(de Vaucorbeil et al. 2022b)

(Peerlings et al. 2002). In a total Lagrangian setting, this differential equation and
for our variable is given as::

〈ΔDinit〉 − c0∇2
0 〈ΔDinit〉 = ΔDinit (8.67)

where ∇2
0 is the Laplacian operator in the reference configuration, and c0 equals

l2d/16 in two dimensions and l2d/18 in three dimensions, with ld being the nonlocal
length scale used in the integral type nonlocal model.

In order to solve this equation, one first needs to obtain its weak form.Multiplying
it by the test damage initiation increment function δ〈ΔDinit〉 and integrating over the
whole domain in the reference configuration Ω0, one gets:

∫

Ω0

δ〈ΔDinit〉 [〈ΔDinit〉 − c0∇2
0 〈ΔDinit〉 − ΔDinit

]
dΩ0 = 0 (8.68)

After integrating by parts the second term, applying the divergence theorem and
incorporating the boundary condition

−→∇ 0〈ΔDinit〉 · n = 0 on the boundary Γ0 gives
the weak form:

∫

Ω0

δ〈ΔDinit〉〈ΔDinit〉dΩ0 +
∫

Ω0

c0∇0δ〈ΔDinit〉 · −→∇ 0〈ΔDinit〉dΩ0

=
∫

Ω0

δ〈ΔDinit〉ΔDinitdΩ0 (8.69)

In the spirit of the MPM, the particles are used as integration points, therefore Eq.
(8.69) leads to the following discrete equation:

8.5 Fracture Modeling 285

Np∑

p=1

δ〈ΔDinit〉p〈ΔDinit〉pV 0
p +

Np∑

p=1

c0∇0δ〈ΔDinit〉p · ∇0〈ΔDinit〉pV 0
p

=
Np∑

p=1

δ〈ΔDinit〉pΔDinit
p V 0

p (8.70)

where V 0
p is the volume of particle p in the reference configuration. Next, using the

same grid weighting function used for the balance of momenta equation, δ〈ΔDinit〉p
and

−→∇ 0δ〈ΔDinit〉p are both interpolated from the nodal values of the background
mesh as:

δ〈ΔDinit〉p =
NI∑

I=1

ΦI (Xp)δ〈ΔDinit〉I (8.71)

∇0δ〈ΔDinit〉p =
NI∑

I=1

∇0ΦI (Xp)δ〈ΔDinit〉I (8.72)

where I designate the nodes of the background grid and NI their number.
Substituting Eqs. (8.71) and (8.72) into Eq. (8.70) and rearranging gives:

NI∑

I=1

δ〈ΔDinit〉I
⎡

⎣
Np∑

p=1

ΦI (Xp)〈ΔDinit〉pV 0
p +

Np∑

p=1

c0∇0ΦI (Xp) · ∇0〈ΔDinit〉pV 0
p −

Np∑

p=1

ΦI (Xp)ΔDinit
p V 0

p

⎤

⎦ = 0

(8.73)
Since Eq. (8.73) is valid whatever the test function chosen, it must therefore hold
that

Np∑

p=1

ΦI (Xp)〈ΔDinit〉pV 0
p +

Np∑

p=1

c0∇0ΦI (Xp) · ∇0〈ΔDinit〉pV 0
p −

Np∑

p=1

ΦI (Xp)ΔDinit
p V 0

p = 0

(8.74)
Considering:

〈ΔDinit〉p =
NI∑

J=1

ΦJ (Xp)〈ΔDinit〉J (8.75)

∇0〈ΔDinit〉p =
NI∑

J=1

∇0ΦJ (Xp)〈ΔDinit〉J (8.76)

Equation (8.74) becomes after factorisation:

NI∑

J=1

⎡

⎣
Np∑

p=1

V 0
p

(
ΦI (Xp)ΦJ (Xp) + c0

−→∇ 0ΦI (Xp) · −→∇ 0ΦJ (Xp)
)
⎤

⎦ 〈ΔDinit〉J =
Np∑

p=1

V 0
pΦI (Xp)ΔDinit

p

(8.77)

286 8 Contact and Fracture

Collecting terms in Eq. (8.77) gives rise to the simple form:

KDD = FD (8.78)

where D is the nodal damage initiation increment vector i.e., DJ = 〈ΔDinit〉J , KD

is an (NI × NI) coefficient matrix whose K D
I,J component is defined as

K D
I,J =

Np∑

p=1

V 0
p

(
ΦI (Xp)ΦJ (X p) + c0

−→∇ 0ΦI (Xp) · −→∇ 0ΦJ (Xp)
)

(8.79)

and FD is a force-like vector, which is given by

FD
I =

Np∑

p=1

V 0
pΦI (Xp)ΔDinit

p (8.80)

It acts as the damage initiation driving force.
The integration of the gradient damage enhanced formulation into the TLMPM

algorithm (see Algorithm 4) is performed as follows: (1) The matrix KD is built
during the initialisation part and is done only once, (2) During the G2P step, after
the update of the stress tensors, the local damage initiation increment is calculated,
then the vector FD is updated and Eq. (8.78) is solved. The local damage update in
Algorithm 9 is replaced by the new nonlocal counterpart in Algorithm 17.

Algorithm 17 Damage algorithm (nonlocal gradient formulation).
1: Inputs:Δεt+Δt

p (incremental equivalent plastic strain),σ t+Δt , 〈Dt
init〉 (damage initiation variable)

2: Outputs: 〈Dt+Δt
init 〉 (updated damage initiation variable), Dt+Δt (updated damage)

3: σ ∗ = − p̂/σeq � Compute stress triaxiality
4: ε f = [

D1 + D2 exp(D3σ
∗)

] [1 + D4 ln(ε̇∗
p)] � Strain at failure

5: Compute the local damage initiation increment: ΔDinit = Δεt+Δt
p
ε f

6: Update FD : FD
I = ∑Np

p=1 V
0
pΦI (Xp)ΔDinit

7: Inverse the nonlocal system: D = (
KD

)−1
FD � DJ = 〈ΔDinit〉J

8: Compute the damage initiation increment at particle p: 〈ΔDinit〉 = ∑NI
J=1 ΦJ (Xp)〈ΔDinit〉J

9: 〈Dt+Δt
init 〉 = 〈Dt

init〉 + 〈ΔDinit〉
10: if 〈Dt+Δt

init 〉 ≥ 1 then � Damage has initiated

11: Dt+Δt = 10
(
〈Dt+Δt

init 〉 − 1
)

12: else � Damage has not initiated
13: Dt+Δt = 0
14: end if

Thus, in a computational cycle of the MPM, whereas the balance of momentum
equation is solved explicitly, the damage equation, Eq. (8.78), is solved implicitly.

8.6 Some Fracture Simulations 287

The good thing is that this equation is a linear one and is solved using fast and efficient
linear solvers provided by the PETSC library.

Remark 46 Algorithmically, our formulation is similar to the phase-field fracture of
Kakouris andTriantafyllou (2017b)which is also implemented in anMPM(ULMPM
precisely). However a phase-field model is a regularised fracture mechanics formu-
lation whereas ours is actually a purely damage mechanics formulation. We refer to
Mandal et al. (2019a) for details.

8.6 Some Fracture Simulations

This section presents some fracture simulations using the TLMPM and the Johnson-
Cook damage models. In Sect. 8.6.1 the necking and fracture of a smooth cylinder
specimen made of Weldox steel alloys is studied using a local JC model. Next,
common fracture tests are provided in Sects. 8.6.2, 8.6.3, solved with a nonlocal JC
model demonstrating the mesh objectivity of the formulation. All these simulations
are quasi-static. In Sect. 8.6.5 a dynamic fracture simulation is presented: the fracture
of a Weldox steel alloys plate penetrated by a blunt bullet.

8.6.1 Tensile Test Specimen Experiencing Necking and
Damage

As a simplest demonstration for problems exhibiting large plastic deformations and
eventually fracture, we present 3D simulations of smooth cylindrical tensile sam-
ples made of ductile Weldox steels all the way to failure. The MPM results will be
compared with experimental results given in Dey et al. (2004, 2006) and also with
the FEM (using Abaqus Explicit). The ability to handle very large deformation and
fracture is important for a large range of important engineering problems such as
wear, material penetration etc. As we have previously demonstrated, the TLMPM is
the most efficient and accurateMPM to date,3 we thus use it for these simulations. As
will be seen, the TLMPM is stable when material instabilities occur as experienced
during necking, and it can simulate damage and fracture of ductile materials without
requiring any algorithm changes, contrary to Total-Lagrangian Smoothed Particle
Hydrodynamics (de Vaucorbeil and Hutchinson 2020). In this section, we use the
local Johnson-Cook damage model.

The tensile specimens are 3D smooth cylinders of 30 mm in length and 6 mm in
diameter made of three different Weldox steel alloys: W460E, W700E, and W900E.
These materials were selected because material parameters for the widely used
Johnson-Cook constitutive model (see Sect. 4.3) are available (Dey et al. 2004).

3 We anticipate that GPIC might be slightly better for this problem.

288 8 Contact and Fracture

Table 8.5 Material parameters for Weldox steels. ρ0 is the reference bulk density, E Young mod-
ulus, ν Poisson’s ratio, c0 = √

E/(2(1 − 2ν)ρ0) is the bulk speed of sound, Γ0 Grüneisen Gamma
in the reference state

ρ0 [kg/m3] E (GPa) ν c0 [m/s] Sα Γ0

7750 211 0.33 5166 1.5 0

Table 8.6 Material constants for the Johnson-Cook constitutive model and damage criterion as
proposed by Dey et al. (2006)

Material Yield
stress

Strain hardening Damage

A (MPa) B (MPa) n C D1 D2 D3 D4

Weldox
460E

499 382 0.458 0 0.636 1.936 –2.969 –0.0140

Weldox
700E

859 329 0.579 0 0.361 4.768 –5.107 –0.0013

Weldox
900E

992 364 0.568 0 0.294 5.149 –5.583 0.0023

For these three alloys, their material parameters are directly taken from the literature
and are listed in Tables 8.5 and 8.6. All simulations are supposed to be quasi-static.
Therefore, the influence of the strain rate is not taken into account which is why
C = 0 for all.

For each of the three materials, the TLMPM simulations are performed using
each of the three different shape functions presented in Sect. 3: linear (hat functions),
cubic B-splines, and quadratic Bernstein polynomials. For all these simulations, the
specimens were discretized using a single particle for each cell of the background
mesh,when they liewithin the solid’s boundary surface. The nodes of the background
mesh coincident with the top and bottom faces of the cylinders were subjected to a
velocity ±v of the form vmax (1 − e−t) along the specimen’s axis. A high velocity of
vmax = 1 mm/ms was chosen to decrease the computational time and has no impact
on the results as no strain rate effect was taken into account.

The results of these simulations are presented in Fig. 8.57, alongside results from
FEMsimulations (carried out by the authors) and experimental data published byDey
et al. (2006). One can see that the stress-strain curves as predicted by the TLMPM
is in very good agreement with the FEM. Also, as expected, after damage initiation
a steady decline of stress is observed, similarly to what happens in the finite element
results, but with greater stability. Finally, the numerical simulations are in reasonable
agreement with the experimental data. For all that, they do not quantitatively predict
the strain at failure. This was expected since all the materials parameters are directly
taken from the literature and no calibration was carried out to obtain a better match.

Figure 8.58 shows the typical evolution of both the equivalent stress and damage
variable inside a tensile sample. It shows the formation and evolution of necking

8.6 Some Fracture Simulations 289

(a) W460E (b) W700E (c) W900E

Fig. 8.57 Comparison of the stress-strain curves obtained with the TLMPM, FEM (de Vaucorbeil
et al. 2020) and experimentally by Dey et al. (2006)

a b c d

1000 MPa

0

σeq

1

0

D

Fig. 8.58 Details of the evolution of the equivalent von Mises stress (σeq) and the damage (D)
distribution during the tensile test of a W460E smooth cylinder using linear shape functions (de
Vaucorbeil et al. 2022b). Visualization done with Ovito (Stukowski 2009)

in the specimen, as well as how the damage initiates and propagates inside the
sample. These results prove that the simulation of ductile materials all the way to
failure is possible using the TLMPM. Note that one should be careful when using
the ULMPM for modeling fracture as numerical fracture is inherent in any particle
methods adopting an UL formulation (Homel et al. 2016).

290 8 Contact and Fracture

8.6.2 Double Circular Notched Specimen

This example consists of a a square specimen with asymmetrically placed two large
circular notches loaded in tension (Fig. 8.59). More specifically, the left and upper
edges of the specimen are pulled vertically upwardwhile the lower and right edges are
restrained. This is a problem without sharp discontinuity. This example is interesting
owing to the curved nature of the obtained crack pattern joining the two notches in
diagonal. The material is W700E. The hydrostatic pressure follows a linear EOS, see
Eq. (4.11).

As expected, the crack has a curved trajectory and initiates around the notches
(Fig. 8.60). However, the initiation does not happen exactly at the notch edge. This
phenomenon is an artefact of the Johnson-Cook damage criterion and is not related
to the enhanced gradient formulation. Indeed, the stress-triaxiality level is large at
the centre of the specimen (Fig. 8.61a). Therefore, the failure strain ε f given by Eq.
(4.16) is higher at the centre. But, the plastic equivalent strain is higher near the edges
(Fig. 8.61b). Owing to the damage initiation increment (Eq. (4.16)) being the ratio
between the equivalent plastic strain increment and the stress triaxiality level, there
is a competition between these two quantities along the expected crack path of this

10

10

1.0
1.0
2.5

1.0
1.0
2.0

u∗

Fig. 8.59 Double circular notched specimen: geometry, loading and boundary conditions. The
material is W700E (de Vaucorbeil et al. 2022b)

(a) εp = 1.314 (b) εp = 1.968 (c) εp = 2.176

0

1

D

Fig. 8.60 Double circular notched specimen: evolution of damage (on the deformed configuration).
The results are shown for ld = 2.5 mm with l0 = 0.10 mm (de Vaucorbeil et al. 2022b)

8.6 Some Fracture Simulations 291

(a) Triaxiality

0.82

4.28

− σm

σeq

(b) εp

0.0

1.31

εp

Fig. 8.61 Double circular notched specimen: hydrostatic pressure σm and plastic strain εp at
damage initiation (Fig. 8.60a). The results are shown for ld = 2.5 mm with l0 = 0.10 mm (de
Vaucorbeil et al. 2022b)

(a) εp = 1.069 (b) εp = 1.583 (c) εp = 1.584

0

1

D

Fig. 8.62 Double circular notched specimen: evolution of damage ignoring the effect of triaxiality
in the computation of the equivalent strain at failure (i.e., D2 = 0 in Eq. (4.16)). Results shown in
the reference/initial configuration. The results are shown for ld = 2.5 mm with l0 = 0.10 mm (de
Vaucorbeil et al. 2022b)

specimen. This results in damage initiating somewhere in between the centre and
notch-edge (Fig. 8.60a).

This explanation can be verified by removing the effect of triaxiality from the
failure strain ε f in Eq. (4.16) such that it is constant. This is done by setting D2 = 0.0.
This results in a crack that do initiate at the edge of the notch as one can see in Fig.
8.62. The path itself remains qualitatively unchanged.

For the stress-strain response (with D2 = 4.768) shown in Fig. 8.63a, one
can see that no residual stress persists once the specimen has fully cracked.
Moreover, the response is nearly identical for all the tested cell sizes, i.e., l0 =
{1.00 mm, 0.50 mm, 0.25 mm}. The spatial convergence is further confirmed from
the value of engineering strains at damage initiation and final failure (Fig. 8.63b).

8.6.3 Compact Tension Specimen

This example concerns a standard mode-I ductile fracture problem where a notched
specimen is pulled from two circular hinges located at the top and bottom, respec-
tively, as shown in Fig. 8.64. This quasi-static fracture problem is popuplar as it is

292 8 Contact and Fracture

Fig. 8.63 Double circular notched specimen: load-deformation response. Linear weighting func-
tionwith single particle per cell is considered. The nonlocal length scale ld = 2.5mm (deVaucorbeil
et al. 2022b)

Fig. 8.64 Schematic of the
CT specimen. The shaded
areas correspond to rigid
hinges being inserted in the
holes. The hinges are explicit
modeled and a hard contact
between them and the
specimen is adopted (de
Vaucorbeil et al. 2022b)

2

Dia 12
2 holes

u

u=0

14.5

14.5

64
50

30

30

25

60◦

common mechanical test. The material is W700E. The hydrostatic pressure follows
a linear EOS.

Following the contact procedures developed in Sect. 8.2, a hard contact between
the rigid hinges and holes has been implemented. The same vertical velocity as
before is applied at the center of each hinge (i.e., v(t) = ±2(1.0 − e−t) m/s). The
force is transferred from the hinges to the specimen via unilateral contacts. The
opposite displacement of the hinges generates a stress concentration at the notch tip,
which results in localization of plastic deformation. The accumulated plastic strain
causes damage initiation and propagation following Eq. (8.67). The propagation is
horizontal in this case, as expected (Fig. 8.65).

The load-deformation response is shown in Fig. 8.66. The resistance of the spec-
imen increases with applied strain until damage initiates. Then, the resistance of the
specimen (force) plummets as damage propagates. It is worth noting that the load-
deformation response converges with spatial refinement. Indeed, responses obtained
with l0 ≤ 0.25 mm are virtually identical.

8.6 Some Fracture Simulations 293

(a) εp = 0.750 (b) εp = 0.969 (c) εp = 1.324 (d) εp = 1.840

0

1

D

Fig. 8.65 Compact tension specimen: evolution of damage. The results are shown for ld = 2.5 mm
with l0 = 0.50mm. Linear weighting function with single particle per cell is considered (de Vaucor-
beil et al. 2022b)

Fig. 8.66 Compact tension specimen: load-deformation response. Linear weighting function with
single particle per cell is considered. The nonlocal length scale ld = 2.5 mm (de Vaucorbeil et al.
2022b)

8.6.4 Machining Simulations

Machining is a controlled material removal process in which a piece of material is
cut into a desired final shape and size. It is one of the most prominent industrial appli-
cations in the manufacturing field. Numerical simulations play an important role in
improving this crucial process. During the material cutting process, severe deforma-
tions occur. Thus, accurate simulations of the process with mesh-based methods (i.e.
finite element methods) is complicated owing to mesh distortion problems. There-
fore, particle based methods like the MPM seem more appropriate for this kind of
simulations.

294 8 Contact and Fracture

WORKPIECE

CHIP

CUTTING

v

TOOL

h

L

d
γ

α L = 1 mm
h = 0.3 mm

α = 8◦

γ = 3◦

v = 50 mm/ms

d = 0.15 mm

Fig. 8.67 Schematic of the 2D machining simulation setup

Table 8.7 Material parameters for the high strength steel used in the machining simulation

Material parameters Flow stress params EOS params Damage params

Density 7750 kg/m3 A 980 MPa c0 5166 m/s D1 0.05

Young’s
modulus

211 GPa B 2000 MPa Sα 1.5 D2 0.8

Poisson’s
ratio

0.33 C 0 Γ0 2.17 D3 –0.44

n 0.83 D4 0

D5 0

The total Lagrangian MPM is here used to simulate the cutting process of a
workpiece which is a slab of 1 mm in length, and 0.3 mm in height (Fig. 8.67). The
material of the workpiece is a high strength steel of which elasto-plastic and damage
parameters, taken from Banerjee et al. (2015), are given in Table 8.7. The cutting
depth and speeds are 0.15 mm and 50 mm/ms, respectively.

To save computational time, 2Dsimulations are considered andonly theworkpiece
is discretized. The cutting tool is not modeled by particles, but rather by a force
derived from Hertz’ contact theory:

Ftool = π

2
G

(
1 + ν

1 − ν2

)
p3/2 (8.81)

whereG is the substrate’s shear modulus, ν its Poisson’s ration, and p the penetration
distance between a particle and the cutting tool. The contact between the tool and the
workpiece is supposed to be frictionless, therefore the direction of Ftool is normal to
the tool’s cutting surface.

The use of TLMPM is here motivated by the necessity to have material separation
that is independent of the background grid size, i.e. described only by physic-based
damage equations. This is because the ULMPM usually suffers from numerical frac-

8.6 Some Fracture Simulations 295

Fig. 8.68 Cutting process of
a high strength steel (2D
model) 1

0

Damage

Fig. 8.69 Cutting force
evolution profile

turewhen particles are separated sufficiently far from each others. The results of these
simulations showcases the abilities of the TLMPM implementation in Karamelo to
simulate the formation and detachment of chips from the workpiece (See Figs. 8.68
and 8.69).

8.6.5 High Velocity Impact of a Bullet Into a Steel Plate

The simulation of impacts such as ballistic penetration is a great application for the
TLMPM (explicit) as it involves large deformation, high strain rates and failure. Dey
et al. (2006) have performed experiments of blunt projectile impacts onto Weldox
steel plates over a large range of velocities. They also have simulated these impacts
with FEM and found that when decreasing the mesh size the ballistic limit predicted
decreased without ever reaching convergence.

Although Dey et al. (2006) have studied the response of three different alloys
(Weldox 400E, 700E, and 900E), only one, the Weldox 700E, is studied here. This

296 8 Contact and Fracture

Fig. 8.70 Impact setup in
3D: a blunt projectile
(cylinder) in launched at a
cylindrical plate. The grey
shade indicates fixed
boundary conditions (de
Vaucorbeil et al. 2022b)

12 mm

R=250 mm

80 mm

v
Ø 20 mm

is motivated by the fact that problems and challenges are the same for these three
materials. The hydrostatic pressure follows a linear EOS.

The projectile is a steel cylinder 20 mm in diameter, 80 mm in length launched at
a speed v ranging from 150 to 400 m/s towards a 12 mm thick plate which radius is
250 mm (see Fig. 8.70). The periphery of the plate is clamped. The problem being
axisymmetrical, 2D axisymmetric simulations are performed here (see 2.7.2 for the
axisymmetric TLMPM). The contact between the projectile and the plate is handled
via the contact algorithm previously described in Sect. 8.2.

The projectile is modeled as a linearly elastic material with amodulus of 204 GPa,
Poisson’s ratio of 0.33, and density 7850 kg/m3 (Dey et al. 2006).At first, the nonlocal
radius is taken here as ld = 1.0 mm. But its influence will be discussed later. The
projectile and the target are discretizedwith 1 and 2 × 2 particle per cell, respectively.

Experimentally, the quantities of interest are the initial and residual velocities of
the projectile. The residual velocity is the velocity of the projectile after penetration.
If the projectile does not penetrate the target, this velocity is taken as zero. In order to
compare the simulation and experimental results, the velocity of projectile is taken
as the average velocity of all its particles.

Particle erosion. For an initial velocity of 250 m/s and a cell size of l0 = 0.5mm, the
obtained velocity profile of the projectile is shown in Fig. 8.71. In this discussion time
starts (i.e., t = 0) when the projectile first touches the target. Starting with an initial
velocity of 250m/s, one observes a rapid drop in the projectile’s velocity owing to the
absorption of a part of its kinetic energy by the target. At t ≈ 15 µs (see Fig. 8.72a),
the first signs of damage appear in the target, and by t = 50 µs, the target is fully
damage and is thus perforated (see Fig. 8.72b). However, the velocity of the projectile
keeps decreasing. This decrease happens step by step. These steps correspond to a
contact between the projectile and the plug as seen in Fig. 8.72c. After each one of
these contacts, the plug velocity increases significantly and becomes higher than that
of the projectile. Then a gap forms, as seen in Fig. 8.72d. Since no external forces are
considered, the plug’s velocity should not decrease after having pulled away from the
projectile. Thus, the projectile should not enter in contact with it after it has separated
from the target. The hypothesis is that there is still a transmission of forces between

8.6 Some Fracture Simulations 297

Fig. 8.71 Time evolution of the projectile velocity obtained without particle erosion. The initial
velocity is 250 m/s. The cell size is l0 = 0.5 mm (de Vaucorbeil et al. 2022b)

Fig. 8.72 Time evolution of impact between the projectile and the target for an initial velocity of
250 m/s (w/o particle erosion). The colors show the amount of damage present in each particles.
For ease of visualisation, only a small part of the simulated domain focused around the impact area
is shown (de Vaucorbeil et al. 2022b)

the target and the plug via the damaged particles. This can be due to the velocity of
the damage particles still being taken into account in the computation of the nodes’
velocity during the P2G step (Algorithm 4).

To test this hypothesis, fully damaged particles will not be taken into account
during the mapping from particles to grid (P2G). Thus, the nodal masses, velocities,
and forces will not be function of that of the fully damaged particles. And this
particle erosion technique is similar to element deletion in FEM.The same simulation
as presented above is then repeated (initial velocity of 250 m/s and a cell size of
l0 = 0.5 mm). The obtained projectile velocity profile (Fig. 8.73) shows that after
t ≈ 60 µs, the velocity is constant and does not go down step by step as in the case
without particle erosion (Fig. 8.71). Moreover, from the time evolution of the impact
(Fig. 8.74), one can see that compared to what happened without particle erosion,
the plug separates more from both the target and the projectile.

298 8 Contact and Fracture

Fig. 8.73 Time evolution of the projectile velocity obtained with particle erosion. The initial veloc-
ity is 250 m/s. The cell size is l0 = 0.5 mm (de Vaucorbeil et al. 2022b)

Fig. 8.74 Time evolution of impact between the projectile and the target for an initial velocity of
250 m/s (with particle erosion). The colors show the amount of damage present in each particles.
For ease of visualisation, only a small part of the simulated domain focused around the impact area
is shown (de Vaucorbeil et al. 2022b)

Since particle erosion solves the issue of the projectile velocity continuously drop-
ping after penetration of the target, it will be used in subsequent simulations.

Validation against experiments. Before being able to simulate the residual veloc-
ities for different initial velocities, one has to ensure the convergence of the results.
The convergence has been studied by decreasing the background cell size from 1.0
to 0.125 mm keeping the initial velocity constant at 250 m/s, with particle erosion
activated. Figure 8.75 shows that the residual velocity converges as it is constant for
cell sizes lower than 0.125 mm.

The validation of the nonlocal TLMPM method proposed here has been done by
simulating the residual velocity as a function of the initial projectile velocity. The
cell size is taken as l0 = 0.125 mm. And the nonlocal radius is ld = 1.0 mm. The

References 299

Fig. 8.75 Convergence of
the residual velocity with
respect to the cell sizes (de
Vaucorbeil et al. 2022b)

Fig. 8.76 Residual velocity
versus initial velocity (de
Vaucorbeil et al. 2022b)

obtained results are plotted in Fig. 8.76 alongside both the experimental and the FEM
results published byDey et al. (2006). One can see that very good agreement has been
reached with the FEM and that good agreement is obtained with the experiments for
velocities greater than 225 m/s.

References

Banerjee, A., Dhar, S., Acharyya, S., Datta, D., Nayak, N.: Determination of johnson cook material
and failuremodel constants and numerical modelling of charpy impact test of armour steel.Mater.
Sci. Eng., A 640, 200–209 (2015). https://doi.org/10.1016/j.msea.2015.05.073. Jul

Bardenhagen, S.G., Kober, E.M.: The generalized interpolation material point method. Comput.
Model. Eng. Sci. 5(6), 477–495 (2004)

Bardenhagen, S.G., Brackbill, J.U., Sulsky, D.: The material-point method for granular materials.
Comput. Methods Appl. Mech. Eng. 187(3–4), 529–541 (2000)

Bardenhagen, S.G., Guilkey, J.E., Roessig, K.M., Brackbill, J.U., Witzel, W.M., Foster, J.C.: An
improved contact algorithm for the material point method and application to stress propagation
in granular material. Comput. Model. Eng. Sci. 2(4), 509–522 (2001)

https://doi.org/10.1016/j.msea.2015.05.073

300 8 Contact and Fracture

Belytschko, Ted, Neal, Mark O.: Contact-impact by the pinball algorithm with penalty and
lagrangian methods. Int. J. Numer. Meth. Eng. 31(3), 547–572 (1991). https://doi.org/10.1002/
nme.1620310309

Bourdin, B., Francfort, G.A., Marigo, J.J.: Numerical experiments in revisited brittle fracture. J.
Mech. Phys. Solids 48(4), 797–826 (2000)

Budyn, E., Zi, G., Moës, N., Belytschko, T.: A method for multiple crack growth in brittle materials
without remeshing. Int. J. Numer. Meth. Eng. 61(10), 1741–1770 (2004)

Campbell, J., Vignjevic, R., Libersky, L.: A contact algorithm for smoothed particle hydrodynam-
ics. Comput. Methods Appl. Mech. Eng. 184(1), 49–65 (2000). https://doi.org/10.1016/s0045-
7825(99)00442-9

Cheon, Y.-J., Kim, H.-G.: An adaptive material point method coupled with a phase-field fracture
model for brittle materials. Int. J. Numer, Methods Eng (2019)

Coetzee, C.J.: The modelling of granular flow using the particle-in-cell method. Ph.D. thesis, Uni-
versity of Stellenbosch (2003)

de Vaucorbeil, A., Nguyen, C.P., Sinaie, S., Wu, J.Y.: Chapter Two - Material Point Method After
25 Years: Theory, Implementation, and Applications. Advances in Applied Mechanics, vol. 53,
pp. 185–398. Elsevier (2020)

de Vaucorbeil, A., Hutchinson, C.R.: A new total-Lagrangian smooth particle hydrodynamics
approximation for the simulation of damage and fracture of ductile materials. Int. J. Numer.
Methods Eng. 121, 2227–2245 (2020)

de Vaucorbeil, A., Nguyen, C.P.: Modeling contacts with a total lagrangian matertial point method.
Comput. Methods Appl. Mech. Eng. 360, 112783 (2021). https://doi.org/10.1016/j.cma.2019.
112783

de Vaucorbeil, A., Nguyen, V.P.: Karamelo: an open source parallel C++ package for the matertial
point method. Comput. Particle Mech. 8, 767–789 (2021)

de Vaucorbeil, A., Nguyen, V.P., Hutchinson, C.R.: A Total-Lagrangian material point method for
solid mechanics problems involving large deformations. Comput. Methods Appl. Mech. Eng.
360, 112783 (2020). https://doi.org/10.1016/j.cma.2019.112783

de Vaucorbeil, A., Nguyen, V.P., Hutchinson, C.R., Barnett, M.R.: Total lagrangian material point
method simulation of the scratching of high purity coppers. Int. J. Solids Struct. 239–240, 111432
(2022)

de Vaucorbeil, A., Nguyen, V.P., Mandal, T.K.: Mesh objective simulations of large strain ductile
fracture: a new nonlocal johnson-cook damage formulation for the total lagrangian material point
method. Comput. Methods Appl. Mech. Eng. 389, 114388 (2022)

Dey, S., Børvik, T., Hopperstad, O.S., Leinum, J.R., Langseth, M.: The effect of target strength
on the perforation of steel plates using three different projectile nose shapes. Int. J. Impact Eng
30(8), 1005–1038 (2004)

Dey, S., Børvik, T., Hopperstad, O.S., Langseth, M.: On the influence of fracture criterion in pro-
jectile impact of steel plates. Comput. Mater. Sci. 38(1), 176–191 (2006)

Elices, M.G.G.V., Guinea, G.V., Gomez, J., Planas, J.: The cohesive zone model: advantages, lim-
itations and challenges. Eng. Fract. Mech. 69(2), 137–163 (2002)

Francfort, G.A.,Marigo, J.J.: Revisiting brittle fracture as an energyminimization problem. J.Mech.
Phys. Solids 46(8), 1319–1342 (1998)

Geuzaine, C., Remacle, J.F.: Gmsh: a three-dimensional finite element mesh generator with built-in
pre- and post-processing facilities. Int. J. Numer. Meth. Eng. 79(11), 1309–1331 (2009)

Gilabert, F.A., Cantavella, V., Sánchez, E., Mallol, G.: Modelling fracture process in ceramic mate-
rials using the material point method. EPL (Europhys. Lett.) 96(2), 24002 (2011)

Gray, J.P., Monaghan, J.J., Swift, R.P.: Sph elastic dynamics. Comput. Methods Appl. Mech. Eng.
190(49–50), 6641–6662 (2001)

Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Londres 221,
163–198 (1920)

Guo, Y., Nairn, J.A.: Calculation of j-integral and stress intensity factors using the material point
method. Comput. Model. Eng. Sci. 6, 295–308 (2004)

https://doi.org/10.1002/nme.1620310309
https://doi.org/10.1002/nme.1620310309
https://doi.org/10.1016/s0045-7825(99)00442-9
https://doi.org/10.1016/s0045-7825(99)00442-9
https://doi.org/10.1016/j.cma.2019.112783
https://doi.org/10.1016/j.cma.2019.112783
https://doi.org/10.1016/j.cma.2019.112783

References 301

Homel, M.A., Herbold, E.B.: Field-gradient partitioning for fracture and frictional contact in the
material point method. Int. J. Numer. Meth. Eng. 109(7), 1013–1044 (2017)

Homel, M.A., Brannon, R.M., Guilkey, J.: Controlling the onset of numerical fracture in paral-
lelized implementations of the material point method (MPM) with convective particle domain
interpolation (CPDI) domain scaling. Int. J. Numer. Meth. Eng. 107(1), 31–48 (2016)

Huang, P., Zhang, X.,Ma, S., Huang, X.: Contact algorithms for thematerial point method in impact
and penetration simulation. Int. J. Numer. Meth. Eng. 85(4), 498–517 (2011)

Inglis, C.E.: Stresses in plates due to the presence of cracks and sharp corners. Trans. Inst. Naval
Arch. 55, 219–241 (1913)

Kakouris, E.G., Triantafyllou, S.P.: Phase-field material point method for brittle fracture. 2020. Int.
J. Numer. Methods Eng. 112(12), 1750–1776 (2017b)

Kakouris, E.G., Triantafyllou, S.P.: Material point method for crack propagation in anisotropic
media: a phase field approach. Arch. Appl, Mech (2017)

Kuhn, C., Müller, R.: A continuum phase field model for fracture. Eng. Fract. Mech. 77(18), 3625–
3634 (2010)

Lemiale, V., Nairn, J., Hurmane, A.: Material point method simulation of equal channel angular
pressing involving large plastic strain and contact through sharp corners. Comput. Model. Eng.
Sci. 70(1), 41–66 (2010)

Leroch, S., Varga,M., Eder, S.J., Vernes, A., Rodriguez Ripoll,M., Ganzenmüller, G.: Smooth parti-
cle hydrodynamics simulation of damage induced by a spherical indenter scratching a viscoplastic
material. Int. J. Solids Struct. 81(Supplement C), 188–202 (2016)

Li, B., Kidane, A., Ravichandran, G., Ortiz, M.: Verification and validation of the optimal trans-
portation meshfree (OTM) simulation of terminal ballistics. Int. J. Impact Eng 42, 25–36 (2012)

Li, X., Sovilla, B., Jiang, C., Gaume, J.: Three-dimensional and real-scale modeling of flow regimes
in dense snow avalanches. Landslides 18(10), 3393–3406 (2021)

Liang, Y., Benedek, T., Zhang, X., Liu, Y.: Material point method with enriched shape function for
crack problems. Comput. Methods Appl. Mech. Eng. 322, 541–562 (2017)

Lin, L., Blackman, G.S., Matheson, R.R.: Quantitative characterization of scratch and mar behavior
of polymer coatings. Mater. Sci. Eng., A 317(1–2), 163–170 (2001). https://doi.org/10.1016/
s0921-5093(01)01159-5

Mandal, T.K., Nguyen, V.P., Wu, J.-Y.: Length scale and mesh bias sensitivity of phase-field models
for brittle and cohesive fracture. Eng. Fract. Mech. 217(106532) (2019b)

Mandal, T.K., Nguyen, V.P., Heidarpour, A.: Phase field and gradient enhanced damage models for
quasi-brittle failure: a numerical comparative study. Eng. Fract. Mech., 207(48–67), 2019a

Mandal, T.K., Nguyen, V.P., Wu, J.-Y.: A length scale insensitive anisotropic phase field fracture
model for hyperelastic composites. Int. J. Mech. Sci. 188, 105941 (2020)

Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing.
Int. J. Numer. Meth. Eng. 46(1), 133–150 (1999)

Müller, M., Chentanez, N., Kim, T.-Y., Macklin,M.: Air meshes for robust collision handling. ACM
Trans. Graph. (TOG) 34(4), 133 (2015)

Nairn, J.A.:Material point method calculations with explicit cracks. Comput.Model. Eng. Sci. 4(6),
649–663 (2003)

Nairn, J.A.: Material point method simulations of transverse fracture in wood with realistic mor-
phologies. Holzforschung 61(4), 375–381 (2007)

Nairn, J.A.: Numerical implementation of imperfect interfaces. Comput.Mater. Sci. 40(4), 525–536
(2007)

Nairn, J.A., Bardenhagen, S.G., Smith, G.D.: Generalized contact and improved frictional heating
in the material point method. Comput Particle Mech. 5(3), 285–296 (2018)

Nguyen, C.T., Nguyen, V.P., de Vaucorbeil, A., Mandal, T.K., WU, J.Y.: Jive: An open source,
research-oriented C++ library for solving partial differential equations. Adv. Eng. Softw.
150(102925) (2020)

https://doi.org/10.1016/s0921-5093(01)01159-5
https://doi.org/10.1016/s0921-5093(01)01159-5

302 8 Contact and Fracture

Nguyen, V.P., de Vaucorbeil, A., Nguyen-Thanh, C., Mandal, T.K.: A generalized particle in cell
method for explicit solid dynamics. Comput. Methods Appl. Mech. Eng. 360, 112783 (2021).
https://doi.org/10.1016/j.cma.2019.112783

Oliver, J., Hartmann, S., Cante, J.C., Weyler, R., Hernández, J.A.: A contact domain method for
large deformation frictional contact problems. part 1: Theoretical basis. Comput. Methods Appl.
Mech. Eng. 198(33–36), 2591–2606 (2009)

Pandolfi, A., Li, B., Ortiz,M.:Modeling Fracture byMaterial-Point Erosion, pp. 3–16. Cham (2014)
Pandolfi, A., Ortiz, M.: An eigenerosion approach to brittle fracture. Int. J. Numer. Meth. Eng.
92(8), 694–714 (2012)

Peerlings, R.H.J., de Borst, R., Brekelmans, W.A.M., Geers, M.G.D.: Localisation issures in local
and nonlocal continuum approaches to fracture. European J. Mech. A/Solids 21, 7207–7229
(2002)

Randles, P.W., Libersky, L.D.: Smoothed particle hydrodynamics: some recent improvements and
applications. Comput. Methods Appl. Mech. Eng. 139(1–4), 375–408 (1996). ISSN 0045-7825

Rice, J.R.: A path independent integral and the approximate analysis of strain cncentrations by
notches and cracks. J. Appl. Mech.-T. ASME 35, 379–386 (1968)

Schmidt, B., Fraternali, F., Ortiz, M.: Eigenfracture: an eigendeformation approach to variational
fracture. Multiscale Model Simul. 7(3), 1237–1266 (2009)

Steffen, M., Kirby, R.M., Berzins, M.: Analysis and reduction of quadrature errors in the material
point method (MPM). Int. J. Numer. Meth. Eng. 76(6), 922–948 (2008)

Stukowski, A.: Visualization and analysis of atomistic simulation data with ovito-the open visual-
ization tool. Modell. Simul. Mater. Sci. Eng. 18(1), 015012 (2009)

Sulsky, D., Brackbill, J.U.: A numerical method for suspension flow. J. Comput. Phys. 96(2), 339–
368 (1991)

Sulsky, D., Schreyer, H.L.: Axisymmetric form of the material point method with applications to
upsetting and Taylor impact problems. Comput. Methods Appl. Mech. Eng. 139, 409–429 (1996)

Sulsky, D., Zhou, S.J., Schreyer, H.L.: Application of a particle-in-cell method to solid mechanics.
Comput. Phys. Commun. 87(1–2), 236–252 (1995)

Sutula, D., Kerfriden, P., van Dam, T., Bordas, S.P.A.:Minimum energymultiple crack propagation.
In: XFEM Computer Implementation and Applications. Engineering Fracture Mechanics, Part
III (2017)

Tan, H., Nairn, J.A.: Hierarchical, adaptive, material point method for dynamic energy release rate
calculations. Comput. Methods Appl. Mech. Eng. 191(19–20), 2123–2137 (2002)

Trucano, T.G., Grady, D.E.: Study of intermediate velocity penetration of steel spheres into deep
aluminum targets. Technical report, Sandia National Labs., Albuquerque, NM (USA) (1985)

Villumsen, M.F., Fauerholdt, T.G.: Simulation of Metal Cutting Using Smooth Particle Hydrody-
namics. LS-DYNAAnwenderforum, Bamberg, vol. 30 (2008). http://refhub.elsevier.com/S0020-
7683(15)00487-4/sbref0045

Wang, H., Wereszczak, A.A., Lance, M.J.: Effect of grain size on dynamic scratch response
in alumina. In: Mechanical Properties and Performance of Engineering Ceramics II: Ceramic
Engineering and Science Proceedings, vol. 27, Issue 2, pp. 767–779. Wiley, Inc. (2006)
10.1002/9780470291313.ch72

Wang, Jian: Chan, Dave: Frictional contact algorithms in SPH for the simulation of soil-structure
interaction. Int. J. Numer. Anal.Meth. Geomech. 38(7), 747–770 (2014). https://doi.org/10.1002/
nag.2233

Wang, B., Karuppiah, V., Lu, H., Komanduri, R., Roy, S.: Two-dimensional mixed mode crack
simulation using the material point method. Mech. Adv. Mater. Struct. 12(6), 471–484 (2005)

Wolper, J., Fang, Y., Li, M., Lu, J., Gao, M., Jiang, C.: Chenfanfu: Cd-mpm: continuum damage
material point methods for dynamic fracture animation. ACM Trans. Graph. (TOG) 38(4), 119
(2019)

Wriggers, P.: Computational Contact Mechanics, 2nd edn. Springer (2006)
Wriggers, P., Schröder, J., Schwarz, A.: A finite element method for contact using a third medium.
Comput. Mech. 52(4), 837–847 (2013)

https://doi.org/10.1016/j.cma.2019.112783
http://refhub.elsevier.com/S0020-7683(15)00487-4/sbref0045
http://refhub.elsevier.com/S0020-7683(15)00487-4/sbref0045
https://doi.org/10.1002/nag.2233
https://doi.org/10.1002/nag.2233

References 303

Wu, J.Y., Nguyen, V.P., Nguyen, C.T., Sutula, D., Sinaie, S., Bordas, S.: Phase field modeling of
fracture. In: Advances in Applied Mechancis: Fracture Mechanics: Recent Developments and
Trends, vol. 53:submitted (2019)

Wu, J.Y.: A unified phase-field theory for the mechanics of damage and quasi-brittle failure in
solids. J. Mech. Phys. Solids 103, 72–99 (2017)

Wu, J.Y., Nguyen, V.P.: A length scale insensitive phase-field damage model for brittle fracture. J.
Mech. Phys. Solids 119, 20–42 (2018)

Wu, J.-Y., Huang, Y., Zhou, H., Nguyen, V.P.: Three-dimensional phase-field modeling of mode i
+ ii/iii failure in solids. Comput. Methods Appl. Mech. Eng. 373, 113537 (2021)

York, A.R.: Development of modifications to the material point method for the simulation of thin
membranes, compressible fluids, and their interactions. Ph.D. thesis, The University of New
Mexico, Albuquerque (1997)

Chapter 9
Stability, Accuracy and Recent
Improvements

Even though the MPM, as it has been introduced in this book up to this point, has
been used with great success in solving many challenging engineering problems (see
Chap. 1 for applications of the MPM), its convergence rate of (precisely that of the
updated Lagrangian variants) are poor in the case of simple academic problems. The
issues are: (1) the MPM does not converge quadratically (the best rate we can hope
for) and (2) for very fine grid resolutions, the method does not converge at all.

In order to develop better MPMs, a deeper understanding of the stability and
accuracy of the method is necessary. This will be achieved in this chapter through a
detailed mathematical analysis of the MPM.

The chapter begins with an analysis of energy and momenta conservation
(Sect. 9.1). To quantify the convergence rate of the MPM, the method of manu-
factured solutions is often used. An introduction to the method of manufactured
solutions is thus given in Sect. 9.2. Also discussed are error norms and how to com-
pute the convergence rate. Next, we discuss the improved MPM (Sect. 9.3)–which
is a recent development in the MPM community–in which the moving least square
is used to improve the particle to grid mapping. Then, the Affine Particle in Cell
(APIC)–a recent development from the computer graphics community (Sect. 9.4) is
introduced. Section9.5 presents various tests to study the convergence rate of differ-
ent MPM variants. Finally, we discuss methods to mitigate volumetric locking in the
MPM (Sect. 9.6).

Like most meshfree/particle methods, analysis of the method is not an easy task.
This difficulty stems from the fact that there are more than one type of error in the
MPM: interpolation error, temporal error, quadrature error, particle to grid mapping
error etc. which are all inter-related. The lack of an analysis framework for theMPM,
as found in FE methods, makes it difficult to explain unexpected numerical artifacts
often seen during simulations. Only a few works were published on this difficult
but important topic e.g. Wallstedt and Guilkey (2008); Tran et al. (2010); Steffen
et al. (2008a, b, 2010); Gritton and Berzins (2017); Hammerquist and Nairn (2017);
Berzins (2018).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. P. Nguyen et al., The Material Point Method, Scientific Computation,
https://doi.org/10.1007/978-3-031-24070-6_9

305

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24070-6_9&domain=pdf
https://doi.org/10.1007/978-3-031-24070-6_9

306 9 Stability, Accuracy and Recent Improvements

9.1 Energy and Momenta Conservation

The stability and accuracy of the MPM is dictated by its ability, or lack of, conserv-
ing the energy and momentum. Here, we first show how the MPM conserves lin-
ear momentum by design (Sect. 9.1.1), but not the angular momentum (Sect. 9.1.2).
Finally, light is shed onto the origins of energy dissipations (Sect. 9.1.3).

9.1.1 Linear Momentum Conservation

As the objective of the MPM algorithm is to mimic the conservation properties of
the continuum, both the total linear and angula momenta should be conserved. As
far as the linear momentum is concerned, the good news is that the algorithm does
so by design.

At the beginning of the time step n, the total linear momentum on the particles is:

Lt =
∑

p

m pv
t
p (9.1)

After the particle to grid step, the total linear momentum on the grid is given by:

∑

I

mt
Iv

t
I =

∑

I

∑

p

m pφI (xtp)v
t
p (9.2)

=
∑

p

m pvtp
∑

I

φI (xtp) (9.3)

Owing to the partition of unity,
∑

I φI (xtp) = 1, therefore:

∑

I

mt
Iv

t
I =

∑

p

m pvtp = Lt (9.4)

This shows that the particle to grid step conserves exactly the total linear momentum.
What about the grid to particle step? To analyze this last step, one needs to distinguish
between the cases where the PIC velocity update is used, and where the FLIP update
is used. In both cases, the total linear momentum at the end of the time step is:

Lt+Δt =
∑

p

m pv
t+Δt
p (9.5)

For both types of velocity update, Lt+Δt is expressed as the function of the vari-
ables on the grid at the end of the momenta update step:

9.1 Energy and Momenta Conservation 307

1. PIC

∑

p

m pvt+Δt
p =

∑

p

m p

∑

I

φI (xtp)v
t+Δt
I

=
∑

I

vt+Δt
I

∑

p

φI (xtp)mp (9.6)

=
∑

I

mt
Iv

t+Δt
I

2. FLIP

∑

p

m pvt+Δt
p =

∑

p

m pvtp +
∑

p

m p

∑

I

φI (xtp)(v
t+Δt
I − vtI)

=
∑

p

m pvtp +
∑

I

(vt+Δt
I − vtI)

∑

p

φI (xtp)mp (9.7)

=
∑

p

m pvtp +
∑

I

mt
Iv

t+Δt
I −

∑

I

mt
Iv

t
I

=
∑

I

mt
Iv

t+Δt
I

Therefore, whatever the velocity update formulation used (PIC, or FLIP, or linear
combination of both), the grid to particule step also conserves exactly the total linear
momentum. This proves that the total linear momentum is always conserved in the
MPM. Note that the same is true for TLMPM, as one can easily see by changing
φI (xtp) to φI (Xp).

9.1.2 Angular Momentum Conservation

The story about the angular momentum conservation in MPM is quite different from
that of the linear momentum. Indeed, nothing in the design of the method enforces
its conservation as we shall see.

At the beginning of the time step n, the total angular momentum with respect to
the origin is:

Jtp =
∑

p

xtp × mpv
t
p (9.8)

Similarly to Sect. 9.1.1, the total angular momentum of the grid nodes with respect
to the origin after the particle-to-grid projection Jth is:

308 9 Stability, Accuracy and Recent Improvements

Jth =
∑

I

xI × mt
Iv

t
I =

∑

I

xI ×
∑

p

m pφI (xtp)v
t
p

= −
∑

p

m pvtp ×
∑

I

φI (xtp)xI (9.9)

Noting that
∑

I φI (xtp)xI = xp, the previous equation yields:

∑

I

xI × mt
Iv

t
I = −

∑

p

m pvtp × xp = J t
p (9.10)

The particle to grid step therefore conserves exactly the total angular momentum.
How about the grid to particle step? Once again, distinction is made for the treatment
of this step between PIC and FLIP particle update.

1. PIC: Remembering that the particle velocities are updated as vt+Δt
p = ∑

J φJ (xtp)
vt+Δt
J , the total angular momentum at the end of the time step is:

Jt+Δt
p =

∑

p

xt+Δt
p × mpvt+Δt

p

=
∑

p

xt+Δt
p × mp

∑

J

φJ (xtp)v
t+Δt
J

=
∑

p

(
∑

I

φI (xtp)x
t+Δt
I

)
× mp

∑

J

φJ (xtp)v
t+Δt
J (9.11)

=
∑

I

xt+Δt
I ×

(
∑

J

∑

p

m pφI (xtp)φJ (xtp)v
t+Δt
J

)

=
∑

I

xt+Δt
I ×

∑

J

MI Jvt+Δt
J

where MI J = ∑
p m pφI (xtp)φJ (xtp) is the full mass matrix. Owing to the differ-

ence between the full and lumped mass matrices, once can readily see that the
total angular momentum is not conserved during this step.
Equation (9.12) can be expended to reveal how the angular momentum evolves
over time:

Jt+Δt
p =

∑

I

xt+Δt
I ×

∑

J

M̄I Jvt+Δt
J −

∑

I

xt+Δt
I ×

∑

J

(M̄I J − MI J)vt+Δt
J

= Jth + ΔJh −
∑

I

xt+Δt
I ×

∑

J

(M̄I J − MI J)vt+Δt
J (9.12)

= Jtp + ΔJh −
∑

I

xt+Δt
I ×

∑

J

(M̄I J − MI J)vt+Δt
J

9.1 Energy and Momenta Conservation 309

where ΔJh is the change of angular momentum during the grid update step, and
M̄I J is the lumped mass matrix. In the absence of external forces, we haveΔJh =
0 and the change of angular momentum in a given time step is −∑

I x
t+Δt
I ×∑

J (M̄I J − MI J)vt+Δt
J ,

2. FLIP: With FLIP, the particles velocities are updated as: vt+Δt
p = vtp + ∑

J φJ

(xtp)Δv j , where= Δv jvt+Δt
J − vtJ . Therefore, the total angular momentum at the

end of the step is (Love and Sulsky 2006b):

Jt+Δt
p =

∑

p

xt+Δt
p × mpvt+Δt

p

=
∑

p

(
∑

I

φI (xtp)x
t+Δt
I

)
× mp

[
vtp +

∑

J

φJ (xtp)Δv j

]

=
∑

I

xt+Δt
I ×

[
∑

p

φI (xtp)

(
mpvtp + mp

∑

J

φJ (xtp)Δv j

)]

=
∑

I

xt+Δt
I ×

[
∑

J

M̄I JvtJ +
∑

J

∑

p

φI (xtp)φJ (xtp)mpΔv j

]
(9.13)

=
∑

I

xt+Δt
I ×

[
∑

J

M̄I J (vt+Δt
J − Δv j) +

∑

J

∑

p

φI (xtp)φJ (xtp)mpΔv j

]

= Jth + ΔJh −
∑

I

xt+Δt
I ×

∑

J

(M̄I J − MI J)ΔvJ

= Jtp + ΔJh −
∑

I

xt+Δt
I ×

∑

J

(M̄I J − MI J)ΔvJ

Similar to what happens when using the PIC velocity update, using the FLIP
update, the total angular momentum is not conserved. Moreover, in the absence
of external forces,ΔJh = 0, and the change of angular momentum in a given time
step is −∑

I x
t+Δt
I × ∑

I,J (M̄I J − MI J)ΔvI .

The change of angular momentum on the particles is respectively proportional to
vt+Δt
J and Δv when using PIC and FLIP velocity update. It is therefore obvious that

the magnitude of the change is lower with FLIP than PIC. In other words, FLIP
preserves better the angular momentum than PIC.

9.1.3 Total Energy Conservation

In theMPM, not only energy conservation is not explicitly enforced but the energy is
known to be dissipated. Dissipation comes from different origins. First, there is the
use of a lumped mass matrix (Sect. 2.5.1). Then, the kind of formulation used, i.e.,
USF, USL, or MUSL. As shown in Figs. 6.9 and 6.10, USF, USL with or without

310 9 Stability, Accuracy and Recent Improvements

Fig. 9.1 Impact of two elastic bodies: problem description. Dimensions are in millimeters
(de Vaucorbeil and Nguyen 2021)

double mapping do not have the same impact on the energy conservation. Finally, the
total energy is dramatically affected by the use of either PIC or FLIP for the velocity
update. In particular, PIC is known to be way more dissipative than FLIP.

To illustrate how the different formulations and velocity updates affect the total
energy, the example of the impact between two compressible Neo-Hookean rings is
used. The two rings are hollow elastic cylinders, under the assumption of plane strain
(Fig. 9.1). The setup used here is the one used by Huang et al. (2011). The material
is a compressible Neo-Hookean with bulk modulus K = 121.7 MPa, shear modulus
G = 26.1 MPa and density ρ = 1010 × 10−12 kg/mm3. The magnitude of the rings
initial velocity is v0 = 30 m/s. The cell size is h = 0.625 mm or a grid of 640 × 320
cells is used. The total number of particles is 45, 000 and the shape functions used
are cubic B-splines.

The first thing to notice when looking at the energy evolution profiles (Fig. 9.2) is
that the results for both USF and MUSL are virtually identical. Second, as expected,
PIC is highly dissipative. Third, more energy is dissipated when using USL than

Fig. 9.2 Evolution of the total energy during the impact of two compressible Neo-Hookean rings
obtained with ULMPM using cubic B-splines and 4 particles per cell

9.1 Energy and Momenta Conservation 311

when using USF (and MUSL). Finally, and more importantly, with USF, the level of
energy are similar between the beginning and the end of the simulation.

Following the analysis published by Bardenhagen (2002), a qualitative analysis of
the energy dissipation of the MPM is made. Distinction will be made between USF
and USL (single mapping) as well as PIC and FLIP, hence generating four different
cases. A special note is added at the end of the section to explain how the case of
double mapping is energetically equivalent to USF.

We are interested in the change of total energy in the system during a single time
step and in the absence of heat transfer into the system. In the MPM, since the grid
is only used as a computational pad to provide kinematic updates, the system of
interest is the ensemble of particles (or material points). The total energy change on
the particles over a time step,ΔEparticles is the sum of the change in kinetic and strain
energies, ΔK Eparticles and ΔSEparticles, respectively. In the absence of external work,
therefore, ΔEparticles should be zero (case in which the energy would be conserved).
In reality, an error ΔEerror is made such that:

ΔEparticles = ΔEerror = ΔK Eparticles + ΔSEparticles (9.14)

Bardenhagen (2002) splits this error into two different contributions: an interpo-
lation error and an algorithmic error:

ΔEerror = −ΔEinterpolation − ΔEalgorithm (9.15)

Since the background grid acts as a pad for all computations, the computed change
of kinetic energy on the grid during one time step should translate into the exact same
change of kinetic energy on the particles during this same time step. If not, it means
that errors have been made during the interpolation back and forth from the particles
to the grid. This interpolation error is thus expressed as:

ΔEinterpolation = ΔK Enodes − ΔK Eparticles (9.16)

The other part of the total error is the error made by the algorithm simply expressed
as:

ΔEalgorithm = −ΔEerror − ΔEinterpolation = −ΔK Enodes − ΔSEparticles (9.17)

whereΔK Enodes is the change of kinetic energy on the grid. It is expressed as follows:

ΔK Enodes = 1

2

∑

I

mt
I v

t+Δt
I · vt+Δt

I − 1

2

∑

I

mt
I v

t
I · vtI =

∑

I

mt
IΔvI ·

(
vtI + 1

2
ΔvI

)

(9.18)
and ΔK Eparticles is the change of kinetic energy on the particles, which is given by

312 9 Stability, Accuracy and Recent Improvements

ΔK Eparticles = 1

2

∑

p

mt
pv

t+Δt
p · vt+Δt

p − 1

2

∑

p

mt
pv

t
p · vtp =

∑

p

mt
pΔvp ·

(
vtp + 1

2
Δvp

)

(9.19)

Using the PIC velocity update, vt+Δt
p = ∑

I φI (xtp)v
t+Δt
I , Eq. (9.19) becomes:

ΔK Eparticles = 1

2

∑

I

∑

J

∑

p

mt
pφI (xtp)φJ (xtp)v

t+Δt
I · vt+Δt

J − 1

2

∑

p

mt
pv

t
p · vtp
(9.20)

= 1

2

∑

I,J

vt+Δt
I · MI Jvt+Δt

J − 1

2

∑

p

mt
pv

t
p · vtp (9.21)

Therefore, using the results from Love and Sulsky (2006b), substituting Eq. (9.21)
into Eq. (9.16) yields:

ΔEinterpolation = 1

2

[
∑

I,J

vt+Δt
I · (M̄I J − MI J)vt+Δt

J +
∑

I,J

vtI · (M̄I J − MI J)vtJ

+
∑

p

m p

∣∣∣∣

∣∣∣∣v
t
p −

∑

I

φI (xtp)v
t
I

∣∣∣∣

∣∣∣∣
2
]

(9.22)
Using the FLIP velocity update, Δvp = ∑

I φI (xtp)ΔvI , Eq. (9.19) becomes:

ΔEinterpolation =
∑

I

mt
IΔvI ·

(
vtI + 1

2
ΔvI

)
−

∑

p

m p

∑

I

φI (xtp)ΔvI ·
(
vtp + 1

2

∑

J

φJ (xtp)ΔvJ

)

=
∑

I

mt
IΔvI ·

(
vtI + 1

2
ΔvI

)
−

∑

I

ΔvI ·
∑

p

φI (xtp)mpvtp − 1

2

∑

I,J

MI JΔvI · ΔvJ

(9.23)

= 1

2

∑

I

mt
IΔvI · ΔvI − 1

2

∑

I,J

MI JΔvI · ΔvJ

= 1

2

∑

I,J

ΔvI · (M̄I J − MI J)ΔvJ (9.24)

The symmetric matrix (M̄I J − MI J) being positive-semi-definite (Love and Sulsky
2006b), the interpolation error is always greater or equal to zero, i.e.,ΔEinterpolation ≥
0 with both PIC and FLIP. Moreover, it is obvious that the magnitude of the interpo-
lation error is greater when using PIC than FLIP.

The conservation of energy (see Eq. (2.20)) states that ρDe/Dt = D : σ . Using this
equation and the transport theorem, the rate of change in strain energy is:

dSE

dt
=

∫

�

D : σdv (9.25)

9.1 Energy and Momenta Conservation 313

where � is the current configuration of the solid. The discretization of Eq. (9.25)
gives:

dSE

dt
=

∑

p

Dp : σ pVp (9.26)

Noting that the strain increment Δε p = DpΔt and substituting the stress by its first
order Taylor approximation gives for infinitesimal deformations (volume remains
unchanged):

ΔSEparticles =
∑

p

ε p : σ t+Δt
p + σ t

p

2
Vp + O(Δt)2 (9.27)

Since no external work is considered, f intI = 0 and the change of node velocity is

ΔvtI = − 1

mt
I

∑

p

V t
pσ p∇φI (xtp)Δt (9.28)

Coming back to the change in kinetic energy on the grid, it is easy to show that
Eq. (9.18) can be re-written as

ΔK Enodes = 1

4

∑

I

mt
IΔvI · (vtI + vt+Δt

I

) + 1

4

∑

I

(
vtI + vt+Δt

I

) · mt
IΔvI (9.29)

Substituting Eq. (9.28) into Eq. (9.29) yields:

ΔK Enodes = − 1

4

∑

I

∑

p

V t
pσ p∇φI (xtp)Δt ·

(
vtI + vt+Δt

I

)
− 1

4

(
vtI + vt+Δt

I

)
·
∑

I

∑

p

V t
pσ p∇φI (xtp)Δt

= − 1

2

∑

p

V t
pσ p

1

2

∑

I

(
∇φI (xtp)v

t
I + vtI∇φI (xtp)

)
Δt

− 1

2

∑

p

V t
pσ p

1

2

∑

I

(
∇φI (xtp)v

t+Δt
I + vt+Δt

I ∇φI (xtp)
)

Δt

= − 1

2

∑

p

V t
pσ p

(
Δεtp + Δεt+Δt

p

)
(9.30)

The algorithmic error is finally given by combining Eqs. (9.30) and (9.27):

ΔEalgorithm = 1

2

∑

p

V t
pσ p : (Δεt+Δt

p + Δεt
p

) −
∑

p

V t
p

σ t+Δt
p + σ t

p

2
: Δε p (9.31)

This energy contribution is of the order of Δt2, but unlike the interpolation error, it
can be of either sign. Moreover, it is strongly dependent on when the stress state is
updated, as we shall see next.

314 9 Stability, Accuracy and Recent Improvements

Update Stress First (USF). The solution procedure for the USF algorithm implies
that the stresses and the strains are calculated directly from the nodes velocities vtI
obtained from the initial interpolation from the particles to the grid (P2G step) as
shown in Algorithm 13. Since the stress is updated right at the beginning of the step,
σ p = σ t+Δt

p while Δε p = Δεt
p. Therefore, the grid velocity increment is

ΔvtI = − 1

mt
I

∑

p

V t
pσ

t+Δt
p ∇φI (xtp)Δt (9.32)

The change in kinetic energy is:

ΔK Enodes = −1

2

∑

p

V t
pσ

t+Δt
p

(
Δεt

p + Δεt+Δt
p

)
(9.33)

and the change in strain energy:

ΔSEparticles =
∑

p

εt
p : σ t+Δt

p + σ t
p

2
Vp (9.34)

Therefore, the algorithm error becomes:

ΔEalgorithm = 1

2

∑

p

V t
p

(
σ t+Δt

p : Δεt+Δt
p − σ t

p : Δεt
p

)
(9.35)

In practice, the velocity gradient is used to update the stress tensor:

σ t+Δt
p = σ t

p + Lp : Δεt
p (9.36)

Substituting Eq. (9.36) into Eq. (9.35) gives:

ΔEalgorithm = 1

2

∑

p

V t
p

(
σ t+Δt

p : (Δεt+Δt
p − Δεt

p) + Δεt
p : Lp : Δεt

p

)
(9.37)

Noting that

Δεt+Δt
p = 1

2

∑

I

(∇φI (xtp)v
t+Δt
I + vt+Δt

I ∇φI (xtp)
)

andΔεt
p = 1

2

∑
I

(∇φI (xtp)v
t
I + vtI∇φI (xtp)

)
, substitutingEq. (9.32) intoEq. (9.37),

one gets:

ΔEalgorithm = −1

2

∑

I

mt
IΔvI · ΔvI + 1

2

∑

p

V t
pΔεt

p : Lp : Δεt
p (9.38)

9.1 Energy and Momenta Conservation 315

Finally, by substituting Eq. (9.38), and respectively Eq. (9.22) or Eq. (9.24) into
Eq. (9.15) the total error increment is found to be:

ΔEerror = −1

2

[
∑

I,J

vt+Δt
I · (M̄I J − MI J)vt+Δt

J +
∑

I,J

vtI · (M̄I J − MI J)vtJ

+
∑

p

m p||vtp −
∑

I

φI (xtp)v
t
I ||2

]

+ 1

2

∑

I,J

ΔvI · M̄I JΔvJ − 1

2

∑

p

V t
pΔεt

p : Lp : Δεt
p

(9.39)
for PIC, or

ΔEerror = 1

2

∑

I,J

ΔvI · MI JΔvJ − 1

2

∑

p

V t
pΔεt

p : Lp : Δεt
p (9.40)

for FLIP.
When using the FLIP velocity update, ΔEerror as written in Eq. (9.40) suggests

of a trade-off between an incremental change in kinetic energy and an incremental
change in strain energy as pointed out by Bardenhagen (2002). Therefore, ΔEerror

can be expected to be low. This is unfortunately not the case when using the PIC
velocity update where the incremental change in strain energy cannot counterbalance
the other terms.

Update Stress Last (USL). Update stress last is the common MPM formulation.
With this formulation, the stresses and strains are calculated at the end of the time
step (see Algorithm 1) calculated from the updated nodes’ velocities. Therefore the
strain increments are Δε p = Δεt+Δt

p , and the stress σ t
p is used to compute the grid

velocity increment. Therefore, during the whole step σ p = σ t
p and:

ΔvtI = − 1

mt
I

∑

p

V t
pσ

t
p∇φI (xtp)Δt (9.41)

The change in kinetic energy is:

ΔK Enodes = −1

2

∑

p

V t
pσ

t
p

(
Δεt

p + Δεt+Δt
p

)
(9.42)

and the change in strain energy:

ΔSEparticles =
∑

p

εt+Δt
p : σ t+Δt

p + σ t
p

2
Vp (9.43)

316 9 Stability, Accuracy and Recent Improvements

Therefore, the algorithm error becomes:

ΔEalgorithm = 1

2

∑

p

V t
p

(
σ t

p : Δεt
p − σ t+Δt

p : Δεt+Δt
p

)
(9.44)

The algorithm error has exactly the opposite sign as for USF (see Eq. (9.35)). This
highlights the dramatic effects of the moment at which the stresses are updated.
Starting with exactly the same conditions at the beginning of a time step, with one
formulation the energy error due to the algorithm would be positive in one case, and
negative in the other. However, it should be kept in mind that the algorithm error is
just one part of the whole error.

The equation used in this case to update the stress tensor is:

σ t+Δt
p = σ t

p + Lp : Δεt+Δt
p (9.45)

Substituting Eq. (9.45) into Eq. (9.44) gives:

ΔEalgorithm = 1

2

∑

p

V t
p

(
σ t

p : (Δεt
p − Δεt+Δt

p) + Δεt+Δt
p : Lp : Δεt+Δt

p

)
(9.46)

Noting that

Δεt+Δt
p = 1

2

∑

I

(∇φI (xtp)v
t+Δt
I + vt+Δt

I ∇φI (xtp)
)

andΔεt
p = 1

2

∑
I

(∇φI (xtp)v
t
I + vtI∇φI (xtp)

)
, substitutingEq. (9.41) intoEq. (9.46),

one gets:

ΔEalgorithm = 1

2

∑

I

mt
IΔvI · ΔvI − 1

2

∑

p

V t
pΔεt+Δt

p : Lp : Δεt+Δt
p (9.47)

Finally, by substituting Eq. (9.47), and respectively Eq. (9.22) or Eq. (9.24) into
Eq. (9.15) the total error increment is found to be

ΔEerror = −1

2

[
∑

I,J

vt+Δt
I · (M̄I J − MI J)vt+Δt

J +
∑

I,J

vtI · (M̄I J − MI J)vtJ

+
∑

p

m p

∣∣∣∣

∣∣∣∣v
t
p −

∑

I

φI (xtp)v
t
I

∣∣∣∣

∣∣∣∣
2
]

− 1

2

∑

I,J

ΔvI · M̄I JΔvJ + 1

2

∑

p

V t
pΔεt+Δt

p : Lp : Δεt+Δt
p

(9.48)

9.1 Energy and Momenta Conservation 317

when using the PIC update, and

ΔEerror = −
∑

I,J

ΔvI · (M̄I J − MI J)ΔvJ − 1

2

∑

I,J

ΔvI · MI JΔvJ + 1

2

∑

p

V t
pΔεt+Δt

p : Lp : Δεt+Δt
p

(9.49)
when using the FLIP update.

In practice, its has been observed that when using the FLIP velocity update
with USF, the change in strain energy over time can be negligible Fig. 9.2b. Hence,
ΔEerror ≈ 0, and from Eq. (9.40) it can be deduced that 1

2

∑
I,J ΔvI · MI JΔvJ ≈

1
2

∑
p V

t
pΔεt

p : Lp : Δεt
p. Assuming that this is true, the MPM algorithm using the

update stress last formulation would be strictly dissipative for both PIC and FLIP
velocity update schemes. This explains why the numerical investigations presented
earlier (Fig. 9.2b) have shown that USL is more energy dissipative than USF.

Modified Update Stress Last (MUSL). In the modified update stress last formu-
lation, the stresses are calculated at the end of the time step, after the re-mapping
of node velocities using the updated particles velocities (double mapping) as shown
in Algorithm 2. To the exception of the very first time step, this double mapping is
equivalent to mapping the node velocities at the beginning of the next time step and
calculating the stresses right after, but using the shape functions evaluated at time t
and not t + Δt .

The difference betweenMUSL and USF resides in the computation of the internal
forces. Their difference for a given grid node is:

(
f int,tI

)

USF
−

(
f int,tI

)

MUSL
= −

∑

p
V t
p

[(
σ t+Δt
p

)

USF
−

(
σ t
p

)

MUSL

]
∇φI (x

t
p)

= −
∑

p
V t
p

⎡

⎣
∑

J

∇φJ (xtp)v
t
J −

∑

J

∇φJ (xt−Δt
p)vtJ

⎤

⎦ : Δε p∇φI (x
t
p)

(9.50)

= −
∑

p
V t
p

∑

J

[
∇φJ (xtp) − ∇φJ (xt−Δt

p)
]
vtJ : Δε p∇φI (x

t
p)

Since ∇φJ (xt−Δt
p) = ∇φJ (xtp) + O(Δt), Eq. (9.50) becomes:

(
f int,tI

)

USF
−

(
f int,tI

)

MUSL
= O(Δt) (9.51)

Therefore, the internal forces obtained by either the USF or the MUSL formulation
are equivalent to the first order. And this explains why the energy profiles obtained
with either formulations cannot be distinguished in Fig. 9.2.

318 9 Stability, Accuracy and Recent Improvements

9.2 The Method of Manufactured Solutions (MMS)

The method of manufactured solutions (MMS) provides a framework to verify non-
linear codes. In the MMS, the solution (i.e., the displacement field in solid mechan-
ics) of the model equations is assumed a priori i.e., being manufactured. Given
the assumed prescribed displacements, the constitutive model can be evaluated to
determine the corresponding stress field. Next, the divergence of the stress and the
acceleration are evaluated, and the required body forces to achieve these solutions are
analytically determined from the equations of motion. Note that boundary conditions
(e.g. for the velocities) and initial conditions (e.g. for the velocities and stresses) are
also determined from the manufactured solutions. One then execute the code (an
MPM code in our context) with this body force vector and boundary/initial con-
ditions for different grid resolutions. The numerical solutions are then compared
with the manufactured ones (Knupp and Salari 2003); an error is computed for each
grid resolution. From this, a convergence rate can be obtained. An excellent report
on theMMS can be found at http://prod.sandia.gov/techlib/access-control.cgi/2000/
001444.pdf.

Wallstedt and Guilkey (2008) was the first to use the MMS to check the conver-
gence of theMPM. Since then, theMMS has been used more. For example, a suite of
code verification tests for solid mechanics problems is presented in Kamojjala et al.
(2015) for rate-independent constitutive models.

For readers unfamiliar with the method, we present a step-by-step derivation of
the body force for a 1D problem in Sect. 9.2.1 and a 2D problem in Sect. 9.2.2.
This is followed by a discussion on error norms in Sect. 9.2.4. Section9.2.5 provides
a procedure to obtain the so-called convergence curve and convergence rate for a
chosen manufactured solution.

9.2.1 An One Dimensional Manufactured Solution

Todemonstrate theMMS , inwhat followswe present themethod in one dimension. It
should be noted that the solutions are typically manufactured in the total Lagrangian
form i.e., with respect to the initial configuration in theMMS as it is more convenient.

Now, we consider a one dimensional bar of length L . Let denote by X the material
coordinates i.e., coordinates in the reference configuration. Now, we introduce a
dimensionless coordinate X̄ = X/L. The manufactured displacement is assumed to
be

u(X̄ , t) = G sin(π X̄) sin

(
cπ t

L

)
(9.52)

where G is the maximum amplitude of the displacement; c = √
E/ρ and E denotes

the Young modulus. Now, to simplify the subsequent derivation, we assume that

http://prod.sandia.gov/techlib/access-control.cgi/2000/001444.pdf
http://prod.sandia.gov/techlib/access-control.cgi/2000/001444.pdf

9.2 The Method of Manufactured Solutions (MMS) 319

L = 1 m, and thus X̄ = X . The period is thus given by T = 2π/cπ; and the time
domain is 0 ≤ t ≤ T i.e., one period of oscillation is considered. As can be seen, the
manufactured displacements are expressed in terms of sine and cosine functions i.e.,
smooth functions are commonly used, see e.g. Wallstedt and Guilkey (2008) even
though they are not representative of general material deformations.

The velocity and acceleration are thus given by

v(X, t) = πcG sin(πX) cos(cπ t)

a(X, t) = −π2c2G sin(πX) sin(cπ t) = −π2c2u(X, t)
(9.53)

where Eq. (9.52) was used.
One has to choose a constitutive model so that the stress can be determined

analytically. We use a Neo-Hookean material where the 1st PK stress P is given by

P = λ ln(J)F−1 + μF−1(FF − 1) (9.54)

with λ,μ being the Lamé constants and J = F is the Jacobian of the deformation.
Using the displacement given in Eq. (9.52), the deformation gradient F is written as

F(X, t) = 1 + ∂u

∂X
= 1 + πG cos(πX) sin(cπ t) (9.55)

which results in the following expression for the spatial derivative of F

∂F

∂X
= −π2G sin(πX) sin(cπ t) = −π2u(X, t) (9.56)

where use was made of Eq. (9.52). The divergence of the stress, appearing in the
linear momentum balance equation, is thus given by

∂P

∂X
= ∂F

∂X

[
λ

F2
(1 − ln(F)) + μ

(
1 + 1

F2

)]
(9.57)

From the momentum equation given as follows

ρ0a(X, t) = ∂P

∂X
+ ρ0b(X, t) (9.58)

one can solve for the body force

b(X, t) = π2u(X, t)

ρ0

[
λ

F2
(1 − ln(F)) + μ

(
1 + 1

F2

)
− E

]
(9.59)

320 9 Stability, Accuracy and Recent Improvements

Besides, initial conditions are given by

v(X, 0) = πcG sin(πX)

σ (X, 0) = 1

J

[
λ ln(F(X, 0)) + μ(F(X, 0)F(X, 0) − 1)

]
= 0

(9.60)

and boundary conditions are written as

v(0, t) = 0, v(1, t) = 0 (9.61)

9.2.2 A Two Dimensional MMS

Herein, we present an extension of the previous MMS to three dimensions. The solid
is a unit cube occupying the domain delimited by 0 ≤ X1 ≤ 1, 0 ≤ X2 ≤ 1, and
0 ≤ X3 ≤ 1. The starting point are the following prescribed displacements

u(X, t) = G sin(πX) sin

(√
E

ρ0
π t + φ

)
(9.62)

where G is the maximum amplitude of displacement, E denotes Young’s modulus,
and φ = [0, π, π], an arbitrary phase angle.X denotes thematerial coordinates in the
reference configuration. One period of oscillation is considered, i.e. the time domain
is 0 ≤ t ≤ T , with T = 2π/π

√
E/ρ0. Note that the assumed displacements where the

horizontal displacement is a function of X and the vertical displacement depends on
Y leads to a deformationwithout shearing and thus a diagonal deformation gradientF
which allows to determine the body force analytically by hand calculations. It should
be noted that the two components of the manufactured displacement field cannot be
chosen independently but should be physically reasonable as shown in Fig. 9.3.

Fig. 9.3 Evolution of the
displacements in time at
point (1/6, 1/3)

time
0 0.005 0.01 0.015 0.02

di
sp

la
ce

m
en

t

-0.05
-0.04
-0.03
-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05

ux
uy

9.2 The Method of Manufactured Solutions (MMS) 321

The goal now is to determine the associated body forces. They are calculated by
inverting the momentum equation:

ρ0a(X, t) = ∇0P(X, t) + ρ0b(X, t) (9.63)

which depends on the acceleration a(X, t) and the divergence of the stress∇0P(X, t).
First, let’s determine the acceleration. This is done by taking the second derivative

of the displacement, which gives:

a(X, t) = −π2 E

ρ0
G sin(πX) sin

(√
E

ρ0
π t + φ

)
= −π2 E

ρ0
u (9.64)

Second, let’s determine ∇0P(X, t). Owing to the use of the Neo-Hookean model,
P depends only on the deformation matrix Fwhich is calculated by taking the spatial
derivative of the displacement with respect to the initial position:

Fii (X, t) = 1 + πG cos(πXi) sin

(√
E

ρ0
π t + φi

)
(9.65)

Then, by taking the spatial derivative of F, one gets:

∇0F(X, t) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

−π2G sin(πX1) sin

(√
E

ρ0
π t + φ1

)

−π2G sin(πX2) sin

(√
E

ρ0
π t + φ2

)

−π2G sin(πX3) sin

(√
E

ρ0
π t + φ3

)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

= −π2u(X, t) (9.66)

Eventually, the divergence of the stress is given by, using Eq. (4.6)

∇0P(X, t) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

π2u1

(
λ

F2
11

(1 − ln(F11F22F33)) + μ

(
1 + 1

F2
11

))

π2u2

(
λ

F2
22

(1 − ln(F11F22F33)) + μ

(
1 + 1

F2
22

))

π2u3

(
λ

F2
33

(1 − ln(F11F22F33)) + μ

(
1 + 1

F2
33

))

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(9.67)

Finally, one can invert Eq. (9.63) by substituting for both the acceleration and the
divergence of the stress using Eqs. (9.64) and (9.67). we can solve for the body force:

322 9 Stability, Accuracy and Recent Improvements

b(X, t) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

π2u1
ρ0

(
λ

F2
11

(1 − ln(F11F22F33)) + μ

(
1 + 1

F2
11

)
− E

)

π2u2
ρ0

(
λ

F2
22

(1 − ln(F11F22F33)) + μ

(
1 + 1

F2
22

)
− E

)

π2u3
ρ0

(
λ

F2
33

(1 − ln(F11F22F33)) + μ

(
1 + 1

F2
33

)
− E

)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.68)

which is a generalization of the 1D body force given in Eq. (9.59).
We also impose the following boundary conditions, obtained using Eq. (9.62),

onto the nodes of the background mesh:

v(Xi = 0, t) = v(Xi = 1, t) = 0 (9.69)

as well as the following initial conditions:

v(X, 0) = π

√
E

ρ0
G sin(πX) cos (φ) (9.70)

P(X, 0) = 0 (9.71)

9.2.3 Generalized Vortex Problem

The generalized vortex problem is an example of MMS involving simple shear with
superimposed rotationwhich is a complicated problem to simulate usingMPMand its
advanced (improved) variants (Brannon et al. 2011;Kamojjala et al. 2015;Wang et al.
2019). This problem features a 2D ring, cf. Figure9.4a, which is locally subjected
to a pure circular motion. The local displacement is purely angular and varies with
the radial coordinate. Therefore, the material is only subjected to shear and circular
motion, see Fig. 9.4b.

The ring center is at the origin (x = y = 0) and its inner and outer radii are Ri

and Ro, respectively. The current position x of any given point on the ring is thus
given as:

x(t) = Q(t) · X (9.72)

with Q being a standard rotation matrix in 2D:

Q(t) =
[
cosα − sin α

sin α cosα

]
(9.73)

9.2 The Method of Manufactured Solutions (MMS) 323

(a) (b)

Fig. 9.4 Generalized vortex problem. Geometry and variable definition (a), and deformed shape
(b) (de Vaucorbeil et al. 2020)

where α is the rotation angle which varies only with time and radial coordinate R
(R = √

X2 + Y 2). It is given as:

α(t, R) = g(t)h(R) (9.74)

where g(t) controls the amplitude of the deformation with time and h(R) controls the
relative radial variation of the rotation; g(t) is taken as periodic, and h(R) is chosen
such that the outer and inner radii do not move: h(Ri) = h(Ro) = 0. Zero traction
on the boundaries is insured by having: h′(Ri) = h′(Ro) = 0 as well. Following
Brannon et al. (2011), they are given by:

h(R) = 1 − 8

(
R − R̄

Ri − R0

)2

+ 16

(
R − R̄

Ri − R0

)4

, g(t) = G sin

(
π t

T0

)
(9.75)

with R̄ = (R0 + Ri)/2 and T0 is the period.
Using the procedure shown in Sect. 9.2.1 the body forces necessary to obtain

this vortex motion are expressed as (see de Vaucorbeil et al. (2020) for detailed
derivation):

b1(R, t) = bR(R, t) cosΘ − bΘ(R, t) sinΘ

b2(R, t) = bΘ(R, t) cosΘ + bR(R, t) sinΘ
(9.76)

where:

324 9 Stability, Accuracy and Recent Improvements

bR(R, t) =
[

μ

ρ0

(
3g(t)h′(R) + Rg(t)h′′(R)

) − Rg′′(t)h(R)

]
sin α

+
[

μ

ρ0
R(g(t)h′(R))2 − R(g′(t)h(R))2

]
cosα

bΘ(R, t) =
[
− μ

ρ0

(
3g(t)h′(R) + Rg(t)h′′(R)

) + Rg′′(t)h(R)

]
cosα

+
[

μ

ρ0
R(g(t)h′(R))2 + R(g′(t)h(R))2

]
sin α

(9.77)

where h′(R) denotes the first derivative of h with respect to R and h′′(R) is the second
derivative. Furthermore, the initial velocity and stress are identically zero. And the
boundary conditions are that nodes on the ring perimeters (inner and outer) are fixed
(as h(Ri) = h(Ro) = 0).

Now, one has a well defined problem, which can be solved using an MPM code.
The obtained numerical displacement, denoted by uh(X, t), is then compared it with
the manufactured (exact) displacement in Eq. (9.52) to assess the performance of the
MPM. One needs a norm for this comparison, which is discussed in what follows.

9.2.4 Norms

To assess the accuracy of the numerical solution, one needs a measure of the error
made compared to the analytical solution (i.e., the manufactured solutions). How-
ever, what errormeasure to be adopted is confusing as different authors used different
definitions. Even worse, some researchers adopted different error measures in dif-
ferent related works. It seems to the authors that their aim was to get convergence
forcefully. Therefore, de Vaucorbeil et al. (2020) presented two different errors, the
first is un-normalized while the second is. The first error is based on the “distance”
measure between the numerical and analytical solution and integrated in space. This
measure is a function of time, and at time step tn it is defined as:

e(tn) =
√∑np

p=1 V
tn
p

∣∣∣∣uh
p(t

n) − uexact(Xp, tn)
∣∣∣∣2

Vtot
(9.78)

where uh
p(t

n) = xt
n

p − Xp is the numerical displacement at particle p, uexact(Xp, tn)
is the manufactured displacement at p (e.g. the one given in Eq. (9.52)), np is the
total number of particles in the solid and Vtot its total volume. In the above equation,
||a|| denotes the Euclidean norm of vector a. However, to not have to compare the
error at every time step, the first error measure is taken as the overall maximum of
the error function:

e1 := max
n

(e(tn)) (9.79)

9.2 The Method of Manufactured Solutions (MMS) 325

Thismeasure of error is not normalized and has the dimension of length. It is therefore
dependent on the maximum amplitude of the displacement. One can normalize the
error to make it dimensionless. The normalized error measure is defined as

e2 :=
√√√√

∑t f
tn=0

∑np

p=1 V
tn
p

∣∣∣∣uh
p(t

n) − uexact(Xp, tn)
∣∣∣∣2

∑T
tn=0

∑np

p=1 V
tn
p

∣∣∣∣uexact(Xp, tn)
∣∣∣∣2

(9.80)

For the TLMPM, as the spatial integration is carried over the initial configuration,
one just simply replaces V tn

p by V 0
p in Eqs. (9.79) and (9.80).

9.2.5 Convergence Rate

It is well known that the error of the numerical solution measured in some norms is
related to the element size h by the following equation (Strang and Fix 1973; Ciarlet
and Lions 1991)

e(h) ≈ Chk(p) (9.81)

where C is a positive constant, k(p) is a positive integer and p denotes the order of
the basis functions: p = 1 for linear elements, p = 2 for quadratic elements etc. Eq.
(9.81) furnishes a practical way to check the convergence of a numerical method by
taking the logarithm of both sides of the above equation

e(h) ≈ Chk → log(E(h)) ≈ log(C) + k log(h) (9.82)

which indicates that, on a log-log plot the relation between the error and the mesh
size is a line with a slope k; k is the convergence rate.

For time dependent problems, to manifest the expected theoretical (or optimal)
convergence rates in space, the time step and spatial mesh size must be selected such
that the space discretization error dominates the time discretization error. Conse-
quently, rather small time steps must be taken. We refer to Strang and Fix (1973);
Ciarlet and Lions (1991) for a formal treatment of the mathematical analysis of the
FEM which can serve as a basis for the analysis of the MPM.

A procedure to verify the convergence rate of a dynamic MPM code is as follows

• Manufacturing a solution and determining the corresponding body forces and
initial/boundary conditions;

• Running an MPM code with body forces, initial/boundary conditions determined
from the first step. Repeating this step for different mesh sizes from large to very
small;

326 9 Stability, Accuracy and Recent Improvements

Table 9.1 An example convergence data produced by a second-order accurate (in space) method

Mesh size h Error e Ratio

0.1250000 7.281254249028449e-06

0.0625000 3.777609954416918e-06 1.93

0.0312500 1.916379665584172e-06 1.97

• Defining a proper error norm and compute these norms for every considered
meshes;

• Plotting the errors and the mesh sizes h on a log-log scale.

A convergence data is given in Table9.1 for demonstration. Three meshes are used
with a starting mesh size h equals 0.125, and the second mesh size was halved from
the first mesh and so on. A convergence curve is obtained by plotting this data and
the convergence rate is the slope of the convergence curve in the log-log space and
this rate can be conveniently determined in Matlab using the polyfit command.
Alternatively this rate can be obtained by computing the ratios between successive
errors.

The data shown in Table9.1 demonstrate that to get highly accurate results, one
must adopt very fine grids i.e., tiny h. However, in practice we don’t have the patience
or supercomputing resources to take h extremely small: we want to have good results
with h as large as possible! That is why a high-order method i.e., k ≥ 2 is in favor
over a first-order one.

9.2.6 Convergence Rate of the MPM

Convergence tests, see Fig. 9.5 and Sect. 9.5 for details, reveal that MPMs do not
converge at an optimal rate (i.e., the convergence rate for L2 error of the displace-
ment is not two). There are many reasons for this undesired behavior. It is quite clear
that quadrature error is one of them as particles are arbitrarily positioned on the grid.
Methods to improve this error include MPM variants with smooth weighting func-
tions (GIMP/CPDI/BSMPM) and the standard MPM with the Gaussian quadrature
(that is particle data are reconstructed at the quadrature points and they are used
for evaluating the weak form integrals similar to the FEM). Wallstedt and Guilkey
(2007) have shown that the grid momenta calculation, with linear shape functions, is
not able to provide an exact projection of a linear velocity field for arbitrary particle
positions. This led Sulsky and Gong (2016) to develop the improved MPM (iMPM)
where moving least square (MLS) method is adopted to reconstruct the particle data
(velocity, density and stress) at the grid nodes and cell centers.

9.3 Moving Least Square MPM 327

10-3 10-2 10-1 100

Element size

10-8

10-6

10-4

10-2

100
Er

ro
r

G=0.0001
G=0.05

(a) MPM, MUSL

10-4 10-3 10-2 10-1

Element size

10-8

10-6

10-4

10-2

Er
ro

r

G=0.0001
G=0.05

(b) uGIMP, USL

Element size

Er
ro

r

(c) cpGIMP, USL

Fig. 9.5 Axis-align unit segment test: convergence of various MPM variants using the un-
normalized error measure e1 given in Eq. (9.79) (de Vaucorbeil et al. 2020)

9.3 Moving Least Square MPM

To have a high-order MPM, one needs to fulfill the following conditions: (1) high
order grid basis functions such as cubic B-splines, (2) a proper projection of the
particle velocities to the grid and (3) accurate integration of the weak form integrals
(the nodal mass and forces). Lack of any of these three conditions would result in
a first-order MPM for large deformation problems where the particle positions are
arbitrary with respect to the grid. Furthermore, the stress update of the constitutive
equations must also be high order to have an overall high order accurate method.
Herein we focus on the last two conditions as cubic B-splines have been discussed.
The device to fulfill these last conditions ismoving least square approximation (Gong
2015; Sulsky and Gong 2016). The ideas are as follows.

• Reconstruction of particle momenta using the MLS and project this reconstructed
momenta to the grid nodes. This will solve the velocity projection issue of MPM
(including GIMP, CPDI);

• Integration of the mass matrix and nodal forces using one-point quadrature rule
located at the element centers. This will improve the quadrature error of MPM.
Note that CPDI does not subject to this error with the expense of a particle FE
mesh. Again theMLS is used to construct the data at the element centers. Precisely
the particle stresses and densities are approximated using the MLS and they are
computed at the element centers.

• Standard FE shape functions i.e., the hat functions are still employed in the calcu-
lation of mass matrix and internal/external forces.

Graphical illustration of the two MLS approximations involved in the above two
iterms is given in Fig. 9.6. The last point warrants a further discussion. Using hat
functions facilitate the enforcement of boundary conditions. Furthermore the ultimate
goal is to have second-order accuracy and hat functions are sufficient for that.

This section introduces the moving least square MPM or iMPM as Gong and
Sulsky called it (Gong 2015). It is structured as follows. In Sect. 9.3.1 we briefly
recall least square and moving least square approximations. Then in Sect. 9.3.2, we

328 9 Stability, Accuracy and Recent Improvements

Fig. 9.6 Moving least square approximations a to project particle velocities to the grid and b to
construct cell-centered densities and stresses (de Vaucorbeil et al. 2020)

discuss how the velocity projection is done. After that, one point quadrature is given
in Sect. 9.3.3. We conclude the section with implementation details in Sects. 9.3.4
and 9.3.5.

9.3.1 Least Square Approximations

Data approximation froma scattered set of points is required inmany applications e.g.
computer graphics and visualization, image processing, regression models, super-
vised learning, and solving partial differential equations using finite element and
meshfree methods.

Before presenting the moving least square method that is used in the iMPM, we
recall some methods in data fitting. For the sake of simplicity, we first confine to one
dimensional case. Considering the well known data fitting problem where we want
to find a function uh(x) fitting the data points (xI , uI), I = 1, 2, . . . , n (Fig. 9.7).
The data points can be some experimental measurements such as depth and pore
pressure, temperature distribution in time etc.

Fig. 9.7 Data fitting in one
dimension

9.3 Moving Least Square MPM 329

Assuming that the approximation function uh(x) is a polynomial of order m:

uh(x) = a0 + a1x + a2x
2 . . . + amx

m (9.83)

where the coefficients aI are to be determined such that we have a best fit to the data
points (xI , uI). It is more convenient to write the above equation in the following
compact form

uh(x) = pT(x)a, a = [
a0 a1 . . . am

]T
, p = [

1 x x2 . . . xm
]T

(9.84)

Least square data fitting. The coefficients aI can be determined by minimizing J–
the sum of the square of the difference between uI and uh(xI) i.e., the difference
between the given data and the sought-for fitting functions:

J =
n∑

I=1

(
uh(xI) − uI

)2 =
n∑

I=1

(
pT(xI)a − uI

)2
(9.85)

J is also referred to as summed square of errors/residuals or summed square of offsets.
which indicates that positive or negative error have the same value (data point is above
or below the fitting curve) and greater errors are more heavily weighted.

Differentiating J with respect to a0, a1, . . . , am are given by

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ J

∂a0
∂ J

∂a1
...

∂ J

∂am

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎣

∑
I 2

(
pT(xI)a − uI

)
1

∑
I 2

(
pT(xI)a − uI

)
xI

...∑
I 2

(
pT(xI)a − uI

)
xmI

⎤

⎥⎥⎥⎥⎥⎦
(9.86)

And thus, from ∂ J/∂a = 0, one obtains the following system of linear equations to
solve for a (

n∑

I=1

p(xI)pT(xI)

)
a =

n∑

I=1

p(xI)uI (9.87)

Examples. We provide some examples to clearly demmonstrate the method. For
example, if we intend to use a linear function to fit the data, then p = [1, x]T. In this
case Eq. (9.87) becomes

(
n∑

I=1

[
1 xI
xI x2I

])[
a0
a1

]
=

n∑

I=1

uI

[
1
xI

]
(9.88)

330 9 Stability, Accuracy and Recent Improvements

Fig. 9.8 Data fitting in one
dimension: second order
least square fitting

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

6

7

data
least-square fit

which can be solved for a0 and a1 if the square matrix is invertible which is the case
if n ≥ 2 or more generally n ≥ m.

In case that a quadratic polynomial is used i.e.,p = [1, x, x2]T, Eq. (9.87) becomes

⎛

⎜⎝
n∑

i=1

⎡

⎢⎣
1 xI x2I
xI x2I x3I
x2I x3I x4I

⎤

⎥⎦

⎞

⎟⎠

⎡

⎢⎣
a0

a1

a2

⎤

⎥⎦ =
n∑

I=1

uI

⎡

⎢⎣
1

xI

x2I

⎤

⎥⎦ (9.89)

which can be solved for a0, a1 and a2. An example of this second order least square
fitting is given in Fig. 9.8.1

Weighted least square data fitting. Usually the data (xI , uI) have different uncer-
tainties associated with them. It is, therefore, natural to give more weight to mea-
surements of which you are more certain. According to the weighted least square
method, the coefficients aI can be determined by minimizing the weighted sum of
the square of the difference between uI and uh(xi):

J =
n∑

I=1

wI
(
uh(xI) − uI

)2 =
n∑

I=1

wI
(
pT(xI)a − uI

)2
(9.90)

where wI denotes a weight at point xI . The coefficients a in this case are given by

Aa = Bu (9.91)

where

A =
n∑

I=1

wIp(xi)pT(xi), B = [
w1p(x1) w2p(x2) . . . wnp(xn)

]
(9.92)

and u = [
u1 u2 . . . un

]T
.

1 The M-file for this is leastSquareExample.m.

9.3 Moving Least Square MPM 331

Moving least square approximation. This method was introduced in Shepard
(1968) in the late 1960s for constructing smooth approximations to fit a specified
cloud of points. It was then extended in Lancaster (1981) for general surface gen-
eration problems. The most famous application of MLS approximation is probably
within the diffuse element method (DEM) and element-free Galerkin (EFG) method.
In a MLS scheme the fitting is done locally i.e., the fitting is different from points to
points. For a point x̄ the approximation now reads

uh(x, x̄) = pT(x)a(x̄) (9.93)

where the coefficients a are no longer constant but varies in space. Following the
same procedure of the weighted least square, we obtain the MLS approximation
which is written as

uh(x) = pT(x)A−1(x)B(x)u

= pT(x)A−1(x)w(x − xI)p(xI)uI

(9.94)

where the second equation allows us to define the so-called MLS basis function
ΦI (x) given by

ΦI (x) = pT(x)A−1(x)w(x − xI)p(xI) (9.95)

where w(x − xI) denotes the weight function (or kernel function). The kernel func-
tions have compact support, thus MLS approximation is local. The support size is
defined by the so called dilatation parameter or smoothing length. It is critical to
solution accuracy, stability and plays the role of the element size in the finite element
method. The need to build up and invert the moment matrix A at a large number of
points is the major drawback of the MLS, because of the computational cost and the
possibility that the matrix inversion fails.

Shepard approximation. If p = [1] then one has

A =
∑

I

w(x − xI), BI = w(x − xI) (9.96)

Therefore, the MLS approximation becomes the Shepard approximation which is
given by

uh(x) =
∑n

I=1 w(x − xI)∑n
I=1 w(x − xI)

uI (9.97)

which can reproduce exactly a constant function i.e., if uI = c then uh(x) = c.
If we recall the projection of the particle velocity to the grid nodes in the standard

MPM

vI =
∑

p NI (xp)mpvp∑
p NI (xp)mp

=
∑

p NI (xp)mp∑
p NI (xp)mp

vp (9.98)

332 9 Stability, Accuracy and Recent Improvements

Fig. 9.9 Error in projecting
particle velocities to grid
nodes. With particles located
at cell centers, the internal
nodes have correct projected
velocities while the
boundary nodes do not (de
Vaucorbeil et al. 2020)

Fig. 9.10 Visualization of
some commonly used weight
functions

r
-1 -0.5 0 0.5 1

w
(r)

0

0.2

0.4

0.6

0.8

1
cubic
quartic
exponential, =0.3

which is similar to the Shepard approximation. That is why only a constant particle
velocity field can be exactly projected to the grid using the MPM. Therefore, the
standard MPM is not able to provide an exact projection of a linear velocity field for
arbitrary particle positions. To demonstrate this, we consider a grid of three equally
spaced cells (h = 2) with 3 particles located at the cell centers. Assume that all the
particles have a mass of unity and the particle velocity field is linear i.e., v(x) = x ,
cf. Figure9.9. Obviously, Eq. (9.98) results in v1 = 1 (correct value is 0) and v4 = 5
(correct value is 6). The situation is getting worse with off-center particles.

Weight functions. Some commonly-used weight functions are (see Fig. 9.10)

• the cubic spline weight function

w(r) =
⎧
⎨

⎩

2/3 − 4r2 + 4r3 r ≤ 1/2
4/3 − 4r + 4r2 − 4/3r3 1/2 < r ≤ 1
0 r > 1

(9.99)

• the quartic spline weight function

w(r) =
{
1 − 6r2 + 8r3 − 3r4 r ≤ 1
0 r > 1

(9.100)

9.3 Moving Least Square MPM 333

• the exponential weight function

w(r) =
{
e−(r/α)2 r ≤ 1
0 r > 1

(9.101)

where α is a constant.

with

r = |xI − x |
dI

(9.102)

where dI is the support size of node I .
Extension of the MLS to higher dimensions is straightforward. For example, in

2D the linear basis is p = [1 x y]T and thus the moment matrix is given by

A =
n∑

I=1

w(x − xI)

⎡

⎣
1 xI yI
xI x2I xI yI
yI xI yI y2I

⎤

⎦ (9.103)

and due to the compact support of the sum
∑

I operates only over the points within
the circle centered at x of radius being the smooth length. The argument to the weight
functions is nowwritten as r = ||xI − x|| /dI where ||·|| is the usual Euclidean norm.
Note that we are using a circular domain of influence.

Examples. We test the MLS approximations with constant and linear basis (i.e., a
Shepard approximation and aMLSwith p = [1 x]T). A unit interval is discretized by
11 equally spaced grid nodes (mesh size is thus h = 1/10). Fifteen sampling points
are randomly distributed on the interval, denoted by xp with p = 1, 2, . . . , 15. A
linear function u(x) = 1 + x is considered. Thus, at the sampling point xp we have
u p = 1 + xp. The purpose is to use MLS approximation to determine the functions
at the grid nodes i.e., uI with I = 1, 2, . . . , 11. We use the cubic spline given in
Eq. (9.99) with dI = 2h. The M-file for this example is mlsExamples1D.m. The
result show in Fig. 9.11 indicates that a the MLS with linear basis is able to exactly
reproduce a linear function but the Shepard approximation is not.

Next we study the convergence property of the MLS. To this end, we consider the
function sin(πx) on a unit interval. This interval is discretized by 20, 40, 80 and 160
elements. For each element, two material points are randomly distributed so that we
have a distribution of material points that mimic a real MPM simulation. Results are
depicted in Fig. 9.12 which confirms the second order accuracy of the linear MLS.
The M-file for this test is mlsConvergenceTest1D.m.

334 9 Stability, Accuracy and Recent Improvements

x
0 0.2 0.4 0.6 0.8 1

u(
x)

1

1.2

1.4

1.6

1.8

2
u=1+x
MLS node values
sampling points

x
0 0.2 0.4 0.6 0.8 1

u(
x)

1

1.2

1.4

1.6

1.8

2
u=1+x
MLS node values
sampling points

Fig. 9.11 MLS approximation of a linear function with Shepard function (left) and linear function
p = [1 x]T (right)

x
0 0.2 0.4 0.6 0.8 1

u(
x)

0

0.2

0.4

0.6

0.8

1

u=sin(x)
MLS node values
sampling points

Element size h
10-3 10-2 10-1

Er
ro

r

10-4

10-3

10-2

Fig. 9.12 MLS approximation of sin(πx) with linear basis p = [1 x]T. Second order convergence
verified with sampling points unequally spaced within the grid elements

9.3.2 Velocity Projection

From the particle velocities one can obtain the grid node velocities as follows

vI =
∑

p

ΦI (xp)vp (9.104)

where the sum is over the particles within the domain of influence of node I .

9.3.3 One Point Quadrature

The nodal mass and nodal forces (internal and external) are numerically computed
using only one quadrature point–the element center xc. Therefore, we have

9.3 Moving Least Square MPM 335

mI ≈
nc∑

c=1

ρcNI (xc)Vc

f intI ≈ −
nc∑

c=1

σ c∇NI (xc)Vc

(9.105)

where Vc denotes the volume of the element, Vc = ΔxΔy for 2D; and nc is the
number of elements surrounding node I which, for interior nodes, is nc = 2 in 1D,
nc = 4 in 2D and nc = 8 in 3D. It should be emphasized that using one single
quadrature point might not be sufficient. Either hourglass control can be added or
full quadrature can be employed. In any case the quadrature error still exists as the
boundary of the material domain is not accurately represented in the MPM. In this
regard, the CPDI is the best among various MPM formulations.

The density and stresses at the element center are computed using a MLS approx-
imation:

ρc =
∑

p

Φp(xc)ρp

σ c =
∑

p

Φp(xc)σ p

(9.106)

where the sum is over the particles within the domain of influence of the element
center xc.

Remark 47 Using one-point quadrature rule improves the numerical integration
error and eliminates the cell-crossing error (as the weighting gradients are always
evaluated at the cell centers). Yet it is not accurate for cells on the solid boundary.
A mixed quadrature was presented in Song et al. (2019) where for fully filled cells,
one-point quadrature is used (similar to iMPM) and for partially filled cells, material
point based integration is used. Partially filled cells are cells intersecting with the
solid boundaries.

Remark 48 Mixed quadrature was used for the first time, to the best of our knowl-
edge, in the geo-technical engineering community (Beuth et al. 2011). Themotivation
was due to the fact that particle based quadrature resulted in oscillation in the stress
field. Even though this oscillation was due to cell crossing (Bardenhagen and Kober
2004)which can be removed usingC1 weighting functions, constructing such smooth
functions is not easy with an unstructured grid.

9.3.4 Implementation

In this section we present the implementation of the MLS-MPM. The complete
algorithm is given in Algorithm 18 which requires some modifications of a standard

336 9 Stability, Accuracy and Recent Improvements

MPM code only. First, we introduce two data structures to store the cell-centered
density and stress. Second, in the step ’particles to grid’, we proceed in two sub-steps:
(1) computation of nodal mass and forces by looping over the elements and then over
the centers and (2) computation of the nodal velocities by sweeping over the grid
nodes. Third, in the update particle step, we construct the cell-centered density and
stress from the newly updated particle density and stress. There is one change to
the initialization step as well–one needs to initialize the cell-centered density and
stresses in addition to conventional particle data.

Algorithm 18 Moving least square MPM: steps from t to t + Δt .
1: Mapping from particles to nodes
2: Compute nodal mass mt

I = ∑
c NI (xtc)ρ

t
cVc

3: Compute internal force f int,tI = −∑
c Vcσ

t
c∇NI (xtc)

4: Compute nodal force f tI = fext,tI + f int,tI
5: Compute nodal velocities vtI = ∑

p ΦI (xp)vtp
6: end
7: Update velocities vt+Δt

I = vtI + (
f tI /m

t
I

)
Δt

8: Fix Dirichlet nodes
9: Update particles + construct cell-centered density/stress
10: Update particle velocities vt+Δt

p = vtp + Δt
∑

I NI (xtp)f
t
I /m

t
I

11: Update particle positions xt+Δt
p = xtp + Δt

∑
I NI (xtp)v

t+Δt
I

12: Compute velocity gradient Lt+Δt
p = ∑

I ∇NI (xtp)v
t+Δt
I

13: Updated gradient deformation tensor Ft+Δt
p = (I + Lt+Δt

p Δt)Ft
p

14: Update volume V t+Δt
p = det Ft+Δt

p V 0
p .

15: Update stresses σ t+Δt
p = σ t

p + Δσ p

16: Update density ρt+Δt
p = ρ0

p/J

17: Construct cell-centered density ρt+Δt
c = ∑

p Φp(xc)ρt+Δt
p

18: Construct cell-centered stress σ t+Δt
c = ∑

p Φp(xc)σ t+Δt
p

19: end

In order tomake it general theMLS approximation for the velocity can be different
from the MLS approximation used for the density/stress. Matlab code for MLS
approximation of the node velocities and cell-centered density/stress are given in
Listings 9.1 and 9.2, respectively. As can be observed the first involves a loop over
the grid nodes while the latter is achieved by sweeping over the elements (of the
background grid). It should be emphasized that not all nodes and elements are used
in the reconstruction of the grid velocities and cell-centered density/stress. This is
because there are inactive nodes and elements (these concepts have been introduced
in Chap. 5). Only active nodes/elements, demonstrated in Fig. 9.13, are involved in
the MLS reconstruction. The referred figure also points out the quadrature error of
MPM–the domain boundary is not exactly captured.

9.3 Moving Least Square MPM 337

Listing 9.1 MLS approximation for grid node velocities

1 shape = ’ c i r c le ’ ; % shape of domain of inf luence
2 dmax1 = 2.0 ; % smoothing length=dmax∗nodal spacing (velo)
3 dmax2 = 2.0 ; % smoothing length for ce l l−centered quant i t ies
4 form = ’ cubic_spline ’ ; % using cubic spl ine weight function
5 for i i =1: length (activeNodes)
6 i = activeNodes (i i) ;
7 pt = nodes(i) ;
8 index = defineSupport (xp , pt , di1) ;
9 phi = mlsLinearBasis1D (pt , index , xp , di1 , form) ;

10 nvelo0 (i) = nvelo0 (i) + dot (phi , vp(index)) ;
11 end

Listing 9.2 MLS approximation for cell-centered density/stress

1 cel lDensity = zeros (elemCount , 1) ; % cel l−centerd density
2 cel lStress = zeros (elemCount , 1) ; % cel l−centerd stress
3 % project par t i c le density / stress to gr id centers (MLS)
4 cel lDensity (:) = 0;
5 cel lStress (:) = 0;
6 for ie =1: length (activeElems)
7 e = activeElems (ie) ;
8 esctr = elements (e , :) ;
9 enode = nodes(esctr) ;

10 xc = mean(enode) ;
11 index = defineSupport (xp , xc , di2) ;
12 phi = mlsLinearBasis1D (xc , index , xp , di2 , form) ;
13 cel lDensity (e) = cel lDensity (e) + dot (phi , rhop (index)) ;
14 cel lStress (e) = cel lStress (e) + dot (phi , s (index)) ;
15 end

Fig. 9.13 Active nodes and
elements: blue dots denote
the particles (material
points), cyan dots represent
the active nodes and red
squares the active elements.
This is a simulation of the
vibration of a soft cantilever
beam

338 9 Stability, Accuracy and Recent Improvements

9.3.5 Improved Implementation

As MLS approximation involves inverse of the moment matrix A which is a 3 × 3
matrix for a 2D linear basis. This matrix inversion is repeated for all grid nodes and
cell centers for every time step. After having worked out a working implementation
of the MLSMPM, we have to improve it now to reduce the computational cost. As it
is not efficient to run intensive computations with a Matlab code we did not attempt
to fully optimize our code. The aim is to (1) have a sufficiently fast MLSMPM code
to test its performance and (2) to illustrate some useful Matlab tools for speeding
up a numerical code. To this end, we employ a two-step process. In the first step,
the Matlab profiler is used to detect where the bottle neck of the code is and in the
second step the Matlab Coder is used to convert this time consuming function to a
MEX file.

Listing 9.3 Using a profiler to measure where a program spends time

1 p ro f i l e on
2 impmMMS2D
3 p ro f i l e viewer

Listing 9.3 demonstrates how to use the Matlab profiler to measure where the
MPM (withMLS) program spends time. And as we have expected, the MLS approx-
imation is the culprit. For a test it constitutes 60% run time.

Another technique to speed up theMLS is the improvedMLS, developed by Liew
et al. (2005) where orthogonal basis are used leading to a diagonal moment matrix
which is trivial for inverting. Tran et al. (2019) employed the improved MLS in the
MLS MPM. We have not coded this in our Matlab code.

9.4 The Affine Particle in Cell (APIC)

9.4.1 The Gradient Enhancement Technique

As demonstrated in Sect. 9.3.1, the standard MPM cannot exactly project a linear
velocity field from the particle to the grid. Wallstedt and Guilkey (2007) presented
analyses similar to what we have done in Sect. 9.3.1 for both MPM and GIMP. They
found that, while the error does not decrease monotonically with increasing PPC
(particles per cell), the error displays a downward trend. The GIMP basis functions
perform better in general.

To minimize the error of the velocity projection from particle to grid, Wallstedt
and Guilkey (2007) suggested to enhance the particle’s velocities using the already
available velocity gradient. In 1D, the particle to grid projectionwas therefore defined
as, see Fig. 9.14 for an illustration

9.4 The Affine Particle in Cell (APIC) 339

Fig. 9.14 Projection of a
linear velocity field using the
velocity gradient

mIvI =
∑

p

m pφI (xp)

[
vp − ∂vp

∂x
(xp − xI)

]
(9.107)

Extension to 2D is straightforward and Wallstedt and Guilkey (2007) provided the
formula but did not present 2D analyses

mIvx I =
∑

p

m pφI (xp)

[
vxp − ∂vxp

∂x
(xp − xI) − ∂vxp

∂y
(yp − yI)

]
(9.108)

mIvy I =
∑

p

m pφI (yp)

[
vyp − ∂vyp

∂x
(xp − xI) − ∂vyp

∂y
(yp − yI)

]
(9.109)

Written compactly, the above becomes

mIvI =
∑

p

m pφI (xp)
[
vp + L(xI − xp)

]
(9.110)

where L is the velocity gradient.
Pursuing a similar idea, Jiang et al. (2015) in the computer graphics community

presented the Affine Particle-In-Cell (APIC) method. The APIC particle velocity to
grid projection is given by

mt
Iv

t
I =

∑

p

m pφI (xtp)
[
vtp + Bt+Δt

p (Wt
p)

−1(xI − xtp)
]

(9.111)

where

Bt+Δt
p =

∑

I

φI (xtp)v
t+Δt
I (xI − xtp)

T, Wt
p =

∑

I

φI (xtp)(xI − xtp)(xI − xtp)
T

(9.112)
Jiang et al. (2015) proved that APIC conserves angular momentum. They used this
APIC with quadratic and cubic splines.

340 9 Stability, Accuracy and Recent Improvements

Remark 49 Without proof, Jiang et al. (2015) stated thatWp = 1/4h2I for quadratic
splines andWp = 1/3h2I for quadratic splines.Actually, they are just approximations.
We have numerically verified that these simplified expressions forWp are incorrect
for hat functions, cubic B-splines and Bernstein functions. However, Wp is always
a diagonal matrix.

9.4.2 Derivation

To obtain Eq. (9.111) we follow the derivation proposed by Müller et al. (2004).
Assuming that the velocity field is v = [u v w]T and using a first order Taylor
approximation, the x-component of the velocity at node I can be approximated as

ũ I = u p + ∇u|xp · xI p (9.113)

where ∇u|xp = [u,x u,y u,z]T at particle p, and xI p = xI − xp. The error of this
approximation ismeasured as the sumof the squared differences between the approx-
imated value ũ I and their known value uI weighted by the shape function:

e =
∑

I

φI (xp)(ũ I − uI)
2 (9.114)

Substituting Eq. (9.113) into Eq. (9.114) and expending yields e = ∑
I φp(xI)(u p +

u,x xI p + u,y yI p + u,z z I p − uI)
2, where xI p, yI p, and zI p are the x , y and z-

components of xI p, respectively. Knowing the positions and velocities of the par-
ticles and the nodes, let’s find u,x , u,y , and u,z that minimize the error e. Taking
the respective derivative of e with respect to u,x , u,y , and u,z , and setting them to 0
yields a system of three equations with three unknowns (Müller et al. 2004)

(
∑

I

φI (xp)xI pxTI p

)
∇u|xp =

∑

I

(u p − ui)xI pφI (xp) (9.115)

Applying the same derivation to the y and z-components of the velocity (v and
w) and adding the resulting two equations to the system given in Eq. (9.115) gives:

(
∂v
∂x

∣∣∣∣
xp

)T

= W−1
p

∑

I

φI (xp)xI p(vp − vI)
T

= W−1
p

(
∑

I

φI (xp)(xp − xI)

)
(vp)T − W−1

p

∑

I

φI (xp)(xp − xI)(vI)
T

(9.116)
where Wp given in Eq. (9.112).

9.4 The Affine Particle in Cell (APIC) 341

Noting that
∑

I φp(xI)xI is the Shepard approximation of xp, we get
∑

I φp(xI)
(xp − xI) = 0. Moreover, since Wp is symmetrical, Eq. (9.116) becomes:

∂v
∂x

∣∣∣∣
xp

=
∑

I

φI (xp)vI (xI − xp)
TW−1

p = BpW−1
p (9.117)

with Bp given in Eq. (9.112).
Coming back to the particle to grid projection, in APIC, it is therefore obtained

as:
mivI =

∑

p

m pφI (xp)
[
vp + BpW−1

p (xI − xp)
]

(9.118)

Assuming a uniform velocity at the grid c, Bp becomes identically zeros. To see
that, assume a 2D case, then this matrix is written by

Bp = c
∑

I

φI (xp)(xI p)T = c
∑

I

φI (xp)[xI − xp yI − yp] (9.119)

We need to prove
∑

I φI (xp)(xI − xp) = ∑
I φI (xp)(yI − yp) = 0. This can be

obtained using the PUM of the basis functions

∑

I

φI (xp) = 1 →
∑

I

φI (xp)xp = xp (9.120)

And the following isoparametric

∑

I

φI (xp)xI = xp (9.121)

Then, one can obtain the following

∑

I

φI (xp)(xI − xp) =
∑

I

φI (xp)xI −
∑

I

φI (xp)xp = xp −
∑

I

φI (xp)xp = 0

(9.122)

9.4.3 Implementation

We present in Algorithm 19 a complete algorithm for the APIC. To avoid repetition,
we have omitted some common steps with the MPM. We use the USL as APIC does
not need to adopt the MUSL with α = 0. Furthermore, the particle velocity update
follows a PIC scheme i.e., α = 0 in Eq. (2.54).

342 9 Stability, Accuracy and Recent Improvements

Algorithm 19 Solution procedure of explicit APIC (USL).
1: while t < t f do
2: Reset grid quantities: mt

I = 0, (mv)tI = 0, fext,tI = 0, f int,tI = 0
3: Mapping from particles to nodes (P2G)
4: Compute nodal mass mt

I = ∑
p φI (xtp)mp

5: Compute nodal momentum (mv)tI = ∑
p m pφI (xp)

[
vtp + Lt

p(xI − xtp)
]

6: Compute internal force f int,tI = −∑
p V

t
pσ

t
p∇φI (xtp)

7: end
8: Update the momenta (mv)t+Δt

I = (mv)tI + f tIΔt

9: Fix Dirichlet nodes I e.g. (mv)tI = 0 and (mv)t+Δt
I = 0

10: Update particles (G2P)
11: Get nodal velocities vtI = (mv)tI /m

t
I and vt+Δt

I = (mv)t+Δt
I /mt

I

12: Update particle velocities vt+Δt
p = ∑

I φI (xtp)v
t+Δt
I

13: Compute xI p = xI − xtp
14: Compute Wt

p = ∑
I φI (xtp)xI px

T
I p

15: Compute Bp = ∑
I φI (xtp)v

t+Δt
I (xI p)T

16: Update particle positions xt+Δt
p = xtp + Δt

∑
I φI (xtp)v

t+Δt
I

17: Compute velocity gradient Lt+Δt
p = BpW−1

p

18: Updated gradient deformation tensor Ft+Δt
p = (I + Lt+Δt

p Δt)Ft
p

19: Update volume V t+Δt
p = det Ft+Δt

p V 0
p

20: Compute the rate of deformation matrix Dt+Δt
p = 0.5(Lt+Δt

p + (Lt+Δt
p)T)

21: Compute the strain increment Δε p = ΔtDt+Δt
p

22: end
23: Advance time t = t + Δt
24: Error calculation: if needed (e.g. for convergence tests)
25: end while

9.4.4 Momenta Conservation

Linear momentum conservation. Similar to all other MPM variants, APIC does
conserve exactly the linear momentum. The proof is as follows.

The total linear momentum of the grid nodes after the particle-to-grid projection
is:

∑

I

mt
I v

t
I =

∑

I

∑

p
m pφI (x

t
p)

[
vtp + Bt−Δt

p

(
Wt−Δt

p

)−1
(xI − xtp)

]
(9.123)

=
∑

p
m p

[
vtp

∑

I

φI (x
t
p) + Bt−Δt

p

(
Wt−Δt

p

)−1
(
∑

I

φI (x
t
p)xI − xtp

∑

I

φI (x
t
p))

]

Because of the partition of unity,
∑

I φI (xtp) = 1, and recalling that xp = ∑
I φI

(xtp)xI , Eq. (9.123) becomes:

9.4 The Affine Particle in Cell (APIC) 343

∑

I

mt
Iv

t
I =

∑

p

m pvtp (9.124)

Therefore, the particle to grid step conserves exactly the linear momentum.
The total linear momentum of the particles expressed after the G2P (grid-to-

particle) step is similar to the standard MPM using PIC velocity updates:

∑

p

m pvt+Δt
p =

∑

p

m p

∑

I

φI (xtp)v
t+Δt
I (9.125)

=
∑

I

vt+Δt
I

∑

p

φI (xtp)mp

=
∑

I

mt
Iv

t+Δt
I

Hence, the G2P also conserves exactly the linear momentum.

Angular momentum conservation. With APIC, the angular momentum that is lost
at the end of the timestep during the transfer from particles to grid (G2P) is cleverly
added through the affine approximation to the transfer of momentum from the parti-
cles to grid, but at the beginning of the time step. In other words, the loss of angular
momentum at the end of the timestep is compensated for in advance. In the end of
the day, this completely corrects this loss of momentum without altering the conser-
vation of linear momentum. However, this has implications on the conservation of
energy.

The angular momentum on the grid after the transfer from the particles to the grid
is:

Jth =
∑

I

xI × miv
t
i (9.126)

=
∑

p

∑

I

xI × mpφp(xI)
[
vp + Bt

pW
−1
p (xI − xtp)

]
(9.127)

=
∑

p

∑

I

xI × mpφp(xI)vp +
∑

p

∑

I

xI × mpφp(xI)Bt
pW

−1
p xI −

∑

p

[
∑

I

φp(xI)xI

]
× mpBt

pW
−1
p xtp

Note that in the following the permutation tensor ε is going to be used. Moreover,
tomake these portions easier to read, the following convention is also adopted: for any
matrix A, the contraction A : ε means the same thing as Aαβεαβγ . The manipulation
u × v = (vuT)T : ε is used to transition from a cross product into the permutation
tensor.

Substituting Eqs. (9.9) and (9.10) and using the partition of unity (
∑

I φp(xtI)xI =
xtp), the above equation becomes:

344 9 Stability, Accuracy and Recent Improvements

Jth =
∑

p

xtp × mpvtp +
∑

p

m p

∑

I

φp(xI)xI ×
(
Bt
pW

−1
p xI

)
−

∑

p

m pxtp ×
(
Bt
pW

−1
p xtp

)

=
∑

p

xtp × mpvtp +
∑

p

m p

(
∑

I

φp(xI)Bt
pW

−1
p xI (xtI)

T

)T

: ε −
∑

p

m p

(
Bt
pW

−1
p xtp(x

t
p)

T
)T : ε

=
∑

p

xtp × mpvtp +
∑

p

m p

(
∑

I

φp(xI)Bt
pW

−1
p xI (xtI)

T − Bt
pW

−1
p xtp(x

t
p)

T

)T

: ε

=
∑

p

xtp × mpvtp +
∑

p

m p

(
Bt
pW

−1
p

(
∑

I

φp(xI)xI (xtI)
T − xtp(x

t
p)

T

))T

: ε

=
∑

p

xtp × mpvtp +
∑

p

m p

(
Bt
pW

−1
p Wp

)T : ε

=
∑

p

xtp × mpvtp +
∑

p

m p(Bt
p)

T : ε

= Jtp +
∑

p

m p(Bt
p)

T : ε (9.128)

One can see that the angular momentum is not preserved during that step due to
the presence of the extra term

∑
p m p(Bt

p)
T : ε.

The angular momentum on the particles at the end of the time step, i.e., after the
grid to particle transfer (G2P), is:

Jt+Δt
p =

∑

p

xt+Δt
p × mpvt+Δt

p (9.129)

Using the fact that
∑

p Δtvt+Δt
p × mpvt+Δt

p = 0

Jt+Δt
p =

∑

p

xt+Δt
p × mpvt+Δt

p −
∑

p

Δtvt+Δt
p × mpvt+Δt

p

=
∑

p

xt+Δt
p × mpvt+Δt

p −
∑

p

(xt+Δt
p − xtp) × mpvt+Δt

p

=
∑

p

xtp × mpvt+Δt
p

=
∑

I

xI × mIvt+Δt
I −

∑

p

m p(Bt+Δt
p)T : ε

= Jt+Δt
h −

∑

p

m p(Bt+Δt
p)T : ε

the change of angular momentum on the particles between the beginning and the end
of the time step is:

9.4 The Affine Particle in Cell (APIC) 345

Jt+Δt
p − Jtp = Jt+Δt

h −
∑

p

m p(Bt+Δt
p)T : ε − Jth +

∑

p

m p(Bt
p)

T : ε

= Jt+Δt
h − Jth +

∑

p

m p(Bt
p − Bt+Δt

p)T : ε (9.130)

The change of angular momentum on the particles during a single time step is
not exactly equal to the change on the grid: it differs by a quantity ΔJp − ΔJh =∑

p m p(Bt
p − Bt+Δt

p)T : ε that scales asO(Δt). Even though the norm of this quan-
tity is small, the angular momentum is still not exactly preserved on the particles.
However, it is interesting to check how the angular momentum changes (or lack
thereof) on the grid between the end of a time step, and the beginning of a new
one. To avoid any confusing, let’s adopt a slightly different notation: JN ,b

h will be
the angular momentum on the grid at the beginning of the time step N just after the
particle to grid transfer, and JN ,e

h will be the same angular momentum but at the end
of the time step N just before the grid to particle transfer, JNp will be the angular
momentum on the particles at the beginning of time step N right before the particle
to grid transfer but also the angular momentum on the particles at the end of the time
step N + 1.

Equation (9.128) gives:

JN ,b
h = JNp +

∑

p

m p(BN
p)T : ε (9.131)

and from Eq. (9.130), one can write:

JN ,b
p = J(N−1),e

h −
∑

p

m p(BN
p)T : ε (9.132)

Substituting Eq. (9.132) into Eq. (9.131), one gets:

JN ,b
h − J(N−1),e

h = 0 (9.133)

So, even though the angular momentum is not conserved on the particles, it is con-
served on the grid between time steps. This would result in a growing discrepancy
between the two angular momenta over time.

In order to appreciate how ΔJp − ΔJh evolves with time, let’s look at the free
rotation of a square body with a given initial angular momentum. A 4m by 4m
square is left free to rotate for a total time of 3 s. The initial velocities of the particles
forming the body are set such that at t = 0, the body has an angular velocity ω = 2π
rad/s around its centre (see Fig. 9.15). The body makes one rotation per second.
The material is Neo-Hookean, with a Young’s modulus E = 107 Pa, Poisson’s ratio
ν = 0.3, and density ρ0 = 1000 kg/m3. The angular momentum of the square is
recorded and normalized with respect to the constant theoretical value Iω (I being

346 9 Stability, Accuracy and Recent Improvements

Fig. 9.15 Free body
rotation: problem description

Fig. 9.16 Free body
rotation: angular momentum
as a function of time
obtained using APIC
ULMPM with cubic
B-splines and 4 particles per
cell. The angular momentum
is normalized using its
theoretical value: Iω

Fig. 9.17 Free body
rotation: comparison of the
angular momentum as a
function of time obtained
using APIC, PIC, and FLIP
ULMPM with cubic
B-splines and 4 particles per
cell. The angular momentum
is normalized using its
theoretical value: Iω

the second moment of inertia of the considered square). The cell size is h = 1/40 m
or a grid of 40 × 40 cells is used.

The numerical values obtained using both the USF and USL schemes shown in
Fig. 9.16 indicate that the change of angular momentum in that case is less than 0.1%
which is negligible. Compared to the other variants PIC and FLIP, APIC is the type
of MPM that best conserves the angular momentum as shown in Fig. 9.17.

9.5 Convergence Tests 347

9.4.5 Energy Conservation

The calculation of the change in total energymade in a single time step in the absence
of heat transfer is similar to that performed in Sect. 9.1.3 in the case of PIC. This
change, also referred to as error since if the energy were to be conserved remains:

ΔEerror = −ΔEinterpolation − ΔEalgorithm (9.134)

Compared to PIC, the error due to the algorithm, ΔEalgorithm is unchanged by the use
of the affine particle-to-grid interpolation. However, the interpolation error becomes:

ΔEinterpolation = 1

2

[
∑

I,J

vt+Δt
I · (M̄I J − MI J)vt+Δt

J +
∑

I,J

vtI · (M̄I J − MI J)vtJ

+
∑

p

m p

∣∣∣∣

∣∣∣∣v
t
p −

∑

I

φI (xtp)v
t
I

∣∣∣∣

∣∣∣∣
2
]

−
∑

p

m p

∑

I

φI (xtp)(v
t
I)

TBt+Δt
p (Wt

p)
−1(xI − xtp)

(9.135)
The total energy error increment for APIC is therefore:

(ΔEerror)APIC = (ΔEerror)PIC −
∑

p

m p

∑

I

φI (xtp)(v
t
I)

TBt+Δt
p (Wt

p)
−1(xI − xtp)

(9.136)
where (ΔEerror)PIC is the total error increment obtained with PIC given by either Eq.
(9.39) or Eq. (9.48), when combined with USF and USL, respectively.

The sign of the second term in Eq. (9.136) is difficult to assess as it depends on
the relative position of the particles and also the strain distribution within the solid.
To get a better feel for how it affects the change in total energy, let’s use the problem
of the impact of two elastic bodies first introduced in Sect. 9.1.3 of which description
is illustrated in Fig. 9.1.

Change of total energy during the impact of these two rings shown in Fig. 9.18
informs us that the extra term in the total error increment improves significantly the
energy conservation of APIC compared to PIC. It brings the energy conservation of
APIC close to that of FLIP. But, its contribution is not large enough to obtain better
nor similar results as with FLIP. This is true when using both USF and USL.

9.5 Convergence Tests

We present two convergence tests in this section. As it is always easier to code
and debug 1D problems, we consider first a 1D test (Sect. 9.5.1). Furthermore, 1D
problems allow to use extremely fine meshes which reveal instability of some MPM

348 9 Stability, Accuracy and Recent Improvements

Fig. 9.18 Change of total energy during the impact of two compressible Neo-Hookean rings
obtained with ULMPM using cubic B-splines and 4 particles per cell

variants. Then, we study the generalized vortex problem (Sect. 9.5.2). The manu-
factured solutions and the corresponding body forces were presented in Sect. 9.2.

9.5.1 One Dimensional Convergence Test

Let’s consider a unit segment i.e., the spatial domain is 0 ≤ X ≤ 1. Themanufactured
displacement field is assumed to be

u(X, t) = G sin(πX) sin(cπ t) (9.137)

where G is the maximum amplitude of the displacement; c = √
E/ρ0 and E denotes

the Young’s modulus. The period is thus given by T = 2π/cπ; X denotes the material
coordinates i.e., coordinates in the reference configuration, and the time domain
is 0 ≤ t ≤ T i.e., one period of oscillation is considered. The corresponding body
force and boundary/initial conditions for this manufactured solution are given in
Sect. 9.2.1.

This MMS verification test is done using the following material parameters: E =
107 Pa, ν = 0.3, and ρ0 = 1000 kg/m3. Both small and large displacements are
tested by setting the maximum amplitude displacement G = 10−4 and G = 0.05,
respectively. The same time step of 0.2h/c, where h is the cell size, was used: this
small time step eliminates any error due to time discretization. And note that herein
we focus on spatial convergence only. We study the convergence of the FEM (see
Chapter D for the formulation), MPM, TLMPM, GIMP and iMPM. Note that the
CPDI performs identically to the cpGIMP for this problem and thus not discussed.

In the literature, for convergence tests, rather coarse meshes have been used, by
many researchers, with which convergence was always obtained, but Gong (2015)

9.5 Convergence Tests 349

Fig. 9.19 Axis-align unit segment test: convergence of FEM and various MPM variants using the
un-normalized error measure e1 given in Eq. (9.79) (de Vaucorbeil et al. 2020)

pointed out that when the mesh is very fine, many MPM variants exhibit divergence.
That is why, herein we use very fine meshes to have a fair view of the convergence
behavior of MPMs. Actually, grids of size h = 2−k , k = {1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 12}, with the smallest cell size is 0.000244141, are considered.

The results are given in Fig. 9.19 where it can be seen that optimal convergence
(of order 2) was obtained with the FEM and TLMPM. This is expected as there is
no error in updating the stress for this manufactured solution (the constitutive model
is a hyperelasticity). In the TLMPM, there is no quadrature error (for this axis-
aligned problem) and cell-crossing instability. The TLMPM accuracy is certainly
slightly lower than the FEM accuracy. The standard MPM does converge for the
small deformation case up to a certain mesh level and the error plateaus. However,
it does not converge at all for the large deformation case. The convergence is better
with uGIMP even though the error increases for finemeshes (large deformation case).
The cpGIMP does perform better when large deformation occurs but the convergence
rate is far from optimal. The convergence of the iMPM is optimal for meshes with
size smaller than 10−3 and all of a sudden, it diverges for more refined meshes. The
reason of that is unclear at this stage (Gong 2015).

While performing this convergence test, we have realized that the convergence
does depend on the error measure. To demonstrate this, considering the following
root mean square error

eRMSE =
√√√√

∑t f
tn=0

∑np

p=1

∣∣∣∣uh
p(t

n) − uexact(Xp, tn)
∣∣∣∣2

nT × np
(9.138)

350 9 Stability, Accuracy and Recent Improvements

It is obvious that when the mesh gets finer, both np and nT (the number of time steps)
gets bigger and thus the error measure in Eq. (9.138) will always give convergence,
cf. Figure9.19d. We do not think this RMSE is objective for dynamics simulations
because one can get good convergence simply by refining the time steps i.e., making
nT bigger.

9.5.2 Generalized Vortex Problem

We consider the convergence of the MPM using the generalized vortex problem
introduced in Sect. 9.2.3. This problem demonstrates that none of existing MPM
variants converge when the grid is fine enough. The reason why we do not know.

Similarly to Kamojjala et al. (2015), the inner and outer radii are taken as
0.75 and 1.25 m, respectively. Material parameters are taken as: E = 103 Pa,
ρ0 = 1000 kg/m3, ν = 0.3, and the maximum displacement amplitude G = 1;
T0 = 1 s and the total simulation time is one second i.e., one period is considered.
The velocity of all the nodes outside of the ring is set to zero, and the body forces (Eq.
(9.76)) are applied directly on the nodes. Alternatively, these forces can be applied
to the particles and mapped to the nodes. But we find it more efficient and accurate
to directly compute the forces at the nodes.

We solve this problem using three MPM variants: the TLMPM (with linear and
quadratic Bernstein functions), the boundary non-conforming CPDI-Q4 and the
boundary conforming CPDI-Q4. The Karamelo code was used for these inten-
sive convergence analyses. The particles’ velocities is updated using a mix of PIC
and FLIP with the mixing factor α = 0.99. In the boundary non-conforming CPDI,
the particles are generated using the same algorithm for the standard MPM and thus
the particle domains do not fit the boundary, see Fig. 9.20a. TheTLMPMhas the same
particle positions. On the other hand, in the conforming CPDI, the particle domains
are generated using amesh generator (we usedGmsh (Geuzaine andRemacle 2009)).
The particle domains are conforming to the boundary, see Fig. 9.20b.

The results obtained with CPDI-Q4 are given in Fig. 9.21. The performance of
CPDI-Q4 is much better than the standard MPM and uGIMP (not shown here), but
the deformation is not well captured: the boundaries of the domain are not smooth
and circular as the exact solution. The particle domains are so much distorted. For
this reason, we do not perform mesh convergence for CPDI. The remaining of this
section focuses on the TLMPM.

Figure9.22 shows how the displacement errors e1 and e2 change according to
the element size. It can be seen that at large element size, the convergence rate is
quadratic, but decreases progressively as the cell size decreases. This is the sign of a
competition between two errors: cell size related errors and mapping errors. As the
cell size decreases, so does the error associated to it, while the mapping error which
appeared negligible for large cell sizes becomes dominant. Thus the error plateaus.
Note that there is another source of error—the mapping of particle momenta to the

9.5 Convergence Tests 351

Fig. 9.20 Generalized vortex problem. Grid and initial particles used in CPDI. These images were
created using the PyPlot graphical package (Johnson 2012)

Fig. 9.21 Deformed configuration obtained with CPDI-Q4. The color represents the magnitude of
the displacement field. Blue is zero and read is maximum. The grid cell size is 0.05 and there are
about 14 000 particles. Images obtained using Ovito (Stukowski 2009)

grid as shown in Sulsky andGong (2016).We did not implement those improvements
to mitigate this error and leave it as a future work. However, the order of magnitude
of this plateaus is so low that very good qualitative agreement exist between the
deformed configurations at peak rotation angle as obtained with the TLMPM using
Bernstein shape functions and the analytical solution (see Fig. 9.23).

352 9 Stability, Accuracy and Recent Improvements

Fig. 9.22 Plot of the displacement error as a function of the background mesh refinement obtained
using the TLMPM. Note that as e2 is normalized (de Vaucorbeil et al. 2020)

Fig. 9.23 Deformed configuration at t = 0.5 s obtained a analytically and b with the TLMPM
using quadratic Bernstein polynomials shape functions and a cell size of 0.033 (de Vaucorbeil et al.
2020)

9.6 Volumetric Locking

When Poisson’s ratio approaches 0.5 or when a plastic flow is constrained by the
volume conservation condition, well known overly stiff numerical solutions appear.
This problem is known as volumetric locking. It is associated with a rather large
(in magnitude) and chaotic state of stress as shown in Fig. 9.24a. The severity of
volumetric locking increases when low order shape functions are employed in the
standard MPM.

Various solutions to this problem have been proposed, all borrowing methods
developed for the FEM (Love and Sulsky 2006b, a;Mast et al. 2012; Yang et al. 2018;

9.6 Volumetric Locking 353

Fig. 9.24 Taylor bar impact simulated with TLMPM and linear shape functions showing the dif-
ference in the hydrostatic stress when using either a full integration or b reduced integration where
this problem is not present. When using full integration, the hydrostatic stress field is chaotic and
its magnitude is much larger than with reduced integration. This is a typical illustration of the effect
of volumetric locking

Coombs et al. 2018; Iaconeta et al. 2019). In particular, Love and Sulsky (2006b);
Mast et al. (2012) adopted the Hu–Washizu multi-field variational principle which
introduces independent approximations for the volumetric and the deviatoric com-
ponents of the strain and stress fields. On the other hand, a u − p mixed formulation
was used in Iaconeta et al. (2019). All these works employ the standard MPMwhich
is known for its poor accuracy due to, among others, cell-crossing issue. Coombs
et al. (2018) applied the F-bar method, developed for the FEM (de Souza Neto et al.
1996; Neto et al. 2005) to quasi-static MPM and GIMP.

This section discusses the F-bar method in the context of the MPM. We start
with a brief introduction to the F-bar method in Sect. 9.6.1. Then, how the F-bar
method can be implemented in the MPM is given. In Sect. 9.6.2, we present the first
implementation that we refer to as cell averaging F-bar. And in Sect. 9.6.3 we present
the other scheme that we name nodal averaging F-bar method.

9.6.1 Overview of the F-bar Method

In FEM, one of the ways to mitigate this problem is to use reduced integration (with
high order elements to prevent hour-glassing). This also works when using TLMPM
(see Fig. 9.24b). However, this simple trick does not apply for ULMPM forwe cannot
control how many particles are present in a given cell. In that case, the simple F-

354 9 Stability, Accuracy and Recent Improvements

bar method can be adopted. The F-bar technique uses an effective combination of
reduced integration for the computation of the volumetric part of the deformation
tensor (equivalent to the particles volume) and full integration for its isochoric part.

The isochoric/volumetric split of the deformation gradient is defined as

F = FisoFvol (9.139)

where the isochoric and volumetric parts are given by

Fiso = F
(det F)1/3

, Fvol = (det F)1/3I (9.140)

Note that det Fiso = [(det F)−1/3]3det F = 1, thus justify the term ’isochoric’.
In the F-bar method, one defines the following modified gradient deformation

tensor (Neto et al. 2005)

F̄ =
(
det F0

det F

)1/3

F (9.141)

where F0 is the gradient deformation tensor evaluated at the centroid of the finite ele-
ment. It can be shown that the isochoric/volumetric parts of themodified deformation
tensor are given by

F̄iso = (det F)−1/3F = Fiso

F̄vol = (det F0)
1/3I = F0,vol

(9.142)

i.e. the isochoric component of F̄ coincides with the current (integration point) iso-
choric deformation gradient while its volumetric part corresponds to the dilatation
at the centroid of the element. Now, in order to compute the stresses at a particu-
lar integration point one uses the modified gradient deformation tensor rather than
the original one. For nearly incompressible materials, the pressure variable is often
decoupled from the stress and hence the pressure is a function of det F̄ and thus
constant within a cell using the F-bar method.

9.6.2 F-bar Method in MPM: Cell Averaging

In the MPM, the F-bar method was first implemented in the Uintah MPM code,
where it is called pressure stabilization, long before the published work of Coombs
et al. (2018).

When the F-bar method is directly applied to the MPM, the deformation gradient
at the element centroid is replaced by the cell-centered or cell-averaged deformation
gradient computed according to

9.6 Volumetric Locking 355

Fig. 9.25 F-bar method
applied for the material point
method

det Ft
0 = J t

0 = V t
0

V 0
0

=
∑

p m p/ρ
0
p J

t
p∑

p m p/ρ0
p

(9.143)

i.e., det Ft
0 is defined as the ratio of the cell-centered current volume and the cell-

centered initial volume. In the above equation, the sum is over all particles in the
cell at hand, cf. Figure9.25. For implementation, the procedure is presented in Algo-
rithm 20. We refer to a related work (Moutsanidis et al. 2019) on this topic.

Algorithm 20 Algorithm for F-bar in an explicit MPM code.
1: for p=1:np do
2: Compute/retrieve the particle deformation gradient and Jp = det Fp
3: Get index of cell contains p, named c
4: cellV ol0(c) = cellV ol0(c) + (mp/ρ

0
p)

5: cellV ol(c) = cellV ol(c) + (mp/ρ
0
p)Jp

6: end for
7: Compute the centered gradient deformation determinant cell J = cellV ol/cellV ol0
8: for p=1:np do
9: Retrieve the particle deformation gradient and Jp = det Fp
10: Get index of cell contains p, named c
11: Retrieve the cell-centered J0 = cell J (c)
12: Compute modified gradient deformation F̄p = (J0/Jp)1/3Fp
13: end for

9.6.3 F-bar Method in MPM: Nodal Averaging

There are several problem associate with the cell averaging F-bar technique. First,
when using non-linear shape functions, the concept of cells in the MPM is blur. For
instance, cubic B-spline shape functions spane over what would be 4 grid cells when
using linear shape functions. Second, a list of particles per cell needs to be kept
up-to-date.

The alternative to the F-bar method is to replace the current volume of all particles
V t
p by the interpolation of their nodal averaging Ṽ t

p. This is done in three steps:

356 9 Stability, Accuracy and Recent Improvements

1. Mapping the particle’s volume to the nodes:

V t
I =

∑

p

φI (xp)V
t
p (9.144)

2. Interpolation from the nodes back to the particles:

Ṽ t
p = mt

p

∑

I

φI (xp)
V t
I

mt
I

(9.145)

3. Modification of the deformation gradient:

F̄p =
(
Ṽ t
p/V

0
P

det Fp

)1/3

Fp (9.146)

It is paramount that the total volume is conserved during this averaging. The total
volume on the nodes Vtot,nodes is exactly the total volume of the particles Vtot,particles:

Vtot,nodes =
∑

I

V t
I

=
∑

I

∑

p

φI (xp)V
t
p

=
∑

p

V t
p

∑

I

φI (xp)

=
∑

p

V t
p (partition of unity)

= Vtot,particles (9.147)

This is pretty straight-forward.
Interestingly, both nodal and particle masses are present in the interpolation of

the volume back to the particles (Eq. (9.145)). The only motivation for this is the
conservation of the total volume. In the MPM, the quantity that is always conserved
is the total linear momentum (Sect. 9.1.1). In the particle to grid step of the MPM
algorithm, the particles momentum is mapped onto the nodes. In the grid to particle
step, it is the nodal velocities that are projected, i.e., the ratio between the nodal
momentum and the nodal mass. Now in the last two sentences, replacemomentum by
volume and you get equations Eqs. (9.144) and (9.145): first mapping of the particles
volume onto the nodes, then projection of the ratio between the nodal volume the
nodal mass.

9.6 Volumetric Locking 357

Fig. 9.26 Taylor bar impact simulated with ULMPM and cubic B-spline shape functions showing
the difference in the distribution of the positive and negative hydrostatic pressures without and
with nodal averaging. In both cases, black and white colors correspond to negative and positive
hydrostatic pressure, respectively. One can easily see that nodal averaging resolves the problem of
chaotic pressure

The new total volume of the particles is exactly the same as the original volume:

Ṽtot,particles =
∑

p

Ṽ t
p =

∑

p

m p

∑

I

φI (xp)
V t
I

mt
I

=
∑

I

V t
I

mt
I

∑

p

φI (xp)mp

=
∑

I

V t
I

mt
I

mt
I

=
∑

I

V t
I = Vtot,nodes

= Vtot,particles (9.147) (9.148)

To demonstrate the performance of this nodal averaging scheme, we solve thewell
known Taylor bar problem using ULMPMwith and without it. The results are shown
in Fig. 9.26. One can see that without volume averaging, the sign of the hydrostatic
pressure fluctuates heavily between adjacent particles; this is usually referred to as
the checkerboard phenomenon. This is not the case when nodal averaging is used.
There, the pressure field is way smoother.

Note that nodal averaging can be used for TLMPM. The only difference is that
the shape functions are evaluated in the reference configuration, i.e., now φI (xp) is
replaced by φI (Xp).

358 9 Stability, Accuracy and Recent Improvements

References

Bardenhagen, S.G.: Energy conservation error in the material point method for solid mechanics. J.
Comput. Phys. 180(1), 383–403 (2002)

Bardenhagen, S.G., Kober, E.M.: The generalized interpolation material point method. Comput.
Model. Eng. Sci. 5(6), 477–495 (2004)

Berzins, M.: Nonlinear stability and time step selection for the MPMmethod. Comput. Part. Mech.
5(4), 455–466 (2018)

Beuth, L., Wieckowski, Z., Vermeer, P.A.: Solution of quasi-static large-strain problems by the
material point method. Int. J. Numer. Anal. Meth. Geomech. 35(13), 1451–1465 (2011)

Brannon, R.M., Kamojjala, K., Sadeghirad, A.: Establishing credibility of particle methods through
verification testing. In: Particle-BasedMethods II—Fundamentals andApplications, pp. 685–696
(2011)

Ciarlet, P.G., Lions, J.L.: Handbook of Numerical Analysis. North-Holland, Amsterdam (1991)
Coombs, W.M., Charlton, T.J., Cortis, M., Augarde, C.E.: Overcoming volumetric locking in mate-
rial point methods. Comput. Methods Appl. Mech. Eng. 333, 1–21 (2018)

de Souza Neto, E. A., Perić, D., Dutko,M., Owen, D.: Design of simple low order finite elements for
large strain analysis of nearly incompressible solids. Int. J. Solids Struct. 33(20–22), 3277–3296
(1996)

de Vaucorbeil, A., Nguyen, V.P., Hutchinson, C.R.: A total-lagrangian material point method for
solid mechanics problems involving large deformations. Comput. Methods Appl. Mech. Eng.
360, 112783 (2020). https://doi.org/10.1016/j.cma.2019.112783

de Vaucorbeil, A., Nguyen, V.P., Sinaie, S., Wu, J. Y.: Chapter two—material point method after
25 years: theory, implementation, and applications. In: Advances in Applied Mechanics, vol. 53,
pp. 185–398. Elsevier (2020)

de Vaucorbeil, A., Nguyen, V.P.: Modeling contacts with a total lagrangian matertial point method.
Comput. Methods Appl. Mech. Eng. 360, 112783 (2021). https://doi.org/10.1016/j.cma.2019.
112783. Mar

de Souza Neto, E.A., Andrade Pires, F.M., Owen, D.R.J.: F-bar-based linear triangles and tetrahedra
for finite strain analysis of nearly incompressible solids. part i: formulation and benchmarking.
Int. J. Numer. Methods Eng. 62(3), 353–383 (2005)

Geuzaine, C., Remacle, J.F.: Gmsh: a three-dimensional finite element mesh generator with built-in
pre- and post-processing facilities. Int. J. Numer. Meth. Eng. 79(11), 1309–1331 (2009)

Gong, M.: Improving the material point method. Ph.D. thesis, The University of New Mexico,
Albuquerque (2015)

Gritton, C., Berzins, M.: Improving accuracy in the MPMmethod using a null space filter. Comput.
Part. Mech. 4(1), 131–142 (2017)

Hammerquist, C.C., Nairn, J.A.: A new method for material point method particle updates that
reduces noise and enhances stability. Comput. Methods Appl. Mech. Eng. 318, 724–738 (2017)

Huang, P., Zhang, X.,Ma, S., Huang, X.: Contact algorithms for thematerial point method in impact
and penetration simulation. Int. J. Numer. Meth. Eng. 85(4), 498–517 (2011)

Iaconeta, I., Larese, A., Rossi, R., Oñate, E.: A stabilized mixed implicit material point method for
non-linear incompressible solid mechanics. Comput. Mech. 63(6), 1243–1260 (2019)

Jiang, C., Schroeder, C., Selle, A., Teran, J., Stomakhin, A.: The affine particle-in-cell method.
ACM Trans. Graph. 34(4), 51:1–51:10 (2015)

Johnson, S.G.: PyPlot module for Julia (2012). https://github.com/stevengj/PyPlot.jl
Kamojjala, K., Brannon, R., Sadeghirad, A., Guilkey, J.: Verification tests in solid mechanics. Eng.
Comput. 31(2), 193–213 (2015)

Knupp, P., Salari, K.: Verification of Computer Codes in Computational Science and Engineering.
Chapman and Hall/CRC (2003)

Lancaster, G.M.: Surfaces generated by moving least squares methods. Math. Comput. 3(37), 141–
158 (1981)

https://doi.org/10.1016/j.cma.2019.112783
https://doi.org/10.1016/j.cma.2019.112783
https://doi.org/10.1016/j.cma.2019.112783
https://github.com/stevengj/PyPlot.jl

References 359

Liew, K.M., Cheng, Y., Kitipornchai, S.: Boundary element-free method (BEFM) for two-
dimensional elastodynamic analysis usingLaplace transform. Int. J.Numer.MethodsEng. 64(12),
1610–1627 (2005)

Love, E., Sulsky, D.L.: An energy-consistent material-point method for dynamic finite deformation
plasticity. Int. J. Numer. Meth. Eng. 65(10), 1608–1638 (2006a)

Love, E., Sulsky, D.L.: An unconditionally stable, energy-momentum consistent implementation of
the material-point method. Comput. Methods Appl. Mech. Eng. 195(33–36), 3903–3925 (2006b)

Mast, C.M., Mackenzie-Helnwein, P., Arduino, P., Miller, G.R., Shin, W.: Mitigating kinematic
locking in the material point method. J. Comput. Phys. 231(16), 5351–5373 (2012)

Moutsanidis, G., Koester, J.J., Tupek, M.R., Chen, J.S., Bazilevs, Y.: Treatment of near-
incompressibility in meshfree and immersed-particle methods. Comput. Part. Mech. 1–19 (2019)

Müller,M., Keiser, R., Nealen, A., Pauly,M., Gross,M., Alexa,M.: Point based animation of elastic,
plastic and melting objects. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation—SCA. ACM Press (2004). https://doi.org/10.1145/1028523.
1028542

Shepard, D.: A two-dimensional function for irregularly spaced points. In: 23rd ACM National
Conference, pp. 517–524 (1968)

Song, Y., Liu, Y., Zhang, X.: A transport point method for complex flow problems with free surface.
Comput. Part. Mech. (2019)

Steffen, M., Kirby, R.M., Berzins, M.: Analysis and reduction of quadrature errors in the material
point method (MPM). Int. J. Numer. Meth. Eng. 76(6), 922–948 (2008a)

Steffen, M., Wallstedt, P.C., Guilkey, J.E., Kirby, R.M., Berzins, M.: Examination and analysis of
implementation choices within the material point method (MPM). Comput. Model. Eng. Sci.
31(2), 107–127 (2008b)

Steffen, M., Kirby, R.M., Berzins, M.: Decoupling and balancing of space and time errors in the
material point method (MPM). Int. J. Numer. Meth. Eng. 82(10), 1207–1243 (2010)

Strang,W.G., Fix, G.J.: AnAnalysis of the Finite ElementMethod. Prentice-Hall, Englewood Cliffs
(1973)

Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO-the open visu-
alization tool. Modell. Simul. Mater. Sci. Eng. 18(1), 015012 (2009)

Sulsky, D., Gong, M.: Improving the material-point method. In: Innovative Numerical Approaches
for Multi-field and Multi-scale Problems, pp. 217–240. Springer, Berlin (2016)

Tran, Q., Berzins, M., Sołowski, W.T.: An improved moving least squares method for the material
point method. In: 2nd International Conference on the Material Point Method for Modelling
Soil-Water-Structure Interaction (2019)

Tran, L.T., Kim, J., Berzins, M.: Solving time-dependent pdes using the material point method, a
case study from gas dynamics. Int. J. Numer. Meth. Fluids 62(7), 709–732 (2010)

Wallstedt, P.C., Guilkey, J.E.: Improved velocity projection for the material point method. Comput.
Model. Eng. Sci. 19(3), 223–232 (2007)

Wallstedt, P.C., Guilkey, J.E.: An evaluation of explicit time integration schemes for use with the
generalized interpolation material point method. J. Comput. Phys. 227(22), 9628–9642 (2008)

Wang, L., Coombs, W.M., Augarde, C.E., Cortis, M., Charlton, T.J., Brown, M.J., Knappett, J.,
Brennan, A., Davidson, C., Richards, D., et al.: On the use of domain-based material point
methods for problems involving large distortion. Comput. Methods Appl. Mech. Eng. 355, 1003–
1025 (2019)

Yang, W.C., Arduino, P., Miller, G.R., Mackenzie-Helnwein, P.: Smoothing algorithm for stabiliza-
tion of the material point method for fluid–solid interaction problems. Comput. Methods Appl.
Mech. Eng. 342, 177–199 (2018)

https://doi.org/10.1145/1028523.1028542
https://doi.org/10.1145/1028523.1028542

Chapter 10
Other Topics: Modeling of Fluids,
Membranes and Temperature Effects

In this final chapter of the book,we discuss some topics includingmodeling fluids and
gases (Sect. 10.1), modeling membranes (Sect. 10.2), heat conduction (Sect. 10.3),
and fluid-structure interaction (Sect. 10.4).

10.1 Fluids and Gases

Even though MPM has been developed for solid mechanics applications, it has also
been used to model fluids and gases. This section presents a brief discussion on the
so-called weakly compressible MPM for fluids. We refer to Zhang et al. (2017) and
references therein for advanced incompressible MPM formulations for free surface
flow. This simple weakly compressible formulation allows us to model various inter-
esting FSI problems, see York et al. (1999, 2000); Gan et al. (2011); Mao (2013);
Yang et al. (2018); Su et al. (2019).

The governing equations for fluids/gases are the same as for the solid, i.e., Eq.
2.20, except the constitutive model. An artificial equation of state is adopted to
describe the pressure. Therefore, an MPM code for solids can be equally used to
model fluids/gases.

10.1.1 Fluids

For fluids, the stress field is defined as

σ f = 2μN ε̇ + λN tr(ε̇)I − p̂I (10.1)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. P. Nguyen et al., The Material Point Method, Scientific Computation,
https://doi.org/10.1007/978-3-031-24070-6_10

361

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24070-6_10&domain=pdf
https://doi.org/10.1007/978-3-031-24070-6_10

362 10 Other Topics: Modeling of Fluids, Membranes and Temperature Effects

where p̂ is the pressure which is determined from an equation of state (EOS), μN

and λN are the shear viscosity [Pa s = kg/(ms)] and the bulk viscosity, respectively.
Recall that the strain rate tensor is defined as ε̇ = 0.5(L + LT) where L denotes the
gradient velocity tensor. A superscript f was used to label the fluid stress, as in an
FSI problem, one has to deal with two stress fields – one for the solid and one for
the fluid.

If λN = 2μN

3 , the so-called Stokes condition, the stress field thus becomes

σ f = 2μN ε̇ − 2μN

3
tr(ε̇)I − p̂I = 2μN

[
ε̇ − 1

3
tr(ε̇)I

]
− p̂I (10.2)

where the term in the bracket is the deviatoric part of the strain rate tensor.
The pressure of the fluid particle is updated by an EOS. In the case of water and

air, the EOS is given by Monaghan (1994); Cueto-Felgueroso et al. (2004)

p̂ = κ

[(
ρ

ρ0

)γ

− 1

]
(10.3)

where ρ0 is the initial density and κ is the bulk modulus [Pa=kg/(ms2)] chosen such
that the fluid is nearly incompressible and γ = 7 for water and γ = 1.4 for air. The
advantage of this EOS, providing a direct relationship between pressure and density,
is that there is no need to solve any additional equation for the pressure. The bulk
modulus can be very high for a nearly incompressible fluid, such as water, resulting
in a very small time step. To increase the time step, a reduced bulk modulus can be
used as long as the change in density is less than 3%.

10.1.2 Gases

And for an ideal gas, the stress field is given by Hu and Chen (2006)

σ f = − p̂I, p̂ = (γ − 1)ρe (10.4)

where e is the specific internal energy and γ is the ratio of specific heats. The specific
internal energy is updated using the balance of energy equation (thermal effect was
neglected)

et+Δt
p = etp + Δtσ t+Δt

p : Δet+Δt
p /ρ t+Δt

p (10.5)

where the density is updated using the following equation

ρ t+Δt
p = ρ t

p

1 + Δt tr(Δet+Δt
p)

(10.6)

10.1 Fluids and Gases 363

It is well known that most numerical simulations of compressible-fluid shocks
provide more accurate results if some type of artificial viscosity is used at the shock
front. The following artificial viscosity is added to the particle pressure, see e.g.
Zhang et al. (2016) for details

q = ρLe
(
c0Leε̇

2
kk − c1aε̇kk

)
, ε̇kk < 0 (10.7)

where c1 and c2 are coefficients of artificial viscosity, a = √
γ p̂/ρ is the local sound

speed and Le is the minimum length of cell sides of the background grid.
After adding the artificial viscosity term q, the stress field is calculated as:

σ f = −(p̂ + q)I (10.8)

10.1.3 Some Examples

We herein present two simple examples to verify the MPM for the modeling of gases
and fluids. The first example is the Sod’s shock tube problem and the second is a
dam break simulation.

Sod’s shock tube. Sod’s problem is a test case commonly used in computational
hydrodynamics to see how well a certain computational approach works (Sod 1978).
This problem, shown in Fig. 10.1, consists of a shock tube where a diaphragm is
located in themiddle of the tube. Two sides of the diaphragm have different pressures
and densities, which make the fluid flows when the diaphragm is broken. The left
side of density is 1 and pressure is 1. The right side of density is 0.125 and pressure
is 0.1, and both sides have a zero initial velocity. Any set of consistent units suffice.
At time t = 0, the diaphragm is removed. The fluid is modeled as an ideal gas with
γ = 1.4 (cf. Sect. 10.1).

Only a small modificationwasmade to the one dimensionalMPMcode developed
for solid mechanics: the internal energy e is stored for every fluid particles. The
initial value for e is computed using an EOS and the initial density and pressure. The
results, obtained with the standard MPM (MUSL update), at time t = 0.143, when

Fig. 10.1 Sod’s problem:
initial configuration (de
Vaucorbeil et al. 2020)

364 10 Other Topics: Modeling of Fluids, Membranes and Temperature Effects

Fig. 10.2 Sod’s problem:
200 elements with 3 particle
per element. No artificial
viscosity (de Vaucorbeil
et al. 2020)

Position
0 0.2 0.4 0.6 0.8 1

D
en

si
ty

0
0.2
0.4
0.6
0.8

1
1.2

MPM
Exact

Position
0 0.2 0.4 0.6 0.8 1

pr
es

su
re

0
0.2
0.4
0.6
0.8

1
1.2

MPM
Exact

Position
0 0.2 0.4 0.6 0.8 1

V
el

oc
ity

0

0.5

1

1.5

Position
0 0.2 0.4 0.6 0.8 1

in
te

rn
al

 e
ne

rg
y

1

1.5

2

2.5

3

3.5

Fig. 10.3 Sod’s problem:
200 elements with 3 particle
per element. With artificial
viscosity (de Vaucorbeil
et al. 2020)

Position
0 0.2 0.4 0.6 0.8 1

D
en

si
ty

0
0.2
0.4
0.6
0.8

1
1.2

MPM
Exact

Position
0 0.2 0.4 0.6 0.8 1

pr
es

su
re

0
0.2
0.4
0.6
0.8

1
1.2

MPM
Exact

Position
0 0.2 0.4 0.6 0.8 1

V
el

oc
ity

0

0.5

1

1.5

Position
0 0.2 0.4 0.6 0.8 1

in
te

rn
al

 e
ne

rg
y

1

1.5

2

2.5

3

3.5

the shock traveled a distance of about 0.25, with 300 cells and three particles per cell
are given in Figs. 10.2 and 10.3 without and with the use of an artificial viscosity.
Note that the data are plotted at the material points. In Fig. 10.4 we also plot the
data at the grid nodes. There we observe that a smoother distribution was obtained
by this technique as earlier mentioned in the works of e.g. (Andersen and Andersen
2010a). To compute the grid nodal pressure, the particle stress is mapped to the grid
nodes in the same manner as the velocity mapping. The M-file for this example is
example1D/mpm1DShockTubeMUSL.m.

Dam break problems. A simplified dam break simulation with a barrier is depicted
in Fig. 10.5. A water column of initial height h0 and length l0 is initially constrained
by a gate and rests on a smooth, flat surface. At an arbitrary starting time, say t = 0,
the gate is removed and the water is allowed to flow freely under the force of gravity.
This problem has been tackled extensively in the SPH literature and also studied
using the MPM by e.g. Mast et al. (2012); Sun et al. (2018).

The domain is discretized by 100 × 100 cells with 9 PPC (12432 particles). A
constant time step ofΔ = 0.1hx/cwith c = √

κ/ρ was used. The component normal

10.1 Fluids and Gases 365

Position
0 0.2 0.4 0.6 0.8 1

V
el

oc
ity

0

0.5

1

1.5
At grid nodes

MPM
Exact

Position
0 0.2 0.4 0.6 0.8 1

V
el

oc
ity

0

0.5

1

1.5
At material points

Position
0 0.2 0.4 0.6 0.8 1

P
re

ss
ur

e

0

0.5

1

1.5
At material points

Position
0 0.2 0.4 0.6 0.8 1

P
re

ss
ur

e

0

0.5

1

1.5
At grid nodes

Fig. 10.4 Sod’s problem: 200 elements with 3 particle per element with artificial viscosity. Data
plotted at material points and at grid nodes (de Vaucorbeil et al. 2020)

Fig. 10.5 Dambreakproblem (deVaucorbeil et al. 2020): L = 1.61, H = 0.6, l0 = 0.6,h0 = 0.6m
according to Sun et al. (2018)

to the boundaries of the grid velocities are set to zero. The aims of this example are
two-fold. First, it is demonstrated that Karamelo can do fluid simulations. Second,
its solution is validated against the experiment carried out by Lobovskỳ et al. (2014).

For a quantitative assessment of theMPM, the following dimensionless quantities
are calculated

L(T) := l(t)

l0
, T := t

√
h0g

l20
(10.9)

where l(t) is defined as in Fig. 10.5.

366 10 Other Topics: Modeling of Fluids, Membranes and Temperature Effects

Fig. 10.6 Dam break
problem: flow profiles of
experiment results (left
column) and MPM results
(right column). The MPM
results were obtained using
Karamelo

Fig. 10.7 Dam break
problem: evolution of the
MPM wave front in
comparison with experiment
result of Lobovskỳ et al.
(2014)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

T

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8
L
(T

)
MPM
Sun et al.
experiment

The numerical water profile at different time instants are in qualitative good agree-
ment with the experiment (Fig. 10.6). Quantitatively, the simulation result and the
experiment are compared in Fig. 10.7.

10.2 Modeling Membranes

Membranes are widely used as structural elements in many diverse engineering
applications and also in natur. Examples include parachutes, automobile airbags and
human tissues. A membrane is essentially a thin shell with no flexural (bending)
stiffness. In other words, membranes have stresses only in the local tangent plane,
while other stress components are negligible. In addition, the stress over the thickness
is assumed to be constant.

This section presents MPM formulations for modeling membranes. We start with
York’s technique (York et al. 1999) for one dimensional membranes embedded in a
two dimensional solid (Sect. 10.2.1). This simple method, in which a membrane is
discretized by a set of particles, is largely sensitive to the grid resolution. Therefore,
we discuss another method where a membrane is modeled by a set of bar elements
based on the MPM-FEM method of Lian et al. (2011c) (Sect. 10.2.2).

10.2 Modeling Membranes 367

10.2.1 York’s MPM Algorithm for Membranes

York et al. (1999) presented a simple MPM algorithm for modeling elastic mem-
branes. First, the membrane is discretized by one layer of particles along the thick-
ness. Doing so enforces automatically the constant through-thickness stress condi-
tion. Second, the stresses at the particles are computed in such a way that normal
stress (in the local coordinate system attached to the particles) is zero. Figure10.8
illustrates the ideas.

Let us denote the updated particle strain by εt+Δt
p . We transform it to the particle

local coordinate system, denoted by ε̂
t+Δt
p . In what follows we skip the superscript

t + Δt implicitly assuming that a USL formulation is being used so that stress is
always updated last. And to bypass the complexity of 3D tensor transformation, we
first consider the case of uniaxial tension where we write the local tangent strain

ε̂p,t = (cos2 θ)εp,xx + (sin2 θ)εp,yy + (sin 2θ)εp,xy (10.10)

where θ is the orientation of the tangent at the particle under consideration. The
tangent stress of the particle in the local coordinate system is thus given by

σ̂p,t = E ε̂p,t (10.11)

while other stress components are zeros. The local stresses are transformed back to
the global coordinate system where the internal force vector is computed:

⎡
⎣σp,xx

σp,yy

σp,xy

⎤
⎦ =

⎡
⎣ (cos2 θ)σ̂p,t

(sin2 θ)σ̂p,t

(sin θ cos θ)σ̂p,t

⎤
⎦ (10.12)

and this is the particle stress to be stored and used to compute the grid force vectors
in the next time step.

thickness

p

x

y

(a) (b) (c)

n

t
(d)

p

p-1

p+1

Fig. 10.8 Modeling membrane in the MPM framework: a membrane, b MPM representation of
a membrane, c local coordinate system defined for each particle and d determination of the local
tangent using the connectivity data (Nguyen et al. 2017)

368 10 Other Topics: Modeling of Fluids, Membranes and Temperature Effects

Fig. 10.9 Spring-mass
problem (Nguyen et al.
2017)

unstretched position static equilibriuum position

The initial particle mass is left to determine. Assuming that there is n membrane
particles, s is the initial length of the membrane, t its in-plane thickness and ρ is the
membrane density, then the membrane particle’s mass is given by York et al. (1999)

mp = stρ

n
(10.13)

The tangent to particle p is determined using the connectivity data of the mem-
brane curve, cf. Fig. 10.8d. That is

θp = θp−1,p + θp,p+1

2
(10.14)

which is the most efficient method to determine the local coordinates for the mem-
brane particle at least for 2D problems i.e., 1D membranes.

Examples. To verify the York membrane formulation, we consider the spring-mass
problem of which an exact solution is available: a rigid mass is attached to a massless
spring of unstretched length L and spring stiffness kwhich is connected to a stationary
wall (Fig. 10.9).

If position y is measured from the undeformed position, the governing differential
equation of this system is

mg − ky = m
d2y

dt2
(10.15)

By using mg = kΔ where Δ is the spring elongation at static equilibrium, one can
change the above equation to

m
d2u

dt2
+ ku = 0, u = Δ − y (10.16)

of which solution is given by

10.2 Modeling Membranes 369

-0.2 -0.1 0 0.1 0.2 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

D
is

pl
ac

em
en

t

-0.001

 0

 0.001

 0.002

 0.003

 0.004

 0.005

exact
MPM

fixed nodes

Fig. 10.10 Spring-mass problem: background grid and particles (left) and deflection of the mass
in time (right). Time step was Δt = 0.8Δc/c where c = √

E/ρ. It is emphasized that as boundary
conditions are imposed on the grid nodes, the top particle must be positioned close to these nodes
(Nguyen et al. 2017)

u(t) = Δ cos(ωt) + u̇0
ω

sin(ωt) (10.17)

where ω = √
k/m is the natural frequency and u̇0 is the initial velocity of the mass,

which is simply zero in this example. Therefore the deflection of the mass is given
by

y(t) = Δ [1 − cos(ωt)] (10.18)

in which positive value means downward deflection.
For this simulation,1 A = 0.1, E = 1.0e6, ρ = 0.1, g = −250,2 and L = 0.3

which is the distance between the top and bottom particles (as particles do not have
extent inMPM).Any set of consistent units suffice. The spring stiffness is k = E A/L
where A is the cross-sectional area of the spring; the spring can be thought of as a
elastic bar, the static stretch Δ = 0.0025, the period of oscillation T is T = 2π/ω =
0.02. As a solid MPM code is used for this simulation, we need a null Poisson’s
ratio. The heavy particle has a mass of 3.33 which is 104 times the mass of the other
particles. We first use 4 cells and 10 particles as shown in Fig. 10.10 following York
et al. (1999).

The numerical displacement of the mass (the big black circle in Fig. 10.10), cal-
culated as the difference between its current vertical position and its original vertical
one, is compared with the exact solution given in Eq.10.18. The exact kinetic energy
ismv2/2where v = ωΔ sin(ωt) is the velocity and the potential energy is ky2/2. Plot
of these energies is given in Fig. 10.11 with the time history of energy in the MPM
simulation. A good match with exact solutions was obtained for this cell/particle
arrangement.

1 The M-file is mpmSpringMass.m. Although the problem is one dimensional the grid is 2D as we
wanted to test the membrane formulation which is generally a 1D curve embedded in a 2D domain.
2 Used as a body force in the MPM calculation of grid external forces.

370 10 Other Topics: Modeling of Fluids, Membranes and Temperature Effects

Fig. 10.11 Spring-mass
problem: kinetic and
potential energies. Time step
was Δt = 0.8Δc/c where
c = √

E/ρ (Nguyen et al.
2017)

Time
0 0.01 0.02 0.03 0.04 0.05

E
ne

rg
y

 0

0.5

 1

1.5

 2

2.5

 3

3.5

 4

4.5 KE-exact
PE-exact
KE-MPM
PE-MPM

Fig. 10.12 Spring-mass
problem: results obtained
with 8 cells and 10 particles
(Nguyen et al. 2017)

Time
0 0.005 0.01 0.015 0.02

D
is

pl
ac

em
en

t

 0

0.001

0.002

0.003

0.004

0.005

0.006
exact
MPM

The result is, however, very much sensitive to the discretization. We present in
Fig. 10.12 some results obtained with different grids and particles.

10.2.2 A Coupled FEM-MPM for Modeling Membranes

Hamad et al. (2015) developed a new MPM-based approach to simulate the installa-
tion process and the behaviour of geosynthetics systems for geomechanical applica-
tions. The background grid is a 3D tetrahedral meshwithmaterial points representing
the solid whereas the membrane is discretized with another mesh consisting of three-
node triangular elements following the coupled FEM-MPM method of Lian et al.
(2011c). The membrane is therefore treated differently than the method of York et al.
(1999) where only particles are adopted to represent the membrane.

Herein we present the formulation of Lian et al. (2011c); Hamad et al. (2015) in
the context of 1D membranes. The idea is illustrated in Fig. 10.13 where a closed

10.2 Modeling Membranes 371

Fig. 10.13 Modeling
membranes using a coupled
FEM-MPM approach: a a
membrane overlaid on a
background grid, b discrete
representation of the
membrane using bar
elements, c interaction
between a bar element and
the background grid
(Nguyen et al. 2017)

(a) (b)

(c)

curved membrane is represented by a number of two-noded bar elements. The nodes
of the bar elements are referred to as membrane particles to differentiate them from
other particles that might be present in the system. However the membrane particles
do not carry stresses. The internal forces are computed in two steps. First, the internal
forces at the membrane particles are computed using the bar elements i.e., following
the FEM. Second, these forces are projected to the grid to obtain the final internal
forces (used in the momentum equation).

For a bar element e the internal forces at its nodes are computed as Lian et al.
(2011c)

lt+Δt = ||x2 − x1||t+Δt (10.19a)

εt+Δt = lt+Δt − l0
l0

(10.19b)

σ t+Δt = Eεt+Δt (10.19c)

f t+Δt
1 = −σ t+Δt A (10.19d)

f t+Δt
2 = +σ t+Δt A (10.19e)

where A denotes the cross sectional area of the bar element. These element forces
are mapped to the grid using the grid shape functions

f intI,1 = −NI (x1)
[
f1 cos θ

f1 sin θ

]
, f intI,2 = −NI (x2)

[
f2 cos θ

f2 sin θ

]
(10.20)

372 10 Other Topics: Modeling of Fluids, Membranes and Temperature Effects

where the minus sign is due to the MPM convention in the internal force vector i.e.,
f = fext + f int not as f = fext − f int commonly used in FEM. As NI (xi), i = 1, 2, is
only non zero for nodes of the cell containing xi , the membrane particles contribute
only to the internal forces of nodes of the cells in which they reside. These are the
red filled squares in Fig. 10.13.

Next we present a more general way to couple FEM andMPMwhich is applicable
not only to membrane elements but also to solid elements. First, the displacement
increment at the particles (i.e., the finite element nodes) is computed from the updated
grid nodal velocities

ΔuJ = Δt
∑
I

NI (xJ)vt+Δt
I (10.21)

which is then transformed to the local coordinate system defined by the element
under consideration

ΔûJ = QΔuJ (10.22)

where Q is the vector-to-vector transformation matrix given by for completeness

Q =
[
cos θ sin θ

− sin θ cos θ

]
(10.23)

The strain increment evaluated at the element center (as we assumed constant stress
elements are considered, therefore there is only one single integration point–the
element center) by

Δε̂ = 1

le

(
Δû2 − Δû1

)
, Δε̂ = B0Δû (10.24)

where the first equation applies formembrane/bar elements and the second is general.
The strain increment is then used to get the updated stresses at the element center σ̂

via any constitutive models. The element nodal forces are then determined using

f̂ = BT
0 σ̂ (10.25)

which is transformed to the global coordinate system via

f = Q−1 f̂ (10.26)

The FEM-MPM solution process for one time step t to t + Δt using the USL is
given in Algorithm 21. Note that changes are in lines 3 (computing internal forces
not from particle stresses but from particle forces) and lines 14–21 (updating particle
forces).

10.2 Modeling Membranes 373

Algorithm 21 Solution procedure of explicit FEM-MPM (USL).
1: Mapping from particles to nodes
2: Compute nodal mass, momentum and external forces as usual
3: Compute internal force f int,tI = − ∑n p

p=1 NI (xtp)f
t
p

4: Compute nodal force f tI = fext,tI + f int,tI
5: end
6: Update the momenta (mv)t+Δt

I = (mv)tI + f tIΔt
7: Fix Dirichlet nodes
8: Update particles
9: Update particle velocities vt+Δt

p = vtp + Δt
∑

I NI (xtp)f
t
I /m

t
I

10: Update particle positions xt+Δt
p = xtp + Δt

∑
I NI (xtp)(mv)t+Δt

I /mt
I

11: Get nodal velocities vt+Δt
I = (mv)t+Δt

I /mt
I

12: Compute particle displacement increments Δut+Δt
p = ∑

I Δt NI (xtp)v
t+Δt
I

13: end
14: Update particle forces
15: for each membrane element do
16: Get the displacement increments of its nodes Δut+Δt , → Δût+Δt

17: Compute the strain increment at the integration point Δε̂ = BΔût+Δt

18: Compute the stress at this integration point σ̂ (σ̂
t
,Δε̂)

19: Compute the particle forces f̂ = BTσ̂

20: Transform f̂ to the global system f t+Δt
p

21: end for
22: end

Spring-mass problem. To verify the implementation and the performance of the FE
MPMapproach tomodelingmembranes, we reconsider the spring-mass problem.We
considered different discretizations of the membrane while keeping the background
grid fixed at 8 cells. Excellent agreement with analytical solutions and insensitivity
to the discretization can be observed (Fig. 10.14).

Disk-wire problem. As a solid-membrane interaction problem, we consider the
hypothetical problem of two disks impacting a stationary wire3 originally solved by
York et al. (1999), see Fig. 10.15. The constitutive model for the disks is plane stress
linear elastic, and that of the wire is uniaxial stress. The material properties used
are listed in Table10.1. The computational domain is 12 × 10 with unit thickness.
The membrane is discretized by a uniform mesh where each element has a length of
L0/(n − 1), n is the number of membrane particles. Thus each internal membrane
particle has a mass of ρwL0/(n − 1) and the mass of the first and last particle is
0.5ρwL0/(n − 1).

Some simulation snapshots are given in Fig. 10.16. As the disks make contact
with the wire they rotate clockwise, and when they are bouncing they rotate counter-
clockwise. Figure10.17 plots the evolution of kinetic, potential and total energies.
As can be observed the total energy of the system is fairly well conserved for this
relatively coarse discretization. Even though York et al. (1999) did not mention the
discretization details we can firmly state that we used a much coarser membrane
discretization thanks to the FE membrane elements.

3 The M-file for this simulation is mpmFEMDiskWire.m.

374 10 Other Topics: Modeling of Fluids, Membranes and Temperature Effects

Fig. 10.14 Spring-mass
problem: FEM-MPM results
obtained with different
discretizations. Top figure: 8
cells and 10 particles, 8 cells
6 particles (middle) and
bottom figure: 8 cells and 20
particles (Nguyen et al.
2017)

Time
0 0.005 0.01 0.015 0.02

D
is

pl
ac

em
en

t

 0

0.001

0.002

0.003

0.004

0.005

0.006
exact
MPM

Time
0 0.005 0.01 0.015 0.02

D
is

pl
ac

em
en

t

 0

0.001

0.002

0.003

0.004

0.005

0.006
exact
MPM

Time
0 0.005 0.01 0.015 0.02

D
is

pl
ac

em
en

t

 0

0.001

0.002

0.003

0.004

0.005

0.006
exact
MPM

Fig. 10.15 Disk-wire
problem. The initial position
of the disks are indicated by
the coordinates of its centers
(Nguyen et al. 2017)

10.3 Thermo-Mechanical Problems 375

Table 10.1 Parameters for the disk-wire problem

Parameter Disk value Wire value

Density 1.0 0.5

Young’s modulus 1 × 104 1 × 104

Poisson’s ratio 0.3 0.0

Initial velocity 3.0 0.0

Fig. 10.16 Disk-wire
problem. The grid consists of
35 × 30 cells where each cell
initially has 2 × 2 particles.
The wire is discretized by 29
two-noded elements and 30
particles (Nguyen et al.
2017)

10.3 Thermo-Mechanical Problems

Thermo-mechanical problems arise in several engineering applications, particularly
manufacturing processes (e.g.welding processes,machining processes and hot/warm
metal forming processes). In a thermo-mechanical problem, the unknowns are the
deformation field (displacement/velocity) and the temperature field. The latter mod-
ifies the former via temperature-dependent constitutive models and the deformation
affects the temperature via plastic work dissipated as heat.

This section presents a simple thermo-mechanical MPM formulation. First, the
thermal problem is discussed in Sect. 10.3.1, then the coupled thermo-mechanical
algorithm is given in Sect. 10.3.2 where the explicit MPM formulation treated in

376 10 Other Topics: Modeling of Fluids, Membranes and Temperature Effects

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

5

10

15

20

25

30

35

Time

E
ne

rg
ie

s

kinetic disk1
potential disk1

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

5

10

15

20

25

30

35

40

Time

E
ne

rg
ie

s

kinetic disk2
potential disk2

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

5

10

15

20

25

30

Time

E
ne

rg
ie

s

kinetic wire
potential wire

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

20

40

60

80

100

Time

\E
ne

rg
ie

s

 total disk1
total disk2
total wire
total

Fig. 10.17 Disk-wire problem. Evolution of kinetic, potential and total energies. The grid consists
of 35 × 30 cells where each cell initially has 2 × 2 particles. Thewire is discretized by 29 two-noded
elements and 30 particles (Nguyen et al. 2017)

Sect. 2.5.2 is slightly modified to incorporate the temperature. For more details, we
refer to Nairn and Guilkey (2015); Tao et al. (2016).

10.3.1 Thermal Problem

Our derivation of the MPM equation for the thermal problem is to adopt the FEM
equation and use the material points as quadrature points. To get the FEM semi-
discrete equation, we follow the standard procedure of going from the strong form to
the weak form, followed by the introduction of the FE approximations of the trial and
test functions. Details can be found in Tao et al. (2016). Note that this thermal MPM
algorithm follows the mechanical MPM one. For rectilinear geometries, thanks to
the background Eulerian grid, a simple (and robust) finite difference method can be
used, see e.g. Chen et al. (2008).

The partial differential equation for the thermal problem is the internal energy
balance equation that reads

ρcṪ + ∇ · q = γ ∗ in Ω (10.27)

where T (x, t) denotes the temperature field; ρ and c being the mass density and
specific heat of the material, respectively and the heat source is represented by γ ∗.
In the above equation, q is the heat flux which is given by the following Fourier’s

10.3 Thermo-Mechanical Problems 377

law

q = −k∇T (10.28)

where k is the thermal conductivity. A thermal conductivity tensor can be equally
used.

From Eq.10.27, one can obtain the following semi-discrete equation

CI J ṪJ = Qint
I + Qext

I , I = 1, 2, . . . , nn (10.29)

where

CI J :=
∫

ρcφIφJd (10.30)

Qint
I :=

∫

q · ∇φId (10.31)

Qext
I :=

∫

γ ∗φId −
∫

�q

φI q
∗d� (10.32)

where q∗ is the prescribed heat flux similar to the tractions in solid mechanics. These
quantities are approximated as follows in the spirit of the MPM

CI J =
∑
p

m pcpφI (xp)φJ (xp) (10.33)

Qint
I =

∑
p

Vpqp · ∇φI (xp) (10.34)

Qext
I =

∑
p

Vpγ
∗φI (xp) (10.35)

where we have omitted the external force due to q∗, see Sect. 5.2.3 for its treatment.
Similar to the lumped mass matrix, the matrix CI J is made diagonal using the

same row-sum technique and thus Eq.10.29 is simplified to

CI ṪI = Qint
I + Qext

I , CI =
∑
p

m pcpφI (xp) (10.36)

Again, in the same manner that the particle velocity is mapped to the grid nodes, one
does the same thing for the temperature

T t
I =

(
1

Ct
I

)∑
p

φI (xt
p)(mc)tpT

t
p (10.37)

378 10 Other Topics: Modeling of Fluids, Membranes and Temperature Effects

The complete algorithm is given in Algorithm 22. Note that a forward Euler was
adopted to advance Sect. 10.36 in time. Other time integration schemes can also be
used. As can be seen, the algorithm adopts the MUSL scheme in which the updated
particle temperature is mapped back to the grid and this updated grid temperature
is used to compute the heat flux q. Without doing so would result in bad results.
Moreover, we enforce the Dirichlet BCs on the nodes, but it can be enforced on the
particles as done in Tao et al. (2016). As this thermal MPM solver is meant to be
coupled with a mechanical MPM solver, we use xt

p instead of just Xp as in purely
thermal analysis the particles do not move.

Algorithm 22 Solution procedure of explicit thermo MPM.
1: while t < t f do
2: Mapping from particles to nodes (P2G)
3: Compute nodal mass Ct

I = ∑
p φI (xtp)mpcp

4: Compute nodal temperature T t
I =

(
1
Ct
I

) ∑
p φI (xtp)mpcpT t

p

5: Compute external force Qext,t
I = ∑

p Vpγ
∗φI (xtp)

6: Compute internal force Qint,t
I = ∑

p Vpqt
p · ∇φI (xtp)

7: Compute nodal force Qt
I = Qext,t

I + Qint,t
I

8: end
9: Update the temperature T̃ t+Δt

I = T t
I + Qt

IΔt/Ct
I

10: Fix Dirichlet nodes I e.g. T t
I = T ∗ and T̃ t+Δt

I = T ∗
11: Update particles (G2P)

12: Update particle temperature T t+Δt
p = T t

p + ∑
I φI (xtp)

[
T̃ t+Δt
I − T t

I

]

13: Update grid temperature T t+Δt
I =

(
1
Ct
I

) ∑
p φI (xtp)(mc)tpT

t+Δt
p

14: Fix Dirichlet nodes T t+Δt
I = T ∗

15: Update flux qt+Δt
p = −k

∑
I ∇φI (xtp)T

t+Δt
I

16: end
17: Advance time t = t + Δt
18: end while

10.3.2 Coupled Thermo-Mechanical MPM

By combining the thermal algorithm given in Sect. 10.3.1 and the mechanical algo-
rithm in Sect. 2.5.2, one can come up with a simple coupled thermal-mechanical
MPM formulation. In its most basic form, the two problems are solved on the same
background grid and the same time step are used. The resulting algorithm is shown
in Algorithm 23.

To complete the thermal-mechanicalMPM formulation, one needs a temperature-
dependent constitutive model. For simplicity, we consider a thermo-elastic material
model in which the stress is given by

σ̇ = (λtrε̇e)I + 2με̇e, ε̇e = ε̇ − ε̇T , ε̇T = α

Δt
(T t+Δt − T t)I (10.38)

10.3 Thermo-Mechanical Problems 379

where εT denotes the thermal strain, εe the elastic strain, and α is the coefficient of
thermal expansion. Note that Algorithm 23 applies equally to other thermal-elasto-
plastic materials.

Algorithm 23 Solution procedure of explicit thermo-mechanical MPM.
1: Initialization
2: end
3: while t < t f do
4: Mapping from particles to nodes (P2G)
5: Mechanical fields
6: Proceed as usual
7: end
8: Thermal field
9: Compute nodal mass Ct

I = ∑
p φI (xtp)mpcp

10: Compute nodal temperature T t
I =

(
1
Ct
I

)∑
p φI (xtp)mpcpT t

p

11: Compute external force Qext,t
I = ∑

p Vpγ
∗φI (xtp)

12: Compute internal force Qint,t
I = ∑

p Vpqt
p · ∇φI (xtp)

13: Compute nodal force Qt
I = Qext,t

I + Qint,t
I

14: end
15: end
16: Update the momenta (mṽ)t+Δt

I = (mv)tI + f tIΔt

17: Update the temperature T̃ t+Δt
I = T t

I + Qt
IΔt/Ct

I

18: Fix mechanical Dirichlet nodes I e.g. (mv)tI = 0 and (mṽ)t+Δt
I = 0

19: Fix thermal Dirichlet nodes I e.g. T t
I = T ∗ and T̃ t+Δt

I = T ∗
20: Update particle velocities and grid velocities (double mapping)
21: Get nodal velocities ṽt+Δt

I = (mṽ)t+Δt
I /mt

I

22: Update particle velocities vt+Δt
p = vtp + ∑

I φI (xtp)
[
ṽt+Δt
I − vtI

]
23: Update grid velocities (mvI)

t+Δt = ∑
p φI (xtp)(mv)t+Δt

p

24: Fix Dirichlet nodes (mv)t+Δt
I = 0

25: Update particle temperature T t+Δt
p = T t

p + ∑
I φI (xtp)

[
T̃ t+Δt
I − T t

I

]

26: Update grid temperature T t+Δt
I =

(
1
Ct
I

) ∑
p φI (xtp)(mc)tpT

t+Δt
p

27: Fix Dirichlet nodes T t+Δt
I = T ∗

28: end
29: Update particles (G2P)
30: Get nodal velocities vt+Δt

I = (mv)t+Δt
I /mt

I

31: Update particle positions xt+Δt
p = xtp + Δt

∑
I φI (xtp)v

t+Δt
I

32: Compute velocity gradient Lt+Δt
p = ∑

I ∇φI (xtp)v
t+Δt
I

33: Updated gradient deformation tensor Ft+Δt
p = (I + Lt+Δt

p Δt)Ft
p

34: Update volume V t+Δt
p = det Ft+Δt

p V 0
p

35: Update stresses σ t+Δt
p = σ t

p + Δσ p(Lt+Δt
p , T t+Δt

p)

36: Update flux qt+Δt
p = −k

∑
I ∇φI (xtp)T

t+Δt
I

37: end
38: Advance time t = t + Δt
39: end while

380 10 Other Topics: Modeling of Fluids, Membranes and Temperature Effects

Fig. 10.18 Temperature
profile and convection
boundary conditions

0 X

T∞

T (x, t)

Convection boundary condition. In heat transfer problems, the convection bound-
ary condition, known also as the Newton boundary condition, corresponds to the
existence of convection heating (or cooling) at the surface and is obtained from the
surface energy balance. Convection boundary condition is probably the most com-
mon boundary condition encountered in practice since most heat transfer surfaces
are exposed to a convective environment at specified parameters.

To impose this type of boundary condition, one prescribes a heat flux q normal
to the surface such that:

q∗ = q · n = h [T∞ − T�(t)] (10.39)

where n(t) is the normal to the convective surface, h is the heat transfer coefficient,
T∞ the ambiant temperature, and T�(t) the surface temperature (see Fig. 10.18).

Applying this boundary condition to a particle is straight forward. However, to
apply it to a node, one has to calculate the thermal force at the node:

Qconvection
I = −

Np∑
p=0

Aph [T∞ − T�(t)]φI (xt
p) (10.40)

with Ap the surface area attached to particle p. The minus before the sum is due to
Eq.10.32.

10.3.3 Verification Tests

We present some tests for the verification of the thermal MPM algorithm and the
coupled thermal-mechanical MPM. All the tests are solved using the ULMPM only.

One dimensional thermal test. Let us consider a bar of length L = 1, with ρ = c =
k = 1. The bar temperature is initially set at T0 = 0 and the right extremity is heated
up to T1 at time t = 0 and held fixed. Any set of consistent units suffice. The exact
solution for the temperature in the bar is given by Tao et al. (2016)

10.3 Thermo-Mechanical Problems 381

Time

T
em

pe
ra

tu
re

(a) particle temperature

Time

T
em

pe
ra

tu
re

(b) grid temperature

Fig. 10.19 One dimensional heat conduction: solutions obtained with the ULMPM (hat functions)
with 100 grid cells and 1 particle per cell. Black is for t = 0.0075, blue is for t = 0.03 and red is
for t = 0.05 (de Vaucorbeil et al. 2020)

T exact(x, t) =T0 + (T1 − T0)x + 2(T1 − T0)
∞∑
n=1

(−1)n

nπ
exp(−[nπ]2t)

sin(nπx)

(10.41)

The MPM solutions, with T0 = 0 and T ∗ = T1 = 1, are given in Fig. 10.19 in terms
of the particle temperature and grid temperature. The time step is chosen to be
Δt = 8 × 10−5 which is smaller than the theoretical maximum value of (hx)

2/(2k).
However, we find that larger time steps also yield accurate results. The results given
in the referred figure confirms the finding in the literature that the particle data are
noisy whilst the grid data (i.e., T t+Δt

I not T̃ t+Δt
I) are not. The M-file for this example

is example1D/mpmThermo1D.m.

Two dimensional thermal test. Let us now consider a rectangular plate of dimen-
sions L × H , with ρ = c = k = 1. The bar temperature is initially set at T0 = 0 and
the external surface is heated up to T1 = 100 at time t = 0 and held fixed. Any set
of consistent units suffice. The exact temperature field in the plate is given by Tao
et al. (2016)

T exact(x, t) = T1 + 16(T0 − T1)

π2

∑
i=1,3,...

∑
j=1,3,...

exp(−π2(i2/L2 + j2/H2)t)

i j
sin

(
iπx

L

)
sin

(
jπy

H

)

(10.42)
In the simulations, a unit square is considered and a grid of 20 × 20 cells with
four particles per cell is used. The temperature boundary condition is applied on
the particles residing in the boundary cells. The nodal temperature of both MPM
and exact solutions are given in Fig. 10.20 at time t = 0.05. A constant time step of
Δt = 10−4 was adopted. Note again that, the particle temperature distribution (not
shown) is not as smooth as the nodal temperature field. The M-file for this example
is example2D/mpmThermo2D.m.

382 10 Other Topics: Modeling of Fluids, Membranes and Temperature Effects

Fig. 10.20 Two dimensional heat conduction: ULMPM (hat functions) solutions (left) and exact
solution (right) (de Vaucorbeil et al. 2020)

q=
0

q=5000

0.1 m A

Fig. 10.21 Thermo-mechanical square plate: problem description adapted from Tao et al. (2016)

Table 10.2 Material parameters for the thermo-mechanical square plate problem

Mass density ρ 2100 kg/m3 Heat conductivity k 500 W/m◦C
Poisson’s ratio ν 0.33 Heat capacity c 50 J/kg◦C
Young’s modulus E 70 GPa Heat expansion α 25 × 10−8 /◦C

Square plate with thermal and mechanical loadings. As the first test for the
thermal-mechanical formulation, we consider the test proposed in Tao et al. (2016):
a square plate with both thermal and mechanical boundary conditions (Fig. 10.21) is
simulated. On the top and right surfaces, convection boundary conditions are applied
with the convection coefficient h = 2000 W/(m2 ◦C) and the ambient temperature
T∞ = 30 ◦C. The bottom side is subjected to a constant heat flux q = 5000 W/m2 s
and the left side is heat insulated. The initial temperature is 20 ◦C. In addition, a time-
varying pressure is applied on the top surface. The square is made of a thermo-elastic
material obeying Eq.10.38. The material parameters are given in Table10.2.

We refer to the M-file example2D/mpmThermoMech2D.m for a tutorial code
for 2D coupled thermal-mechanical MPM simulations. However, we solve all the

10.3 Thermo-Mechanical Problems 383

(a) (b)

Fig. 10.22 Thermo-mechanical square plate: verification of ULMPM againts FEM solution

Fig. 10.23 Thermo-
mechanical plaste under
gravitational compression:
problem description. Unit of
length is mm

10 g g = −5000 mm.ms−3

10

remaining tests in this section using Karamelo for the sake of efficiency and con-
venience.

To verify the ULMPM we monitor the temperature and stress of point A and
compare these quantities against that obtained using FEM. The results shown in
Fig. 10.22 indicate that the thermal-mechanical ULMPMalgorithmworks. However,
this test only involves small deformation, which is not the application domain of the
MPM. In what follows, we present another test for the thermal-mechanical MPM
formulation which exhibits large deformation.

Plate under gravitational compression. The purpose of this example is to test the
stability of the algorithm against cell crossing, as many of these events occur during
the test. Additionally, it also aims to test the generation of heat from plastic strain.
As no analytical solution exists, FEM is used as a reference, particularly the FEM
result is obtained with the package Abaqus.

The test consists of a square plate which is fixed at the bottom and subjected to
a gravitational force (Fig. 10.23). The sample is made of a ductile material modeled
by the Johnson-Cook plastic model described in Chap. 4. The material parameters
are given in Table10.3.

In this test there is no external heat source. The only heat source is internal and it
comes from the plastic deformation of the plate and is computed as follows. First, an
increase of the plastic strain Δεp leads to an increase of the temperature computed
as:

ΔT = χ

ρCp
σ f Δεp (10.43)

384 10 Other Topics: Modeling of Fluids, Membranes and Temperature Effects

Table 10.3 Material parameters used for the plate under gravitational compression test

Material parameters Flow stress params. Params. for EOS

Density ρ 8.94 × 10−6 kg/mm3 A 65 MPa c0 3586 m/s

Young’s modulus E 115 GPa B 356 MPa Sα 1.50

Poisson’s ratio ν 0.31 C 0 �0 0

Reference
temperature T0

0 ◦C n 0.37

Heat capacity c 384 J.kg−1.K−1 m 0

Heat expansion α 1.67 × 10−5 K−1 Tmelt 1600 ◦C
Heat conductivity k 3.86 ×

10−4 kW.mm−1.K−1
ε̇ 1.0 s−1

Inelastic heat
fraction χ

0.9

(a) FEM (b) ULMPM - FLIP MUSL

1.5

0

Equivalent
Plastic Strain

Fig. 10.24 Equivalent plastic strain in the plate under gravitational compression results at t =
0.2 ms

where 0 < χ ≤ 1 is the Taylor-Quinney coefficient that determines how much the
plastic work is converted into heat. For metals, χ = 0.9 is often used. Then, ΔT is
substituted into Eq.10.27, the internal energy balance equation, (but without heat
flux q) to solve for the corresponding heat source. That heat source is thus given by

γ ∗ = χσ f ε̇p (10.44)

This example is simulated using ULMPM with cubic B-splines (there is no cell-
crossing issue with TLMPM) and checked againts FEM results. The obtained equiv-
alent plastic strain and temperature are given in Figs. 10.24 and 10.25, respectively.
When the plate is compressed two shear bands are formed. The plastic deformation
is localized along these bands, and thus heat is generated in this region. Qualitatively
the ULMPM and FEM solutions are in good agreement. At the bottom corners, there
are however some discrepancies likely due to boundary descriptions.

10.3 Thermo-Mechanical Problems 385

(a) FEM (b) ULMPM - FLIP MUSL

52

0

T (◦C)

Fig. 10.25 Temperature in the plate under gravitational compression results at t = 0.2 ms

Fig. 10.26 Highly
non-linear twisted column
problem description: the
bottom surface is fixed and
an angular velocity ω0 = 2π
rad/ms is applied to the top
surface

x

z

ω0

y

Twisted column. The main objective of this test is to assess the robustness of the
proposed algorithms in large and highly nonlinear deformations. This problem is
inspired by that introduced by Gil et al. (2014). The test consists of a column which
is fixed at the bottom and an angular velocity ω0 = 2π rad/ms is applied to the
top surface i.e., the top surface does one rotation per millisecond. The column is
100 mm in length, square in cross-section with a side length of 10 mm. The material
parameters for the Johnson-Cook plasticity model used are the same as the previous
example (Table10.3, Fig. 10.26).

The angular velocity ω0 is applied by constraining the velocity of each and every
node on the top surface of the column. Let n be the number of rotations we want to
simulate and T is the final time, then we define ω = ω0n/T . The applied velocities as
a function of time are therefore given by:

vx (t) = −ωy(t), vy(t) = +ωx(t) (10.45)

where x(t) and y(t) are the positions of the node along the x and y axes.

386 10 Other Topics: Modeling of Fluids, Membranes and Temperature Effects

t = 0.15 ms t = 0.75 ms t = 1.50 ms t = 2.25 ms t = 3.00 ms

440 MPa

0

σeq

76◦

0

T

Fig. 10.27 Twisted column: sequence of deformed shape obtained with FEM

In Fig. 10.27 we present a sequence of deformed shape of the twisted column
obtained with FEM. On the top is the contour plot of the von Mises equivalent
stress and on the bottom is the contour plot of the temperature. And in Fig. 10.28 are
the ULMPM results. The two solutions are qualitatively similar and the presented
ULMPMalgorithm for coupled thermal-mechanical problems exhibiting large defor-
mation seems to be robust.

To conclude this section on thermal mechanical problems, we have presented a
simple MPM algorithm for coupled thermal-mechanical simulations. We also have
presented some simple tests to verify the formulation and the code. In the litera-
ture some researchers have applied similar MPM formulations to practical thermal

10.3 Thermo-Mechanical Problems 387

t = 0.09 ms t = 0.75 ms t = 1.50 ms t = 2.25 ms t = 2.99 ms

440 MPa

0

σeq

76◦

0

T

Fig. 10.28 Twisted column: sequence of deformed shape obtained with the ULMPM (cubic B-
splines, MUSL)

mechanical problems. For example, among these works, Fagan et al. (2016) demon-
strated that the MPM is able to simulate friction stir welding (FSW). FSW is a recent
and complicated thermo-mechanical process used to join different materials which
is still not well understood. And Lemiale et al. (2010) adopted the MPM to model a
metal forming process called the equal channel angular pressing technique.

388 10 Other Topics: Modeling of Fluids, Membranes and Temperature Effects

10.4 Fluid-Structure Interaction

Fluid-structure interaction (FSI) is a broad class of problems where the combined
states of a fluid and a solid need to be determined simultaneously. Fluid structure
interaction is of great relevance inmany fields of engineering as well as in the applied
sciences. Some examples are:

• Action of the air on aeronautic structures (aeroelasticity, flutter)
• Effect of the wind on civil structures (bridges, suspended cables, skyscrapers)
• Effect of water movement on dam or sloshing of a fluid in a container
• Fluid-membrane interaction (parachutes, vehicle airbags, blood vessels, heart
valve etc.) (Fig. 10.29)

For most FSI problems, analytical solutions to themodel equations are impossible
to obtain, whereas laboratory experiments are limited in scope. Therefore, in order
to investigate the fundamental physics involved in the complex interaction between
fluids and solids, numerical simulations may be employed. Since there is a strong
need for effective fluid structure interaction analysis procedures, various approaches
have been proposed.

Methods using only a Lagrangian formulation for both fluid and structure have
become popular within the framework of meshfree particle methods such as SPH
(Smoothed Particle Hydrodynamics), see e.g. Antoci et al. (2007). This popularity
comes mainly from the simplicity of the method as the treatment of fluid and solid
is nearly identical. However, it might not be the most efficient and accurate method
for FSI problems.

Another method that is popular for FSI is the immersed boundary method (IB)
developed by Peskin (1972). In this immersed boundary method, the fluid problem is
solved on a fixed Eulerian grid and the solid is discretized by a Lagrangian grid.What
is unique in this method is that the presence of the solid is accounted for by a force
term in the fluid equation. Thus, there is no need to track the solid-fluid boundary �.

Fig. 10.29 Some examples
of FSI: fluid-membrane
interaction (e.g. blood flow in
a heart valve) and fluid-solid
interaction (e.g. suspended
flow). These examples cover
only situations where the
membrane/solid is fully
immersed in the fluid. Note
that the structure
(membrane/solid) is moving
not stationary

References 389

We refer to the excellent review of different coupling methods and major codes/-
softwares in the doctoral thesis of York (1997).

Modeling fluid dynamics and fluid-structure interactions is surprisingly scarse in
the MPM literature given the fact that MPM can automatically handles interactions
between the fluid and the structures. One can count York et al. (2000); Hu and Chen
(2006); Gan et al. (2011) who studied fluid-membrane interactions based on MPM.
In their implementations, the fluid and the membrane are solved together using a
single background grid i.e., a monolithic approach. The interaction between the fluid
and the structure is indirect through the background grid. Therefore, there is no need
to track the evolving fluid-membrane interface. As shall be shown this approach
is straightforward to implement since it is identical to the interaction of multiple
solid bodies. Both solid and fluid are discretized by material points which follow
their own constitutive behaviours. However only non-slip boundary conditions at
the fluid-membrane interface can be handled. Guilkey et al. (2007) also used MPM
to model the fluid-structure interactions, but they used a finite volume scheme for
fluid. A coupled FEM-MPM formulation for FSI was presented in Chen et al. (2015)
where FEM is used to model the elastic structures and MPM is for the fluid.

It is clear that the literature on the MPM for FSI problems is scarce. As we do
not have much experience on this field yet, we only presented an overview of FSI
modeling herein.

References

Andersen, S., Andersen, L.: Analysis of spatial interpolation in the material-point method. Comput.
Struct. 88(7–8), 506–518 (2010)

Antoci, C., Gallati, M., Sibilla, S.: Numerical simulation of fluid-structure interaction by SPH.
Comput. Struct. 85(11–14), 879–890 (2007)

Chen, Z., Gan, Y., Chen, J.K.: A coupled thermo-mechanical model for simulating the material
failure evolution due to localized heating. Comput. Model. Eng. Sci. 26(2), 123 (2008)

Chen, Z.P., Qiu, X.M., Zhang, X., Lian, Y.P.: Improved coupling of finite element method with
material point method based on a particle-to-surface contact algorithm. Comput. Methods Appl.
Mech. Eng. 293, 1–19 (2015)

Cueto-Felgueroso, L., Colominas, I., Mosqueira, G., Navarrina, F., Casteleiro, M.: On the Galerkin
formulation of the smoothed particle hydrodynamics method. Int. J. Numer. Meth. Eng. 60(9),
1475–1512 (2004)

de Vaucorbeil, A., Nguyen, V. P., Sinaie, S., Wu, J. Y.: Chapter two—material point method after
25 years: theory, implementation, and applications. In: Advances in Applied Mechanics, vol. 53,
pp. 185–398. Elsevier (2020)

Fagan, Timothy, Lemiale, Vincent, Nairn, John, Ahuja, Yogita, Ibrahim, Raafat, Estrin, Yuri:
Detailed thermal and material flow analyses of friction stir forming using a three-dimensional
particle based model. J. Mater. Process. Technol. 231, 422–430 (2016)

Gan, Y., Chen, Z., Montgomery-Smith, S.: Improved material point method for simulating the zona
failure response in piezo-assisted intracytoplasmic sperm injection. Comput. Model. Eng. Sci.
1–24 (2011)

Gil, A.J., Lee, C.H., Bonet, J., Aguirre,M.: A stabilised Petrov-Galerkin formulation for linear tetra-
hedral elements in compressible, nearly incompressible and truly incompressible fast dynamics.

390 10 Other Topics: Modeling of Fluids, Membranes and Temperature Effects

Comput. Methods Appl. Mech. Eng. 276, 659–690 (2014). https://doi.org/10.1016/j.cma.2014.
04.006

Guilkey, J.E., Harman, T.B., Banerjee, B.: An Eulerian-Lagrangian approach for simulating explo-
sions of energetic devices. Comput. Struct. 85(11–14), 660–674 (2007)

Hamad, F., Stolle, D., Vermeer, P.: Modelling of membranes in the material point method with
applications. Int. J. Numer. Anal. Meth. Geomech. 39(8), 833–853 (2015)

Hu, W., Chen, Z.: Model-based simulation of the synergistic effects of blast and fragmentation on
a concrete wall using the MPM. Int. J. Impact Eng. 32(12), 2066–2096 (2006)

Lemiale, V., Nairn, J., Hurmane, A.: Material point method simulation of equal channel angular
pressing involving large plastic strain and contact through sharp corners. Comput. Model. Eng.
Sci. 70(1), 41–66 (2010)

Lian, Y.P., Zhang, X., Zhou, X., Ma, Z.T.: A FEMPmethod and its application in modeling dynamic
response of reinforced concrete subjected to impact loading. Comput. Methods Appl. Mech. Eng.
200(17–20), 1659–1670 (2011)

Lobovskỳ, Libor, Botia-Vera, Elkin, Castellana, Filippo, Mas-Soler, Jordi, Souto-Iglesias, Antonio:
Experimental investigation of dynamic pressure loads during dam break. J. Fluids Struct. 48,
407–434 (2014)

Mao, S.: Material point method and adaptive meshing applied to fluid-structure interaction (FSI)
problems. In: ASME 2013 Fluids Engineering Division Summer Meeting, pp. V01BT13A004–
V01BT13A004. American Society of Mechanical Engineers (2013)

Mast, C.M., Mackenzie-Helnwein, P., Arduino, P., Miller, G.R., Shin, W.: Mitigating kinematic
locking in the material point method. J. Comput. Phys. 231(16), 5351–5373 (2012)

Monaghan, J.J.: Simulating free surface flows with SPH. J. Comput. Phys. 110(2), 399–406 (1994)
Nairn, J.A., Guilkey, J.E.: Axisymmetric form of the generalized interpolation material point
method. Int. J. Numer. Meth. Eng. 101(2), 127–147 (2015)

Nguyen, V. P., Nguyen, C. T., Rabczuk, T., Natarajan, S.: On a family of convected particle domain
interpolations in the material point method. Finite Elem. Anal. Des. 126, 50–64 (2017)

Peskin, C.S.: Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10(2),
252–271 (1972)

Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic con-
servation laws. J. Comput. Phys. 27(1), 1–31 (1978)

Su, Y. C., Tao, J., Jiang, S., Chen, Z., Lu, J.M.: Study on the fully coupled thermodynamic fluid–
structure interaction with the material point method. Comput. Part. Mech. 1–16 (2019)

Sun, Z., Li, H., Gan, Y., Liu, H., Huang, Z., He, L.: Material point method and smoothed particle
hydrodynamics simulations of fluid flow problems: a comparative study. Prog. Comput. Fluid
Dyn., Int. J. (PCFD) 18(1), 1–18 (2018)

Tao, Jun, Zheng, Yonggang, Chen, Zhen, Zhang, Hongwu: Generalized interpolation material point
method for coupled thermo-mechanical processes. Int. J. Mech. Mater. Des. 12(4), 577–595
(2016)

Yang,W. C., Arduino, P., Miller, G.R., Mackenzie-Helnwein, P.: Smoothing algorithm for stabiliza-
tion of the material point method for fluid–solid interaction problems. Comput. Methods Appl.
Mech. Eng. 342, 177–199 (2018)

York, A.R., Sulsky, D., Schreyer, H.L.: Fluid-membrane interaction based on the material point
method. Int. J. Numer. Methods Eng. 901–924 (2000)

York, A.R.: Development of modifications to the material point method for the simulation of thin
membranes, compressible fluids, and their interactions. Ph.D. thesis, The University of New
Mexico, Albuquerque (1997)

York, A.R., Sulsky, D., Schreyer, H.L.: Thematerial pointmethod for simulation of thinmembranes.
Int. J. Numer. Meth. Eng. 44(10), 1429–1456 (1999)

Zhang, X., Chen, Z., Liu, Y.: The Material Point Method: A Continuum-Based Particle Method for
Extreme Loading Cases. Academic Press (2016)

Zhang, F., Zhang, X., Sze, K. Y., Lian, Y., Liu, Y.: Incompressible material point method for free
surface flow. J. Comput. Phys. 330, 92–110 (2017)

https://doi.org/10.1016/j.cma.2014.04.006
https://doi.org/10.1016/j.cma.2014.04.006

Appendix A
Strong Form, Weak Form and Completeness

This appendix presents, for completeness, the equivalence of the strong form and
weak form (Sect.A.1). SectionA.2 briefly recalls the completeness requirement of
FE shape functions.

A.1 Weak Formulation

Herein we present the derivation of the weak form given in Sect. 2.3 (Sect.A.1.1)
and demonstrate the equivalence of the weak form and strong form by getting the
strong form from the weak form (Sect.A.1.2).

A.1.1 Strong Form to Weak Form

The construction of the weak form starts by multiplying the momentum equation
with the test function δvi and integrating over the current configuration. That is

∫
Ω

δvi

(
ρ

∂σ s
i j

∂x j
+ ρbi − ρv̇i

)
dΩ = 0 (A.1)

With the notation f, j = ∂ f/∂x j and the identity (δviσ
s
i j), j = δvi, jσ

s
i j + δviσ

s
i j, j , we

can write the first term in the above equation as

∫
Ω

ρδvi
∂σ s

i j

∂x j
dΩ =

∫
Ω

ρ

(
∂

∂x j
(δviσ

s
i j) − ∂δvi

∂x j
σi j

)
dΩ (A.2)

Using the Gauss theorem, we can write

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Switzerland AG 2023
N. V. Phu et al., The Material Point Method, Scientific Computation,
https://doi.org/10.1007/978-3-031-24070-6

391

https://doi.org/10.1007/978-3-031-24070-6

392 Appendix A: Strong Form, Weak Form and Completeness

∫
Ω

∂

∂x j
(δviσ

s
i j)dΩ =

∫
Γint

δvi [[n jσ
s
i j]]dΓ +

∫
Γ

δvi n jσ
s
i jdΓ (A.3)

From the traction continuity on internal boundaries Γint e.g. cracks, the first term on
the RHS vanishes. For the second integrand, using the traction boundary condition
n jσ

s
i j = t si and the fact that δvi vanishes on the complement ofΓt , the above equation

becomes
∫

Ω

∂

∂x j
(δviσ

s
i j)dΩ =

∫
Γt

δvi t
s
i dΓ (A.4)

Substituting Eq. (A.4) into Eq. (A.2) gives

∫
Ω

ρδvi
∂σ s

i j

∂x j
dΩ =

∫
Γt

δvi t
s
i dΓ −

∫
Ω

∂δvi

∂x j
σ s
i jdΩ (A.5)

Introducing Eq. (A.5) into Eq. (A.1) yields

∫
Ω

ρ
∂δvi

∂x j
σ s
i j dΩ −

∫
Γt

ρδvi t
s
i dΓ −

∫
Ω

δviρbidΩ +
∫

Ω

δviρv̇idΩ = 0 (A.6)

Instead of thinking the test function δvi as a mathematical quantity, if we consider
it as a virtual velocity, then each term in the above equation represents a virtual power.
Therefore, this equation is named the virtual power equation, which is written as:
δP int − δPext + δPkin = 0, where

δP int =
∫

Ω

∇δv : σdΩ

δPext =
∫

Ω

ρb · δvdΩ +
∫

Γt

t̄ · δvdΓ

δPkin =
∫

Ω

ρδv · v̇dΩ

where δPext represents the virtual external power—the power done by external forces
and δPkin is the virtual kinetic power.

To demonstrate that δP int is a virtual internal power, let us rewrite ∂δvi
∂x j

σi j as
follows

∂δvi

∂x j
σi j = δvi, jσi j = δLi jσi j = (δDi j + δWi j)σi j

= δDi jσi j = δD : σ

(A.7)

And from the conservation of energy Eq. (2.19), δDi jσi j is the virtual internal power
per unit volume.

Appendix A: Strong Form, Weak Form and Completeness 393

A.1.2 Weak Form to Strong Form

After spending efforts to derive this weak form, a question arises naturally. Is this
weak form equivalent to the strong form from which it was derived? The answer is
yes and to this end, consider the first term in Eq. (A.6)

∫
Ω

ρ
∂δvi

∂x j
σ s
i jdΩ =

∫
Ω

ρ
∂δviσ

s
i j

∂x j
dΩ −

∫
Ω

ρδvi
∂σ s

i j

∂x j
dΩ

=
∫

Γ

ρδvi n jσ
s
i jdΓ −

∫
Ω

ρδvi
∂σ s

i j

∂x j
dΩ

(A.8)

which after substituted into Eq. (A.6) yields

∫
Γ

δvi (ρt
s
i − ρn jσ

s
i j)dΓ −

∫
Ω

δvi

(
ρ

∂σ s
i j

∂x j
+ ρbi − ρv̇i

)
dΩ = 0 (A.9)

As the above has to be true for any δvi , we then have, using the fundamental lemma
of variational calculus

t i = n jσi j (A.10a)

∂σi j

∂x j
+ ρbi − ρv̇i = 0 (A.10b)

which are apparently the traction and the momentum equations.

A.2 Completeness

A variational index is the highest spatial derivative order of the displacement or
velocity in the weak form. As the variational index of the weak form in Eq. (A.6) is
one, the basis functions must be 1-complete. That is, they must represent exactly all
polynomial terms of order ≤ 1 in the Cartesian coordinates.

Let us consider a 2D linear displacement field (a polynomial of order 1)

ux = α0 + α1x + α2y, uy = β0 + β1x + β2y, (A.11)

where αi and βi are non-zero constants.
To show that the basis functions can represent exactly all polynomial terms of

order≤ 1 in the Cartesian coordinates, we first assign the nodal displacements values
according to Eq. (A.11). For example, the x-component of the nodal displacements
is given by

ux I = α0 + α1xI + α2yI (A.12)

394 Appendix A: Strong Form, Weak Form and Completeness

Then, we check if the FE displacement field can reproduce a linear field. We check
this for the x component. The FE displacement uhx (x, y) is given by

uhx =
∑
I

NI ux I =
∑
I

NI (α0 + α1xI + α2yI) (use Eq. (A.12))

= α0

∑
I

NI + α1

∑
I

NI xI + α2

∑
I

NI yI
(A.13)

Now, we have

∑
I

NI (x) = 1,
∑
I

NI xI = x,
∑
I

NI yI = y (A.14)

Thus,
uhx = α0 + α1x + α2y (A.15)

Indeed the FE displacement field can reproduce a linear field. As a special case, it
can also reproduce a constant field.

Appendix B
Derivation of CPDI Basis Functions

This appendix provides the derivation of some results presented in Sect. 3.6 on
the CPDI functions for two-node line elements (Sect.B.1), three-node line elements
(Sect.B.2), four-nodequadrilateral elements (Sect.B.3), three-node triangle elements
(Sect.B.4), and four-node tetrahedron elements (Sect.B.5). Recall that the CPDI
basis functions are given by

φI p = 1

Vp

n∑
c=1

[∫
Ωp

Mc(x)dΩ

]
NI (xc) (B.1)

whereMc(x) are the shape functions of the finite element used to represent the particle
domain and n denotes the number of nodes of this element. In what follows, the exact
integration of the term in brackets is presented for various CPDIs. In subsequent
development, we drop the subscript p and without confusing we use Nc in place of
Mc.

B.1 CPDI-L2 Basis

As the shape functions of two-node line elements (L2 elements) are defined in a
parent domain � = [−1, 1] in terms of the so-called natural coordinates (ξ), we can
thus write the following

∫
Ω

NI (x)dΩ =
∫

�
NI (ξ)|J |d� =

∫ +1

−1
NI (ξ)|J |dξ (B.2)

where |J | denotes the determinant of the Jacobian of the transformation between the
global coordinate system and the parent domain which is given by

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Switzerland AG 2023
N. V. Phu et al., The Material Point Method, Scientific Computation,
https://doi.org/10.1007/978-3-031-24070-6

395

https://doi.org/10.1007/978-3-031-24070-6

396 Appendix B: Derivation of CPDI Basis Functions

|J | = x,ξ = N1,ξ x1 + N2,ξ x2 = 0.5(x2 − x1) = l p
2

(B.3)

where l p denotes the particle length. Therefore, the integral of NI overΩ–the particle
domain is written as

∫
Ω

NI (x)dΩ = l p
2

∫ +1

−1
NI (ξ)dξ (B.4)

And specially we have

∫
Ω

N1(x)dΩ = l p
2

∫ +1

−1
N1(ξ)dξ = l p

2

∫ +1

−1

1 − ξ

2
dξ = l p

2
(B.5)

∫
Ω

N2(x)dΩ = l p
2

∫ +1

−1
N2(ξ)dξ = l p

2

∫ +1

−1

1 + ξ

2
dξ = l p

2
(B.6)

Finally, the CPDI-L2 shape functions are given by

φI p = 1

l p

(
l p
2
NI (x1) + l p

2
NI (x2)

)
= 1

2
NI (x1) + 1

2
NI (x2) (B.7)

And for completeness, the CPDI-L2 derivatives are given by

dφI p = − 1

l p
NI (x1) + 1

l p
NI (x2) (B.8)

B.2 CPDI-L3 Basis

The shape functions and first derivatives of a quadratic line element are given by

N1 = −0.5(1 − ξ)ξ, dN1 = ξ − 0.5
N2 = +0.5(1 + ξ)ξ, dN2 = ξ + 0.5
N3 = 1 − ξ 2, dN3 = −2ξ

(B.9)

where node 3 is the midside node. The Jacobian is defined by

|J | = x,ξ = NI,ξ xI = cξ + 0.5x21 (B.10)

where x21 = x2 − x1 and c = (x1 + x2 − 2x3). Therefore

Appendix B: Derivation of CPDI Basis Functions 397

∫
Ω

N1(x)dΩ =
∫ 1

−1
−0.5(1 − ξ)ξ [cξ + 0.5x21]dξ = 1

6
(x21 − 2c)

∫
Ω

N2(x)dΩ =
∫ 1

−1
0.5(1 + ξ)ξ [cξ + 0.5x21]dξ = 1

6
(x21 + 2c)

∫
Ω

N3(x)dΩ =
∫ 1

−1
(1 − ξ 2) [cξ + 0.5x21]dξ = 4

6
x21

(B.11)

One can thus collectively gather the function weights into a vector

w f =
(

1

6l p
(x21 − 2c)

1

6l p
(x21 + 2c)

4

6l p
(x21)

)
(B.12)

In the same manner, we can gather the gradient weights into a vector as

wg = (−1 1 0
)

(B.13)

If the midside node is chosen to be identical to the particle position, then one have
x3 = 0.5(x1 + x2) or c = 0, and noting that x21 = l p,

w f =
(
1

6

1

6

4

6

)
(B.14)

B.3 CPDI-Q4 Basis

The four shape functions of a Q4 element are given by

N1(ξ, η) = 1

4
(1 − ξ)(1 − η)

N2(ξ, η) = 1

4
(1 + ξ)(1 − η)

N3(ξ, η) = 1

4
(1 + ξ)(1 + η)

N4(ξ, η) = 1

4
(1 − ξ)(1 + η)

(B.15)

The shape functions ofQ4 elements are defined in a parent domain� = [−1, 1] ×
[−1, 1] in terms of the so-called natural coordinates (ξ, η), see Fig.B.1. One can thus
write the following

∫
Ω

NI (x)dΩ =
∫

�
NI (ξ)|J |d� =

∫ +1

−1

∫ +1

−1
NI (ξ, η)|J |dξdη (B.16)

398 Appendix B: Derivation of CPDI Basis Functions

Fig. B.1 The four-node
quadrilateral element in the
natural coordinate system

where |J | is given by
|J | = x,ξ y,η − y,ξ x,η (B.17)

With x = NI (ξ, η)xI and y = NI (ξ, η)yI , we obtain

x,ξ = 1

4
[(1 − η)x21 + (1 + η)x34]

x,η = 1

4
[(1 − ξ)x41 + (1 + ξ)x32]

(B.18)

where xi j = xi − x j and yi j = yi − y j are the corner coordinate differences. The
expressions for y,ξ and y,η follow Eq. (B.18) with y replacing x . Now, we can write

|J | = 1

16
[(1 − η)(1 − ξ)(x21y41 − y21x41)

+ (1 − η)(1 + ξ)(x21y32 − y21x32)

+ (1 + η)(1 − ξ)(x34y41 − y34x41)

+ (1 + η)(1 + ξ)(x34y32 − y34x32)] (B.19)

Let take N1 as an example and by using Eqs. (B.16), (B.19), we write

∫
Ω

N1(x)dΩ = 1

64

∫ +1

−1

∫ +1

−1
(1 − ξ)(1 − η) [(1 − η)(1 − ξ)c1 + (1 − η)(1 + ξ)c2

+(1 + η)(1 − ξ)c3 + (1 + η)(1 + ξ)c4] dξdη
(B.20)

where c1 = (x21y41 − y21x41), c2 = (x21y32 − y21x32), c3 = (x34y41 − y34x41) and
c4 = (x34y32 − y34x32). The above can be more elaborated as

Appendix B: Derivation of CPDI Basis Functions 399

∫
Ω

N1(x)dΩ = 1

64

[
c1

∫ +1

−1

∫ +1

−1
(1 − ξ)2(1 − η)2dξdη + c2

∫ +1

−1

∫ +1

−1
(1 − ξ2)(1 − η)2dξdη

c3

∫ +1

−1

∫ +1

−1
(1 − ξ)2(1 − η2)dξdη + c4

∫ +1

−1

∫ +1

−1
(1 − ξ2)(1 − η2)dξdη

]
(B.21)

in which all the integrals can be exactly computed and the final result is

∫
Ω

N1(x)dΩ = 1

36
(4c1 + 2c2 + 2c3 + c4) (B.22)

∫
Ω

N2(x)dΩ = 1

36
(2c1 + 4c2 + c3 + 2c4) (B.23)

∫
Ω

N3(x)dΩ = 1

36
(c1 + 2c2 + 2c3 + 4c4) (B.24)

∫
Ω

N4(x)dΩ = 1

36
(2c1 + c2 + 4c3 + 2c4) (B.25)

Using the chain rule, we can compute the derivatives of the shape function with
respect to the global coordinates as follows

[
NI,x NI,y

] = [
NI,ξ NI,η

] [
x,ξ x,η

y,ξ y,η

]−1

= 1

|J |
[
NI,ξ NI,η

] [
y,η −x,η

−y,ξ x,ξ

] (B.26)

Or, explicitly we can write

NI,x = 1

|J |
(
NI,ξ y,η − NI,ηy,ξ

)

NI,y = 1

|J |
(−NI,ξ x,η + NI,ηx,ξ

) (B.27)

which allows us to write
∫

Ω

NI,xdΩ =
∫

�
NI,x |J |d� =

∫
�

(
NI,ξ y,η − NI,ηy,ξ

)
d� (B.28)

Using the above equation for N1 one gets

400 Appendix B: Derivation of CPDI Basis Functions

∫
Ω

N1,xdΩ = 1

16

∫
�

[
−(1 − η) [(1 − ξ)y41 + (1 + ξ)y32] + (1 − ξ)

[
(1 − η)y21

+ (1 + η)y34

]]
d�

= 1

2
y24

(B.29)

∫
Ω

N1,ydΩ = 1

16

∫
�

[
(1 − η) [(1 − ξ)x41 + (1 + ξ)x32] − (1 − ξ)

[
(1 − η)x21

+ (1 + η)x34

]]
d�

= 1

2
x42

(B.30)

B.4 Derivation of CPDI-T3 Basis

The three shape functions of a linear triangular element are written as

M1(ξ, η) = 1 − ξ − η

M2(ξ, η) = ξ

M3(ξ, η) = η

(B.31)

The Jacobian of the transformation is given by

|J | = x,ξ y,η − y,ξ x,η = x21y31 − y21x31 (B.32)

Note that |J | is constant and |J | = 2A where A is the area of the element.
We therefore can compute the integrals of the shape functions as follows

∫
Ω

N1(x)dΩ = |J |
∫ 1

0

∫ 1−η

0
(1 − ξ − η)dξdη = |J |

6∫
Ω

N2(x)dΩ = |J |
∫ 1

0

∫ 1−η

0
(ξ)dξdη = |J |

6∫
Ω

N3(x)dΩ = |J |
∫ 1

0

∫ 1−η

0
(η)dξdη = |J |

6

(B.33)

The derivatives of the shape functions are written as

Appendix B: Derivation of CPDI Basis Functions 401

N1,x = 1

|J | (y23), N1,y = 1

|J | (x32)

N2,x = 1

|J | (−y13), N2,y = 1

|J | (x13)

N3,x = 1

|J | (y12), N3,y = 1

|J | (−x12)

(B.34)

which are constants so that the integrals of the shape function derivatives are trivial.
For example, we have

∫
Ω

N1,xdΩ =
∫

y23dξdη = 1

2
y23 (B.35)

Putting all together the CPDI-T3 basis functions and first derivatives are given by

φI p = 1

3

[
NI (x1) + NI (x2) + NI (x3)

]

φI p,x = 1

2A
(y23NI (x1) − y13NI (x2) + y12NI (x3))

φI p,y = 1

2A
(x32NI (x1) + x13NI (x2) − x12NI (x3))

(B.36)

from which the function weights and gradient weights can be extracted.

B.5 Derivation of CPDI-Tet4 Basis

The four shape functions of linear tetrahedron elements are ξi , i = 1, 2, 3, 4 with
ξ1 + ξ2 + ξ3 + ξ4 = 1. For analytical integration over the linear tetraheron can be
done by using the following general formula (Felippa 2022)

∫
Ω

ξ i
1ξ

j
2 ξ k

3 ξ l
4dΩ = i ! j !k!l!

(i + j + k + l + 3)!6V (B.37)

where V is the volume of the tetraheron of which expression is given in the text. By
using Eq. (B.37) one can write

∫
Ω

McdΩ =
∫

Ω

ξcdΩ = V

4
c = 1, 2, 3, 4 (B.38)

Therefore, the CPDI-Tet4 weighting function φI p is given by

φI p = 1

4

[
NI (x1) + NI (x2) + NI (x3) + NI (x4)

]
(B.39)

402 Appendix B: Derivation of CPDI Basis Functions

To derive the expression for the first derivatives, we use the following identities

∂F

∂x
= ai

6V

∂F

∂ξi
,

∂F

∂y
= bi

6V

∂F

∂ξi
,

∂F

∂z
= ci

6V

∂F

∂ξi
(B.40)

where ai , bi and ci are defined in Eq. (3.44). Here the Einstein summation convention
over i = 1, 2, 3, 4 applies to the repeated indexes. For example, Eq. (B.40) applies
to ξ1 i.e., the first shape function gives

∂ξ1

∂x
= a1

6V
,

∂ξ1

∂y
= b1

6V
,
∂ξ1

∂z
= c1

6V
, (B.41)

Therefore, we have

∫
Ω

∂ξ1

∂x
dΩ = a1

6
,

∫
Ω

∂ξ1

∂y
dΩ = b1

6
,

∫
Ω

∂ξ1

∂z
dΩ = c1

6
(B.42)

By repeating this for other shape functions, we obtain the final expression for the
CPDI-Tet4 gradient weighting functions as

φI p,x = a1
6V

NI (x1) + a2
6V

NI (x2) + a3
6V

NI (x3) + a4
6V

NI (x4)

φI p,y = b1
6V

NI (x1) + b2
6V

NI (x2) + b3
6V

NI (x3) + b4
6V

NI (x4)

φI p,z = c1
6V

NI (x1) + c2
6V

NI (x2) + c3
6V

NI (x3) + c4
6V

NI (x4)

(B.43)

Appendix C
Utilities

This chapter is devoted to utilities that have been proved to be useful for computa-
tional mechanicians. First, we present codes for the visualization of one/two dimen-
sional functions (such as the shape functions employed in FEM and the MPM) in
Sect.C.1. Then, we illustrate the use of a computer algebra system open source pack-
age to carry out length derivations (such as derivation of CPDI functions) in Sect.C.2.
Next, we present a derivation of the modified cubic and quadratic B-splines basis
functions (Sect.C.3). Our derivation used a Python symbolic module. SectionC.4
briefly explains how remote machines are used to compile and run codes. Finally
Sect. C.5 discusses dimensions and units.

C.1 Scripts to Plot Basis Functions

This section presents Matlab scripts to plot various MPM basis functions. Listing
C.1 is used to plot one dimensional GIMP functions on a grid of four cells and five
nodes. The resulting plot was given in Fig. 3.7. Listing C.2 presents commands to
create plots of two dimensional GIMP functions given in Fig. 3.8. Since the codes
are quite self explanatory, we do not provide any explanations.

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Switzerland AG 2023
N. V. Phu et al., The Material Point Method, Scientific Computation,
https://doi.org/10.1007/978-3-031-24070-6

403

https://doi.org/10.1007/978-3-031-24070-6

404 Appendix C: Utilities

Listing C.1 Matlab script to plot 1D GIMP basis functions

1 L = 4; % physical domain
2 elemCount = 4; % no of elements
3 nodes = linspace(0 ,L,elemCount+1); % nodes
4 dx = L/elemCount;% grid spacing
5 n = 2;
6 ptsCount = 250;
7 x = 0:L/ptsCount :L;% sampling points where phi_I evaluated ;
8 shapeFunc = zeros(elemCount+1,length(x)) ;
9 dshapeFunc = zeros(elemCount+1,length(x)) ;

10 % compute phi_I and dphi_I , I=1:elemCount+1 at x(j) : j =1:ptsCount
11 for I =1:elemCount+1
12 for i =1:length(x)
13 pts = x(i) − nodes(I) ;
14 [shapeFunc(I , i) , dshapeFunc(I , i)] = getGIMP(pts ,dx,1.5) ;
15 end
16 end
17 %%
18 figure (1)
19 hold on
20 plot (x ,shapeFunc(1 , :) , ’black−’ , ’LineWidth ’ ,1.4);
21 plot (x ,shapeFunc(2 , :) , ’ red−’ , ’LineWidth ’ ,1.4);
22 %plot (x ,sum(dshapeFunc,1) , ’ black−−’ , ’LineWidth ’ ,1 .4) ;
23 axis equal , axis([0 4 0 1])

Listing C.2 Matlab script to plot 2D GIMP basis functions

1 [X,Y] = meshgrid (linspace(0 ,4 ,200)); % X,Y: grid of 200x200 points on a square 4x4
2 R = zeros(size (X,1) ,size (X,1)) ;
3 xI = [2 2]; % node I with phi_I
4 lp = 1; % particle size
5 h = 1; % grid space
6 % compute phi_I at 200x200 points
7 for i =1:size (X,1)
8 for j =1:size (X,1)
9 x = X(1 , i) ;

10 y = Y(j ,1) ;
11 pts = x − xI (1);
12 [Nx, dshape] = getGIMP(pts ,h, lp) ;
13 pts = y − xI (2);
14 [Ny, dshape] = getGIMP(pts ,h, lp) ;
15 R(i , j) = Nx∗Ny;
16 end
17 end
18 figure % 3D plot
19 surf (X,Y,R, ’EdgeColor ’ , ’none ’ , ’ LineStyle ’ , ’none ’ , ’FaceLighting ’ , ’phong ’)
20 hold off
21 figure % contour plot
22 surf (X,Y,R, ’EdgeColor ’ , ’none ’ , ’ LineStyle ’ , ’none ’)
23 hold off
24 axis equal , view([0 90]) , colorbar

Appendix C: Utilities 405

C.2 Symbolic Calculus

A computer algebra system (CAS) is a software program that allows computation
over mathematical expressions in a way that is similar to the traditional hand compu-
tations carried out bymathematicians, scientists and engineers.CAShavebeen shown
extremely useful, among other things, for deriving complex expressions such as the
material tangent matrices of complex constitutive models in the FEM community.
There exists excellent commercial CAS such as Maple, Mathematica and Matlab.
However, herein we present the derivation of CPDI basis functions using SageMath,
an open source CAS. The first version of SageMath was released in 2005 with the
initial goals of creating an ‘open source alternative to Magma, Maple, Mathematica,
and Matlab’. Furthermore, SageMath supports technical writing using LATEX.

Listing C.3 SageMath script to derive CPDI-L3 basis functions

1 var(’xi x1 x2 x3’) # define variables
2 N1=−0.5∗(1−xi)∗xi
3 N2= 0.5∗(1+xi)∗xi
4 N3= 1−xi^2
5 x = N1∗x1 + N2∗x2 + N3∗x3
6 J = x. diff (xi) # Jacobian
7 N1J = N1∗J
8 N2J = N2∗J
9 N3J = N3∗J

10 wf1 = N1J. integral (xi ,−1,1) # 1st func . weight without 1/Vp
11 wf2 = N2J. integral (xi ,−1,1)
12 wf3 = N3J. integral (xi ,−1,1)
13 view(wf1)
14 latex (wf1)

Listing C.3 presents the SageMath scripts used to derive the CPDI-L3 basis func-
tions. Note that the final command latex(wf1) is to export the SageMath object
wf1 to LATEX which was copied to our LATEX document to generate the following
equation

− 1

2
x1 − 1

6
x2 + 2

3
x3 (C.1)

Listing C.4 presents the SageMath scripts used to derive the CPDI-Q4 basis func-
tions. Line 13 is used to carry out double integrations.

406 Appendix C: Utilities

Listing C.4 SageMath script to derive CPDI-Q4 basis functions

1 var(‘xi eta x1 y1 x2 y2 x3 y3 x4 y4’)
2 N1=0.25∗(1−xi)∗(1−eta)
3 N2=0.25∗(1+xi)∗(1−eta)
4 N3=0.25∗(1+xi)∗(1+eta)
5 N4=0.25∗(1−xi)∗(1+eta)
6 x = N1∗x1 + N2∗x2 + N3∗x3 + N4 ∗ x4
7 y = N1∗y1 + N2∗y2 + N3∗y3 + N4 ∗ y4
8 J = x. diff (xi)∗y. diff (eta) − x. diff (eta)∗y. diff (xi)
9 N1J = N1∗J

10 N2J = N2∗J
11 N3J = N3∗J
12 N4J = N4∗J
13 wf1 = integral (integral (N1J, eta ,−1,1),xi ,−1,1)
14 wf2 = integral (integral (N2J, eta ,−1,1),xi ,−1,1)
15 wf3 = integral (integral (N3J, eta ,−1,1),xi ,−1,1)
16 wf4 = integral (integral (N4J, eta ,−1,1),xi ,−1,1)
17 show(wf1. simplify_full ())
18 show(wf1+wf2+wf3+wf4) . simplify_full ()

C.3 Derivation of B-Spline Basis Functions

We present herein the derivation of the boundary modified cubic B-splines given
in Sect. 3.4, see Sect.C.3.1 and quadratic B-splines (Sect.C.3.2). In the process, we
introduce the package SymPy which is suitable for this kind of task. SymPy is a
Python module for symbolic mathematics. It’s similar to commercial CAS like
Maple or Mathematica. Note that we also used Mathematica to do this; but we prefer
open source tools. We did not use SageMath to illustrate the point that it is beneficial
to know many programming languages, and use the best one for a given task. Recall
that we have used C++, Matlab, Python, Julia and SageMath in this book.

C.3.1 Cubic B-Splines

We start with the knot vectorΞ = {0, 0, 0, 0, 1, 2, 3, 4, 5, 5, 5, 5}. Using Eqs. (3.16)
and (3.17) implemented in SymPy, one can get all the functions. They are given by
(we used x instead of ξ as all the following equations are copied from SymPy and
in the following equations, ∧ means or)

N0,3(x) =
{−x3 + 3x2 − 3x + 1 for x ≥ 0 ∧ x ≤ 1
0 otherwise

(C.2)

Appendix C: Utilities 407

N1,3(x) =
⎧⎨
⎩

7x3

4 − 9x2

2 + 3x for x ≥ 0 ∧ x ≤ 1
− x3

4 + 3x2

2 − 3x + 2 for x ≥ 1 ∧ x ≤ 2
0 otherwise

(C.3)

N2,3(x) =

⎧⎪⎪⎨
⎪⎪⎩

− 11x3

12 + 3x2

2 for x ≥ 0 ∧ x ≤ 1
7x3

12 − 3x2 + 9x
2 − 3

2 for x ≥ 1 ∧ x ≤ 2
− x3

6 + 3x2

2 − 9x
2 + 9

2 for x ≥ 2 ∧ x ≤ 3
0 otherwise

(C.4)

N3,3(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x3

6 for x ≥ 0 ∧ x ≤ 1
− x3

2 + 2x2 − 2x + 2
3 for x ≥ 1 ∧ x ≤ 2

x3

2 − 4x2 + 10x − 22
3 for x ≥ 2 ∧ x ≤ 3

− x3

6 + 2x2 − 8x + 32
3 for x ≥ 3 ∧ x ≤ 4

0 otherwise

(C.5)

N4,3(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x3

6 − x2

2 + x
2 − 1

6 for x ≥ 1 ∧ x ≤ 2
− x3

2 + 7x2

2 − 15x
2 + 31

6 for x ≥ 2 ∧ x ≤ 3
x3

2 − 11x2

2 + 39x
2 − 131

6 for x ≥ 3 ∧ x ≤ 4
− x3

6 + 5x2

2 − 25x
2 + 125

6 for x ≥ 4 ∧ x ≤ 5
0 otherwise

(C.6)

N5,3(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x3

6 − x2 + 2x − 4
3 for x ≥ 2 ∧ x ≤ 3

− 7x3

12 + 23x2

4 − 73x
4 + 227

12 for x ≥ 3 ∧ x ≤ 4
11x3

12 − 49x2

4 + 215x
4 − 925

12 for x ≥ 4 ∧ x ≤ 5
0 otherwise

(C.7)

and so on (we skipped the remaining functions for brevity).
Then, we replace the first basis function i.e., N0,3(x) by N0,3(x) = N0,3(x) +

2/3N1,3(x), and we get this

N1,3(x) :=

⎧⎪⎨
⎪⎩

1
6 x

3 − x + 1 for x ≥ 0 ∧ x ≤ 1

− 1
6 x

3 + x2 − 2x + 4/3 for x ≥ 1 ∧ x ≤ 2

0 otherwise

(C.8)

And we replace the third function N3,3(x) by N3,3(x) = N3,3(x) + 1/3N1,3(x), and
obtain

N2,3(x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x
(
1 − x2

3

)
for x ≥ 0 ∧ x ≤ 1

0.5x3 − 2.5x2 + 3.5x − 5
6 for x ≥ 1 ∧ x ≤ 2

− x3

6 + 3x2

2 − 9x
2 + 9

2 for x ≥ 2 ∧ x ≤ 3

0 otherwise

(C.9)

408 Appendix C: Utilities

By distributing N1,3(x) to the first and second basis functions, we maintain the
partition of unity of the basis functions. The coefficients 2/3 and 1/3 were obtained
to make sure that that the peak of N2,3(x) equals that of N3,3(x).

We do not change N3,3(x) as it is node centred, so we have

N3,3(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x3

6 for x ≥ 0 ∧ x ≤ 1

− x3

2 + 2x2 − 2x + 2
3 for x ≥ 1 ∧ x ≤ 2

x3

2 − 4x2 + 10x − 22
3 for x ≥ 2 ∧ x ≤ 3

− x3

6 + 2x2 − 8x + 32
3 for x ≥ 3 ∧ x ≤ 4

0 otherwise

(C.10)

And one proceeds in the same manner for the remaining functions.
In the MPM, we need to evaluate the grid basis at a particle i.e., NI (xp) using the

coordinate r := (xp − xI)/h. For the second basis in Eq. (C.9), we have−1 ≤ r ≤ 2,
so we use the transformation x = r + 1 in Eq. (C.9) to obtain the final MPM cubic
spline function

N2,3(r) :=

⎧⎪⎨
⎪⎩

− 1
3r

3 − r2 + 2
3 for − 1 ≤ r ≤ 0

1
2r

3 − r2 + 2
3 for 0 ≤ r ≤ 1

− 1
6r

3 + r2 − 2r + 4
3 for 1 ≤ r ≤ 2

(C.11)

The Python script for all this derivation is given in Listing C.5; and the plot of the
modified cubic splines is shown in Fig.C.1. The sum of all basis functions is added

Fig. C.1 Modified cubic splines obtained and visualized using SymPy

Appendix C: Utilities 409

to this plot to prove the partition of unity of the modified functions. Note that the
plotting functionality of SymPy is quite limited.

Listing C.5 Python script to derive modified cubic basis functions

1 from sympy import ∗
2 from sympy.abc import x
3 from matplotlib import style
4 import matplotlib . pyplot as plt
5 d = 3
6 knots = [0 , 0, 0, 0, 1, 2, 3, 4, 5, 5, 5, 5]
7 bsplines = bspline_basis_set(d, knots , x)
8 line_colors = [’red ’ , ’blue ’ , ’blue ’ , ’cyan’ , ’green’ , ’blue ’ , ’blue ’ , ’red ’]
9 # modified bsplines

10 bsplines1 = bsplines [0]+(2./3.)∗bsplines[1]
11 bsplines2 = bsplines [2]+(1./3.)∗bsplines[1]
12 bsplines3 = bsplines[3]
13 bsplines4 = bsplines[4]
14 bsplines5 = bsplines[5]+(1./3)∗bsplines[6]
15 bsplines6 = bsplines[7]+(2./3)∗bsplines[6]
16 # to check PUM
17 tspline = bsplines1+bsplines2+bsplines3+bsplines4+bsplines5+bsplines6
18 # plotting the modified bsplines
19 p = None
20 p2=plot (bsplines1 , (x, 0, knots[−1]),line_color=line_colors [0])
21 p = p2
22 p2=plot (bsplines2 , (x, 0, knots[−1]),line_color=line_colors [3])
23 p. extend(p2)
24 . . .
25 p.show()
26 print(latex (simplify(bsplines2))) # to get latex for the equation

C.3.2 Quadratic B-Splines

Our goal is to obtain 5 boundary modified B-splines centered at the nodes (Fig.C.2).
We start from the normal quadratic B-splines as shown in Fig.C.3. The idea is to
use these normal functions for 0.5 ≤ x ≤ 3.5, outside of this domain, we use linear
functions.

The internal basis function is already centered at nodes, so we just use it. Thus,
we get type 3 basis (cyan basis in Fig.C.2)

N3,2(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2r

2 + 3
2r + 9

8 for − 3/2 ≤ r ≤ −1/2

−r2 + 3
4 for − 1/2 ≤ r ≤ 1/2

1
2r

2 − 3
2r + 9

8 for 1/2 ≤ r ≤ 3/2

0 otherwise

(C.12)

410 Appendix C: Utilities

Fig. C.2 Modified quadratic splines obtained and visualized using SymPy. At any point there are
always three non-zero basis functions. For internal cells, one need to check if point p is on the left
half or right half of the cell to know which basis functions are non-zero. In 2D, there are 3 × 3
non-zero functions

Fig. C.3 Modified quadratic splines obtained and visualized using SymPy

This is the basis for internal nodes i.e., nodes do not belong to boundary cells.
To get the type 1 basis (red basis in Fig.C.2), we reuse the first quadratic basis

(red in Fig.C.3) for 0.5 ≤ x ≤ 1.5. And add a linear function y = x for 0 ≤ x ≤ 0.5
to it. The resulting function is

Appendix C: Utilities 411

N1,2(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x for x ≥ 0 ∧ x ≤ 0.5

−1.0x2 + 2.0x − 0.25 for x ≥ 0.5 ∧ x ≤ 1.5

0.5x2 − 2.5x + 3.125 for x ≥ 1.5 ∧ x ≤ 2.5

0 otherwise

(C.13)

Using x = r + 1,weobtain thefinal expression for type 1 basis function (this variable
change can be done using SymPy directly)

N1,2(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r + 1 for r ≥ −1 ∧ r ≤ −0.5

0.75 − 1.0r2 for r ≥ −0.5 ∧ r ≤ 0.5

0.5r2 − 1.5r + 1.125 for r ≥ 0.5 ∧ r ≤ 1.5

0 otherwise

(C.14)

Similarly, to get the type 4 basis (black basis in Fig.C.2), we reuse the third basis
(cyan in Fig.C.3), and add the linear segment 4 − x for 3.5 ≤ x ≤ 4.5 to it. The
result is the following function

N4,2(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.5x2 − 1.5x + 1.125 for x ≥ 1.5 ∧ x ≤ 2.5

−1.0x2 + 6.0x − 8.25 for x ≥ 2.5 ∧ x ≤ 3.5

4.0 − x for x ≥ 3.5 ∧ x ≤ 4

0 otherwise

(C.15)

And using x = r + 3, we get

N4,2(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.5r2 + 1.5r + 1.125 for r ≥ −1.5 ∧ r ≤ −0.5

0.75 − 1.0r2 for r ≥ −0.5 ∧ r ≤ 0.5

1.0 − r for r ≥ 0.5 ∧ r ≤ 1

0 otherwise

(C.16)

Actually this function can also be obtained from Eq. (C.14) using vertical reflection.
Finally, to get the type 1 basis (red basis in Fig.C.2) for 0.5 ≤ x ≤ 1.5, we use

the third normal bspline with x = 3 − y and add 1 − x for 0 ≤ x ≤ 0.5. The final
expression for type basis function is

N1,2(r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.5r2 + 1.5r + 1.125 for r ≥ −1.5 ∧ r ≤ −0.5

r + 1 for r ≥ −0.5 ∧ r ≤ 0

1 − r for r ≥ 0 ∧ r ≤ 0.5

0.5r2 − 1.5r + 1.125 for r ≥ 0.5 ∧ r ≤ 1.5

0 otherwise

(C.17)

412 Appendix C: Utilities

Fig. C.4 A workflow of
nowadays computational
scientist: a PC or a laptop is
used to edit the source code,
an online git repository to
store the code and (3) a
remote machine such as a
cluster for running the
simulations

Online Git Repository

Computer

push

pull

pull

Computer Cluster

C.4 Running Simulations Using a Remote Machine

As engineering problems are getting more complex, using an office computer is
not sufficient. We often find ourselves using remote clusters. This appendix briefly
documents this working process. We need three things: (1) a PC or a laptop that is
used to edit the source code, (2) an online git repository to store our code and (3)
a remote machine which is used for running the simulations. FigureC.4 illustrates
this workflow in which a pull request is made to get the latest code from the online
repository and a push is done to upload the changed code. The compilation of the
code (if written in C++ or Fortran) is done in the cluster using SSH (Secure Shell).

When it comes to remote machines, tmux (Fig.C.5) is particularly useful. Let’s
imagine that you need to run a very long script on your remote server. You could:

• Connect to your remote server via SSH and launch tmux on the remote server.
• Run a script which takes hours.
• Close the SSH connection. The script will still run on the remote server, thanks to
tmux. You can switch off your own computer.

C.5 Units

Wewant to discuss units in stress analyses. On one hand, we can choosewhat we like,
as long as it is consistent. This freedom comes from the fact that many commercial
simulation packages such as Abaqus have no built-in system of units. This is also
the case for the many codes presented in this book. And by consistent, we mean that
derived units of the chosen system can be expressed in terms of the fundamental units
without conversion factors. Fundamental units are Length (L), Mass (M), Force (F)

Appendix C: Utilities 413

Fig. C.5 On a PC, tmux is kind of a powerful window manager. Shown here is one tmux session
with four panes on one window. You can have multiple sessions and each session can have its own
windows. But it is extremely useful when it comes to SSH to remote machines

Table C.1 Common consistent units for stress analyses. One example of unit conversion is the
density: 7850kg/m3 = 7.85 × 10−9 tonne/mm3 = 7850 × 10−9 kg/mm3

Variable Meaning SI (m, s, N) SI (mm, s, N) SI (mm, ms, kN)

l Length m mm mm

t Time s s ms

F Force N N kN

m Mass kg tonne [103 kg] kg

T Temperature K or C K K

ρ Density kg/m3 tonne/mm3

[10−6 kg/m3]
kg/mm3 [10−9

kg/m3]

E Young’s
modulus

Pa MPa [106 Pa] GPa [109 Pa]

σ Stress Pa [N/m2] MPa [106 Pa] GPa [109 Pa]

e Energy J [Nm] mJ [10−3 J] J

Gc Fracture energy J/m2 N/mm [103

J/m2]
[106 J/m2]

v Velocity m/s mm/s [10−3

m/s]
mm/ms [m/s]

and Time (T). Other units are derived from them e.g. volume = length powered to the
three. On the other hand, this is a common source of mistakes. Therefore we want to
go into a bit more detail.

Some common consistent SI units are given in TableC.1.
The relation between F, M, L and T is given by Newton’s second law F = ma

F = ma ⇒ N = kg × m

s2
(C.18)

414 Appendix C: Utilities

Therefore, if you use mm for length and still N for force and s for time, then the mass
must be in tonne:

N = 103kg × mm

s2
(C.19)

Appendix D
Explicit Lagrangian Finite Elements

It is a common practice to verify a newmethod with the finite element method, which
is reliable. Therefore, it is useful to have a FEM code in hand. Due to this reason, in
this appendix we present the implementation of explicit dynamic Lagrangian finite
elements for large deformation problems. Readers are referred to textbooks e.g.
Belytschko et al. (2000), Wu and Wu (2012) for derivations and a comprehensive
treatment of the topic. Herein, we focus on computer implementation aspects and
verification tests using the method of manufactured solutions. Topics such as con-
tact and impact are not covered as they are more difficult to deal with by FEM than
by the MPM. Furthermore, we confine our discussion to nonlinear elastic materials
in the framework of hyperelasticity. This is because this type of materials is suf-
ficient to demonstrate finite element formulations for large deformation problems
without delving too much into the stress updates of more complex materials such as
hyperelastic-plastic ones.

Finite elements using Lagrangian meshes are commonly classified as updated
Lagrangian formulation (Sect.D.1) and total Lagrangian formulation (Sect.D.2). In
both formulations, the independent variables are the material coordinatesX and time
t . In the total Lagrangian formulation, the stress and strain are Lagrangian, i.e., they
are defined with respect to the reference configuration (for example, the nominal
or second Piola-Kirchhoff stress are employed), the derivatives are computed with
respect to the material coordinates. The corresponding weak form therefore involves
integrals over the reference configuration. On the other hand, the updated Lagrangian
formulation uses the Eulerian strain and stress measures e.g., the Cauchy stress, the
derivatives are computed with respect to the spatial coordinates x. The corresponding
weak form therefore involves integrals over the current (deformed) configuration.

D.1 Updated Lagrangian Finite Elements

The computational domain is discretized by continuum elements and the solution
is advanced in time using the central difference scheme (or the leapfrog scheme).

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Switzerland AG 2023
N. V. Phu et al., The Material Point Method, Scientific Computation,
https://doi.org/10.1007/978-3-031-24070-6

415

https://doi.org/10.1007/978-3-031-24070-6

416 Appendix D: Explicit Lagrangian Finite Elements

We pay attention to the overall flowchart (Sect.D.1.1) and the computation of the
internal force vector (Sect.D.1.2).

D.1.1 General Flowchart

The flowchart of an updated Lagrangian FE code is given in Algorithm 24. As the
mass matrix is constant, it is computed once.

Algorithm 24 Updated Lagrangian finite elements.
1: Initialization
2: Initialize nodal velocities/displacements and stresses at Gauss points;
3: Compute the consistent mass matrix, diagonalize it;
4: end
5: while t < T do
6: Compute nodal forces (refer to Algorithm 25)
7: Compute external/internal forces fext,tI , f int,tI

8: Compute nodal force f tI = fext,tI + f int,tI
9: end
10: Update the velocity vt+Δt

I = vtI + (f tI /mI)Δt

11: Fix Dirichlet nodes I e.g. vt+Δt
I = v̄

12: Update displacements ut+Δt
I = utI + Δtvt+Δt

I

13: Update mesh xt+Δt
I = xtI + Δtvt+Δt

I
14: end while

D.1.2 Computation of Internal Force

For simplicity we confine our discussion to two dimensions. The internal force vector
at a generic node I is given by

[
f intx I

f inty I

]
=

∫
Ω

[
NI,x 0 NI,y

0 NI,y NI,x

] ⎡
⎣σ11

σ22

σ12

⎤
⎦ dΩ (D.1)

where derivatives are with respect to the current configuration. For an element with
n nodes, we can collectively gather the internal force vectors of all n nodes to get
the so-called element internal force vector1

f inte =
∫

Ωe

BTσdΩ (D.2)

1 For finite elements it is more common to work on an element basis rather than on a node basis.
Therefore we do not compute the internal force node by node but rather we compute it element by
element. This is not a requirement but we decided to do so to be consistent with the FEM practices.

Appendix D: Explicit Lagrangian Finite Elements 417

whereΩe denotes the element domain and the well known Bmatrix in finite element
codes for small deformation inelastic materials appear. Explicitly written, B is given
by

B =
⎡
⎣N1,x 0 N2,x 0 . . . Nn,x 0

0 N1,x 0 N2,x . . . 0 Nn,y

N1,y NI,x N2,y N2,x . . . Nn,y Nn,x

⎤
⎦ (D.3)

which is a 3 × 2n matrix. The procedure is identical to FEM for small deformation
inelastic materials case, except that the mesh is updated (Algorithm 25).

Algorithm 25 Updated Lagrangian: computation of internal forces at time t .
1: for each element e do
2: get element connectivity of e, esctr
3: get element coordinates of e, xe
4: initialize element internal force f inte = 0
5: for each Gauss point g do
6: compute the shape functions/derivatives N(ξ g) and dNdxi(ξ g)
7: compute the Jacobian J = (xe)TdNdxi
8: compute the shape function derivatives dNdx = dNdxiJ−1

9: compute B matrix
10: compute stresses
11: compute internal force f inte = f inte + BTσ gwg det J
12: end for
13: Assemble f inte to the global internal force f int using esctr
14: end for

If the Cauchy stresses are stored in a full matrix rather than in a vector (using the
Voigt notation), then the element internal force is given by

⎡
⎢⎢⎢⎢⎢⎣

f intx1 f inty1

f intx2 f inty2

...
...

f intxn f intyn

⎤
⎥⎥⎥⎥⎥⎦

=
∫

Ωe

⎡
⎢⎢⎢⎢⎢⎣

∂N1
∂x

∂N1
∂y

∂N2
∂x

∂N2
∂y

...
...

∂Nn
∂x

∂Nn
∂y

⎤
⎥⎥⎥⎥⎥⎦

[
σxx σxy

σyx σyy

]
dΩ =

∫
Ωe

BT[σ]dΩ (D.4)

which is implemented in our Matlab code. We find it convenient in Matlab to work
this way when we assemble the element force into the global force.

One can compute the gradient deformation from the velocity gradient L as done
in the MPM. Alternatively one can compute F directly as follows

F = ∂x
∂X

=
(

∂X
∂x

)−1

=
(
I − ∂u

∂x

)−1

= (
I − ueBT)−1

(D.5)

where ue denotes the element displacement matrix of which explicit expression will
be given shortly in Eq. (D.11).

418 Appendix D: Explicit Lagrangian Finite Elements

D.2 Total Lagrangian Finite Elements

The general flowchart of a total Lagrangian FE code is similar to the UL finite
element code except that one does not update the mesh (i.e., the node coordinates
are not updated) as we are always working on the initial reference configuration. For
ease of implementation the flowchart is given in Algorithm 26.

Algorithm 26 Total Lagrangian finite elements.
1: Initialization
2: Initialize nodal velocities/displacements and stresses at Gauss points;
3: Compute the consistent mass matrix, diagonalize it;
4: end
5: while t < T do
6: Compute nodal forces (refer to Algorithm 27)
7: Compute external/internal forces fext,tI , f int,tI

8: Compute nodal force f tI = fext,tI + f int,tI
9: end
10: Update the velocity vt+Δt

I = vtI + (f tI /mI)Δt

11: Fix Dirichlet nodes I e.g. vt+Δt
I = v̄

12: Update displacements ut+Δt
I = utI + Δtvt+Δt

I
13: end while

The TL form of the internal force vector is given by (Belytschko et al. 2000)

f inti I =
∫

Ωe
0

∂NI

∂Xk
PkidΩ (D.6)

which can be rewritten explicitly as in 2D

[
f intx I f inty I

] =
∫

Ω0

[
∂NI

∂X

∂NI

∂Y

] [
Pxx Pxy
Pyx Pyy

]
dΩ (D.7)

And for an element with n nodes, Eq. (D.7) yields the following expression for the
elemental internal force matrix

⎡
⎢⎢⎢⎢⎢⎣

f intx1 f inty1

f intx2 f inty2

...
...

f intxn f intyn

⎤
⎥⎥⎥⎥⎥⎦

=
∫

Ωe
0

⎡
⎢⎢⎢⎢⎢⎣

∂N1
∂X

∂N1
∂Y

∂N2
∂X

∂N2
∂Y

...
...

∂Nn
∂X

∂Nn
∂Y

⎤
⎥⎥⎥⎥⎥⎦

[
Pxx Pxy
Pyx Pyy

]
dΩ (D.8)

Or in a more compact form as

[
f inte

] =
∫

Ωe
0

BT
0

[
P
]
dΩ, B0 = [B1 B2 . . . Bn

]
, B I =

[
NI,X

NI,Y

]
(D.9)

Appendix D: Explicit Lagrangian Finite Elements 419

which is very similar to the corresponding UL form of the internal force. However
it should be noted that when using the nominal stress the stress is now stored as a
matrix (because it is a non-symmetric tensor) not as a vector, and thus the internal
force is now amatrix. We use square brackets to differentiate an internal force matrix
from an internal force vector.

Next we present how to compute the deformation gradient (which is needed to
determine the stresses). There are different ways to achieve this goal. For example,
one can compute F using the displacements via the following equation

Fi j = δi j + ∂ui
∂X j

= δi j + ∂NI

∂X j
ui I (D.10)

which can be explicitly written for an element with n nodes

F = I +
⎡
⎢⎣

∂NI

∂X
ux I

∂NI

∂Y
ux I

∂NI

∂X
uyI

∂NI

∂Y
uyI

⎤
⎥⎦ = I +

[
ux1 ux2 . . . uxn

uy1 uy2 . . . uyn

]
⎡
⎢⎢⎢⎢⎢⎣

∂N1
∂X

∂N1
∂Y

∂N2
∂X

∂N2
∂Y

...
...

∂Nn
∂X

∂Nn
∂Y

⎤
⎥⎥⎥⎥⎥⎦

(D.11)

or compactly asF = I + ueBT
0 withue is often referred to as the element displacement

matrix. We are now ready to compute the TL internal force. The algorithm is given in
Algorithm 27. Note that there are different implementations that employ the second
Piola-Kirchhoff stress tensor S. We refer to the textbook of Belytschko et al. (2000)
for details.

Algorithm 27 Total Lagrangian: computation of internal forces at time t .
1: for each element e do
2: get element connectivity of e, esctr
3: get element coordinates of e, Xe
4: get element displacements of e, ue
5: initialize element internal force [f inte] = 0
6: for each Gauss point g do
7: compute the shape functions/derivatives N(ξ g) and dNdxi(ξ g)
8: compute the Jacobian J = (Xe)

TdNdxi
9: compute the shape function derivatives dNdx = dNdxiJ−1

10: compute B0 matrix
11: compute F = I + ueBT

0
12: compute stresses [P] using F
13: compute internal force [f inte] = [f inte] + BT

0 [P]gwg det J
14: end for
15: Assemble [f inte] to the global internal force f int using esctr
16: end for

420 Appendix D: Explicit Lagrangian Finite Elements

D.3 Implementation

We now present computer implementation aspects of the two aforementioned TL
and UL FE formulations. First, we discuss how to get the coordinates and weights of
Gauss integration points and compute the FE shape functions and the first derivatives
(with respect to natural coordinates). In our implementation, the shape functions
and derivatives are stored as (discussion is limited to 2D problems for the sake of
simplicity)

N =

⎡
⎢⎢⎢⎣

N1

N2
...

Nn

⎤
⎥⎥⎥⎦ ,

∂N
∂ξ

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂ξ

∂N1

∂η

∂N2

∂ξ

∂N2

∂η

...
...

∂Nn

∂ξ

∂Nn

∂η

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
∂N
∂x

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂x

∂N1

∂y
∂N2

∂x

∂N2

∂y
...

...
∂Nn

∂x

∂Nn

∂y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(D.12)

where n is the number of nodes per element.
At integration point level one store at least the coordinates and weights of the

integration points. In our code, they are stored in Q and W as

Q =

⎡
⎢⎢⎣

ξ1 η1
ξ2 η2
ξ3 η3
ξ4 η4

⎤
⎥⎥⎦ , W =

⎡
⎢⎢⎣

w1

w2

w3

w4

⎤
⎥⎥⎦ (D.13)

The code is given in Listing D.1.

Listing D.1 Functions to get Gauss rule and compute shape functions.

1 % get the Gauss quadrture points and weights
2 %noGP = # Gauss points in each direction ,
3 % nsd = # of spatial dimensions (2 or 3)
4 [W,Q] = quadrature(noGP, ’GAUSS’ , nsd) ;
5 % for triangle elements, use the following instead
6 [W,Q] = quadrature(noGP, ’TRIANGLE’ , 2) ;
7 % shape functions and derivatives at one GP, for example pt=Q(1 , :)
8 [N,dNdxi] = lagrange_basis(elemType, pt) ;

Listing D.2 Nodal quantities .

1 elements = zeros(elemCount,4) ; % element connectivity
2 nodes = zeros(nodeCount,2) ; % node coordinates
3 nmass = zeros(nodeCount,nodeCount) ; % lumped mass matrix
4 nacce = zeros(nodeCount,2) ; % nodal acceleration
5 nvelo = zeros(nodeCount,2) ; % nodal velocity vector
6 ndisp = zeros(nodeCount,2) ; % nodal displacement vector
7 niforce = zeros(nodeCount,2) ; % nodal internal force vector
8 neforce = zeros(nodeCount,2) ; % nodal external force vector

Appendix D: Explicit Lagrangian Finite Elements 421

Next, we discuss data structures to store nodal quantities that include node coordi-
nates nodes, element connectivity elements (for simplicity we deal with meshes
consisting of one element type only), accelerations, velocities, displacements, inter-
nal and external forces. The corresponding code is shown in Listing D.2.

Computation of the lumped mass matrix using the row-sum method is given in
Listing D.3.

Listing D.3 Computing the lumped mass matrix.

1 for e=1:elemCount
2 esctr = elements(e , :) ;
3 enode = nodes(esctr , :) ;
4 for p=1:length(W) % loop over Gauss point
5 pt = Q(p , :) ;
6 [N,dNdxi]= lagrange_basis(elemType, pt) ; % element shape functions
7 J0 = enode’∗dNdxi ; % element Jacobian matrix
8 detJ = det(J0) ;
9 mm = N ∗ N’ ∗ rho ∗ detJ ∗ W(p) ;

10 nmass(esctr , esctr) = nmass(esctr , esctr) + mm;
11 end
12 end
13 nmassd = 1./sum(nmass,1) ’ ; % already inversed

Listing D.4 presents the code to compute the internal force using a TL formula-
tion. To be concrete we use a Neo-Hookeanmaterial. Line 15 illustrates the assembly
of element quantities into global quantities. This assembly is also known as a scatter
operation. Line 3 is a typical gather operation–the element quantities are gathered
from the global quantities. Scatter and gather operations are exactly the same with
linear finite elements and the readers are referred to e.g. Hughes (1987), Belytschko
et al. (2000) for details. By replacing the nominal stress by the Cauchy stress one
obtains a UL formulation. Note that in a UL formulation we constantly update the
node coordinates (nodes). Listing D.5 presents the code to update velocities, dis-
placements and mesh (for UL only). Note that step 4 is to implement the leapfrog
method and step 10 is not carried out if a total Lagrangian formulation is adopted.

Listing D.4 Computing the internal force (specialized for Neo-Hookean materials).

1 for e=1:elemCount % loop over elements
2 esctr = elements(e , :) ;
3 enode = nodes(esctr , :) ;
4 ue = ndisp(esctr , :) ’ ;
5 for p=1:length(W) % loop over integration points
6 pt = Q(p , :) ;
7 [N,dNdxi]= lagrange_basis(elemType, pt) ; % element shape functions
8 J0 = enode’∗dNdxi ; % element Jacobian matrix
9 dNdx = dNdxi /J0; % equals B0^T

10 wt = W(p)∗det(J0) ;
11 F = identi ty + ue∗dNdx; % gradient deformation F
12 invF = inv(F) ; detF = det(F) ;
13 P = mu∗invF∗(F∗F’− identi ty) + lambda∗log(detF)∗ invF ;
14 % internal force
15 niforce (esctr , :) = niforce (esctr , :) + wt∗dNdx∗P;
16 % external force . . .
17 end
18 end

422 Appendix D: Explicit Lagrangian Finite Elements

Listing D.5 Updating velocities, displacements and mesh.

1 nforce = niforce + neforce ;
2 nacce(: ,1) = nforce (: ,1) .∗nmassd;
3 nacce(: ,2) = nforce (: ,2) .∗nmassd;
4 i f (istep==0), nacce = 0.5∗nacce; end
5 nvelo = nvelo + nacce∗dtime;
6 % boundary conditions
7 nvelo(bGrid . lNodes,1) = 0.;
8 deltaU = dtime∗nvelo ; % displacement increment
9 ndisp = ndisp + deltaU ; % displacement at the end of time step

10 nodes = nodes + deltaU ; % update mesh for UL
11 % advance to the next time step
12 t = t + dtime;

D.4 Examples

Herein we present some examples so that readers can verify their own implemen-
tations. We use the method of manufactured solutions presented in Sects. 9.2 and
9.2.2 to test the implementation and convergence of the UL/TL finite elements in
one (Sect.D.4.1) and two dimensions (Sect.D.4.2). Finally, we solve a problem that
involves large tensile stress (Sect.D.4.3). Some MPM variants cannot solve this
problem due to numerical fracture but the FEMworks well with even coarse meshes.

D.4.1 One Dimensional Convergence Test

As a test to verify the implementation of the total Lagrangian FEmethod, we consider
the one dimensional problem presented in Sect. 9.2.1 with the data: E = 107 Pa,
ν = 0, ρ = 1000 kg/m3. The maximum displacement amplitudeG takes two values:
G = 0.0001 m and G = 0.01 m that corresponds to small and large deformation
cases, respectively. Recall that we used a manufactured displacement field to obtain
a corresponding body force which is used in our FEM code to obtain the numerical
displacements uh(x, t). The space domain [0, 1] is discretized by two-noded linear
elements and a leapfrog time integration is used to advance solutions in time.

As the problem is time dependent there are different choices for the error norms.
Herein we use the maximum norm defined as

L∞ = max
0≤t≤T

||e(t)||L2
= max

t

(∫ 1

0

[
uex (x, t) − uh(x, t)

]2
dx

)1/2

(D.14)

which means that, for each time step a L2 error is computed and one takes the
maximum error; T is the simulation time which is 0.02 s. The L2 norm involves an

Appendix D: Explicit Lagrangian Finite Elements 423

Fig. D.1 Plot of L∞
displacement error norms
with respect to mesh
refinement for small and
large deformation with the
total Lagrangian FEM. The
same time step of 0.2h/c
was used

Element side
10-3 10-2 10-1 100

E
rr

or

10-8

10-7

10-6

10-5

10-4

10-3

small deformation
large deformation

2

Fig. D.2 Plot of L∞
displacement error norms
with respect to mesh
refinement for small and
large deformation with the
updated Lagrangian finite
elements. The same time
step of 0.2h/c was used

Element size
10-3 10-2 10-1 100

E
rr

or

10-10

10-8

10-6

10-4

10-2

G=0.0001
G=0.01
G=0.05

integral which is computed using the Gauss quadrature adopted in the computation
of the internal force.

The results are given in Fig.D.1 (the M-file for this test is fem/femTLMMS.m).
A time step Δt = 0.2h/c where h denotes the element size which is h = 1/2m with
m = 3, 4, 5, 6, 7 was used for both G. Optimal convergence rate of 2 for linear
elements was obtained. The results obtained with the updated Lagrangian FE code
are given in Fig.D.2 (the corresponding M-file is femULMMS.m).

424 Appendix D: Explicit Lagrangian Finite Elements

D.4.2 Two Dimensional Convergence Test

In this section, we consider the unit square problem of which the manufactured
solution was presented in Sect. 9.2.2. Recall that the manufactured displacement
field is assumed to be

u1(X, t) = G sin(πX) sin(cπ t)

u2(X, t) = G sin(πY) sin(cπ t + π)
(D.15)

where G is the maximum amplitude of the displacement; c = √
E/ρ0 and E denotes

the Young’s modulus. The period is thus given by T = 2π/cπ; X = (X,Y) denotes
the material coordinates i.e., coordinates in the reference configuration.

From Sect. 9.2.2, the body force is given by

b1(X, t) = π2u1(X, t)

ρ0

[
λ

F2
11

(1 − ln(F11F22)) + μ

(
1 + 1

F2
11

)
− E

]

b2(X, t) = π2u2(Y, t)

ρ0

[
λ

F2
22

(1 − ln(F11F22)) + μ

(
1 + 1

F2
22

)
− E

] (D.16)

And it is this body force to be used in a 2DTLFE code to determine the corresponding
numerical displacements. And the boundary conditions are

v1(0, y, t) = v1(1, y, t) = 0

v2(x, 0, t) = v2(x, 1, t) = 0
(D.17)

or in words, the normal components of the velocity are set to zeroes at the boundaries
of the square. Besides, one needs to enforce the initial velocity conditions.

Material data are E = 107 Pa, ν = 0.3, ρ = 1000 kg/m3. The results, obtained
with the TL formulation, are depicted in Fig.D.3 for two cases: G = 0.0001 m
and G = 0.05 m. Four meshes of 8 × 8, 16 × 16, 32 × 32 and 64 × 64 four-noded
quadrilateral elements are considered. Optimal convergence rate of 2 was obtained.
The M-file of this example is femTLMMS2D.m.

Similar results were obtained with updated Lagrangian finite element of which
theM-file is femULMMS2D.m. There is one thing that warrants a further discussion
when the MMS is used with an UL formulation. Recall that the manufactured body
force is a function of the material coordinates i.e., b(X, t). Therefore the external
force due to the MMS body force is computed in the initial configuration i.e., a TL
form for the body force is used in an UL code. For example the x-component of the
external force is computed as

fext1 =
∫

Ω0

ρ0Nb1(X, t)dΩ (D.18)

Appendix D: Explicit Lagrangian Finite Elements 425

Fig. D.3 Plot of L∞
displacement error norms
with respect to mesh
refinement for small and
large deformation with the
total Lagrangian finite
elements. The same time
step of 0.2h/c was used

Element size
10-2 10-1 100

E
rr

or

10-8

10-6

10-4

10-2

small deformation
large deformation

To this end we store the initial node coordinates in nodes0 and use it to compute
the external force. And nodes0 is also used to calculate the material coordinates X
of a Gauss point in the determination of the exact displacement solution uex(X, t).

D.4.3 Large Deformation Vibration of a Cantilever Beam

We consider yet another problem that involves large tensile stress which can reveals
shortcomings of a numerical method in handling numerical fracture. This problem is
a cantilever beamwhich is soft and subjected to a large gravity force; the tensile stress
at the top surface near the left end support can cause numerical fracture (Fig.D.4).
Sadeghirad et al. (2011) presented this example for the first time in theMPMliterature
but similar problems appeared earlier in the SPH literature.

Material (Neo-Hookean) data are E = 106 Pa, ν = 0.3, ρ = 1050 kg/m3. The
beam is discretized by 12 × 3 Q4 elements with 2 × 2 Gauss point quadrature rule.
Large deformation vibration of this highly compliant cantilever beamunder itsweight
is induced by suddenly applying gravity (g = 10 m/s2) at t = 0s. This example is
analyzed using constant time steps of 0.002s, which is about 0.2h/cwhere h denotes

Fig. D.4 Cantilever beam problem: a geometry and b numerical model. Length unit is mm and the
red point denotes the node of which the vertical displacement is recorded

426 Appendix D: Explicit Lagrangian Finite Elements

time
0 0.5 1 1.5 2 2.5 3

di
sp

la
ce

m
en

t

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

Fig. D.5 Cantilever beam problem: vertical displacement of the marked node in time

Fig. D.6 Cantilever beam problem: two simulation snapshots

the element size, and real-time simulation is T = 3 s. TheM-files are femULVibrat-
ingCantilever.m and femTLVibratingCantilever.m. Evolution of the displacement
of the marked point in time is given in Fig.D.5 whereas some simulation snapshots
are shown in Fig.D.6.

Appendix E
Implicit Lagrangian Finite Elements

E.1 Implicit Dynamics FEM

Since the MPM can be considered as a FEM with moving integration points, the
implicit dynamics formulation for the MPM can be obtained from the FEM formu-
lation with appropriate modifications. A general formulation of an implcit dynamics
ULFEM is first presented in Sect.E.1.1 and simplification to the case of linear elastic
materials is given in Sect.E.1.2. This treatment of linear materials will facilitate the
implementation of an implicit dynamics MPM formulation and makes the transition
to the general nonlinear case is more straightforward.

E.1.1 General Case

Wefirst recall the implicit dynamics finite element formulation following Belytschko
et al. (2000). Let’s denote a and d the nodal accelerations and displacements, respec-
tively; and f int the nodal internal force vector and fext the external force. The semi-
discrete equations that we need to solve is the second Newton’s law that reads

Mat+Δt = fext(dt+Δt) − f int(dt+Δt) (E.1)

where M is the consistent mass matrix which is written as

MI J = I
∫

Ω

ρNI NJdΩ (E.2)

and I is the identity matrix.
To solve Eq. (E.1) we first define the following residual

r(dt+Δt) ≡ Mat+Δt + f int(dt+Δt) − fext(dt+Δt) = 0 (E.3)

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Switzerland AG 2023
N. V. Phu et al., The Material Point Method, Scientific Computation,
https://doi.org/10.1007/978-3-031-24070-6

427

https://doi.org/10.1007/978-3-031-24070-6

428 Appendix E: Implicit Lagrangian Finite Elements

Defining the predictors as

d̃t+Δt = dt + Δtvt + (Δt)2

2
(1 − 2β)at

ṽt+Δt = vt + (1 − γ)Δtat
(E.4)

Then, the displacement and velocity at the end of the time step t + Δt are computed
by

dt+Δt = d̃t+Δt + β(Δt)2at+Δt

vt+Δt = ṽt+Δt + γΔtat+Δt
(E.5)

Note that substituting Eq. (E.4) into the above results in the standard form of the
Newmark integration scheme. The updated acceleration can be computed using Eq.
(E.5) as

at+Δt = 1

βΔt2
(dt+Δt − d̃t+Δt) (E.6)

Substituting Eq. (E.6) into Eq. (E.3) gives the following equationwhich is a nonlinear
algebraic system of equations in the nodal displacement dt+Δt

r = 1

βΔt2
M(dt+Δt − d̃t+Δt) + f int(dt+Δt) − fext(dt+Δt) = 0 (E.7)

Solving this equation using the Newton-Raphson method yields dt+Δt . After that,
the acceleration at+Δt is determined by Eq. (E.6). Finally, the velocity vt+Δt is deter-
mined through Eq. (E.5). The undamped, unconditionally stable, and second-order
in time trapezoidal integration scheme is obtained with β = 0.25 and γ = 0.5.

According to the iterative Newton-Raphson method, at time step t and iteration
k + 1, the residual r can be approximated as

r(dt+Δt
k+1) � r(dt+Δt

k) + ∂r
∂d

∣∣∣
dt+Δt
k

Δdt+Δt
k+1 = 0 (E.8)

Hence we obtain the linearized model which allows to compute the displacement
increments Δdt+Δt

k+1

KT(dt+Δt
k)Δdt+Δt

k+1 = −r(dt+Δt
k) (E.9)

where

KT = 1

βΔt2
M + ∂f int

∂d
− ∂fext

∂d
≡ 1

βΔt2
M + Kmat + Kgeo (E.10)

This matrix is called the finite element Jacobian of the system of equation or most
often the tangent stiffness matrix. Expression of the material tangent Kmat and geo-

Appendix E: Implicit Lagrangian Finite Elements 429

metric tangentKgeo will be given shortly. Note that, for simplicity, we have assumed
that the external force is independent of the displacements. If this is not the case,
there would be another term in the tangent stiffness matrix.

Having obtained the displacement increment, the displacements are updated as
follows

dt+Δt
k+1 = dt+Δt

k + Δdt+Δt
k+1 (E.11)

and this process is repeated until a predefined convergence criterion is satisfied.
Algorithm 28 presents a flowchart for implicit transient nonlinear dynamics using

the updated Lagrangian formulation. Except line 1, the flowchart corresponds to the
iterative solution phase to advance the solution in time from t to t + Δt . Line 1 was
introduced to emphasize that the FE mass matrix is constant and only needs to be
computed once in the beginning of the simulation. This is different from the MPM.
When updating the nodal displacements (line 12) the mesh is updated as well. Note
that we used, for illustrative purpose only, a simple convergence criterion based on
the magnitude of the displacement increments (line 13). Readers are referred to the
textbook Belytschko et al. (2000) for a comprehensive discussion on this. Finally,
note that this flowchart is by no means unique. Different implementations exist.

Algorithm 28 Implicit dynamics FEM (Updated Lagrangian) with Newmark inte-
gration scheme
1: Form the (constant) mass matrixM
2: Initial value for displacements: dt+Δt = dt

3: Compute d̃t+Δt = dt + Δtvt + 0.5Δt2(1 − 2β)at

4: while err > ε do
5: Compute at+Δt = 1/(βΔt2)(dt+Δt − d̃t+Δt)

6: Compute K(dt+Δt) = 1/(βΔt2)M + Kmat + Kgeo

7: Compute stress σ (dt+Δt) and material tangent D at Gauss points
8: Compute f int(dt+Δt) using σ (dt+Δt)

9: Compute r = Mat+Δt + f int(dt+Δt) − fext(dt+Δt)

10: Modify K for Dirichlet boundary conditions
11: Solve for displacement increment Δd = −K−1r
12: Update displacements dt+Δt = dt+Δt + Δd
13: Compute error err = ||Δd||
14: end while
15: Compute vt+Δt = vt + (1 − γ)Δtat + γΔtat+Δt

16: Compute at+Δt = 1/(βΔt2)(dt+Δt − d̃t+Δt)

17: Advance to next time step t = t + Δt

The internal force vector, the material tangent and geometric tangent stiffness
matrices are given by Belytschko et al. (2000)

(f intI)t+Δt
k =

∫
Ω t+Δt

k

BT
I σdΩ

(Kmat
I J)t+Δt

k =
∫

Ω t+Δt
k

BT
IDBJdΩ

(Kgeo
I J)t+Δt

k = I

(∫
Ω t+Δt

k

BT
I [σ]BJdΩ

)
(E.12)

430 Appendix E: Implicit Lagrangian Finite Elements

where I is the identity matrix of dimension 3 × 3 (in 3D) and the strain-displacement
matrices are given by

BI =

⎡
⎢⎢⎢⎢⎢⎢⎣

NI,x 0 0
0 NI,y 0
0 0 NI,z

0 NI,y NI,z

NI,x 0 NI,x

NI,y NI,x 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, B I = [
NI,x NI,y NI,z

]T
(E.13)

Implementation of the material tangent stiffness is identical to linear FEM while
the geometric tangent stiffness requires a further elaboration. We use a concrete
example of constant strain elements to illustrate the implementation. The geometric
tangent stiffness of a three-node triangular element is given by

Kgeo =

⎡
⎢⎢⎢⎢⎢⎢⎣

H11 0 H12 0 H13 0
0 H11 0 H12 0 H13

H21 0 H22 0 H23 0
0 H21 0 H22 0 H23

H31 0 H32 0 H33 0
0 H31 0 H32 0 H33

⎤
⎥⎥⎥⎥⎥⎥⎦

(E.14)

where H, a 3 × 3 matrix, is given by

H =
∫

Ω

⎡
⎣N1,x N1,y

N2,x N2,y

N3,x N3,y

⎤
⎦ [σ]

[
N1,x N2,x N3,x

N1,y N2,y N3,y

]
dΩ (E.15)

which is computed using a Gauss quadrature scheme and components of H are
distributed properly to determine Kgeo via Eq. (E.14). The provided development is
sufficient for implementing other 2D elements.

E.1.2 Linear Case

For the case of linear elastic materials, the internal force is simply the multiplication
of Kmat and dt+Δt . Thus, Eq. (E.7) becomes

1

βΔt2
M(dt+Δt − d̃t+Δt) + Kmatdt+Δt = fext (E.16)

or in the following simpler form

(
1

βΔt2
M + Kmat

)
dt+Δt = fext + 1

βΔt2
Md̃t+Δt (E.17)

Appendix E: Implicit Lagrangian Finite Elements 431

which can be solved for the updated nodal displacements. Next one computes the
acceleration at+Δt by Eq. (E.6) and finally, the velocity vt+Δt is determined through
Eq. (E.5) which completes the solution phase.

The procedure given in Algorithm 28 is simplified to the one given in Algorithm
29 which, except line 1, corresponds to the solution phase for the time step t to
t + Δt . It should be emphasized that in a general implementation one would store
both the old and new nodal quantities, e.g. at is the old accelerations (at the end of the
previous step or the beginning of the current step) and at+Δt for the new accelerations
at the end of the time step. At the end of a time step the old values and the new values
are swapped. One reason of this implementation is to allow to resolve the current
time step due to configuration changes caused by e.g. new crack initiation.

Algorithm 29 Implicit linear dynamics FEM with Newmark integration scheme
1: Form the (constant) mass matrixM
2: Advance from t to t + Δt
3: Compute d̃t+Δt = dt + Δtvt + 0.5Δt2(1 − 2β)at

4: Compute Kmat

5: Compute K = 1/(βΔt2)M + Kmat

6: Compute RHS vector f = fext + 1/(βΔt2)Md̃t+Δt

7: Modify K for Dirichlet boundary conditions
8: Solve for updated displacement dt+Δt = K−1f
9: Compute at+Δt = 1/(βΔt2)(dt+Δt − d̃t+Δt)

10: Compute vt+Δt = vt + (1 − γ)Δtat + γΔtat+Δt

11: end
12: Advance to next time step t = t + Δt
13: Swap acceleration at = at+Δt

14: end

E.2 Implementation

We present herein the computer implementation of the implicit UL finite element
formulation for solid mechanics. Data structures for nodal quantities (accelerations,
velocities and displacements) are given in Listing E.1. In contrast to explicit FEs, the
nodal quantities are stored as column vectors (not matrices). But this decision is just
for implementation convenience. Code of the processing step is given in Listing E.2.
To simplify the argument list of the two functions computeTangentMatrix
and computeExternalForce we store the mesh (node coordinates, element
connectivity etc..) in variable mesh—a structure. We refer to the source code for
details on these two functions.

432 Appendix E: Implicit Lagrangian Finite Elements

Listing E.1 Nodal quantities.

1 ndof = 2;
2 dofCount = nodeCount∗ndof ;
3 % nodal accelerations , velocities , displacements at time ’ t ’
4 nacce0 = zeros(dofCount,1) ; % nodal acceleration
5 nvelo0 = zeros(dofCount,1) ; % nodal velocity vector
6 ndisp0 = zeros(dofCount,1) ; % nodal displacement vector
7 % nodal accelerations , velocities , displacements at time ’ t+dtime ’
8 nacce = zeros(dofCount,1) ; % nodal acceleration
9 nvelo = zeros(dofCount,1) ; % nodal velocity vector

10 ndisp = zeros(dofCount,1) ; % nodal displacement vector
11 % consistent mass matrix
12 massMat = zeros(dofCount,dofCount) ; % consistent mass matrix

Listing E.2 Processing step with Newmark method and Newton-Raphson method.

1 while (t < time)
2 dti lde = ndisp + dtime∗nvelo + 0.5∗dtime2∗(1−2∗beta)∗nacce;
3 % Newton−Raphson iterations to solve for d(t+dtime)
4 error = 1;
5 while error > to l % to l : user−selected value
6 i i t e r = i i t e r + 1;
7 nacce = 1/(beta∗dtime2)∗(ndisp−dti lde) ;
8 % compute the tangent and internal force
9 [geoMat, stiffMat , f i n t] = computeTangentMatrix(mesh,material , ndisp) ;

10 % compute the external force
11 [fext] = computeExternalForce(mesh) ;
12 % modified stiffness matrix
13 K = 1/(beta∗dtime2)∗massMat + stif fMat + geoMat;
14 % Residual vector
15 res = massMat∗nacce + f i n t − fext ;
16 % Boundary conditions
17 [K, res] = applyDirichletBCs(K, res ,udofs ,vdofs ,uFixed,vFixed) ;
18 % Solving for displacement increment
19 ddu = −K\ res ;
20 % Update displacements and do not forget to update the mesh
21 ndisp = ndisp + ddu;
22 mesh.node = mesh.node + [ddu(1:2:dofCount) ddu(2:2:dofCount)] ;
23 error = norm(ddu) ; % convergence cri ter ion
24 end
25 % update acceleration / velocity
26 nacce = 1/(beta∗dtime2)∗(ndisp−dti lde) ;
27 nvelo = nvelo0 + (1−gamma)∗dtime∗nacce0 + gamma∗dtime∗nacce;
28 % advance to the next time step
29 t = t + dtime; istep = istep + 1;
30 % swap old /new quantities
31 nacce0 = nacce;
32 nvelo0 = nvelo ;
33 ndisp0 = ndisp ;
34 end

Appendix E: Implicit Lagrangian Finite Elements 433

Fig. E.1 Cantilever beam
problem: vertical
displacement of the marked
node in time with implicit
method (Δt = 2h/c) and
explicit method
(Δt = 0.5h/c)

time
0 0.5 1 1.5 2 2.5

di
sp

la
ce

m
en

t
-3

-2.5

-2

-1.5

-1

-0.5

0 Implicit UL
Explicit UL

E.3 Examples

We reconsider the compliant cantilever beam studied in Sect.D.4.3 using explicit
finite element methods. The M-file is femImpVibratingCantilever.m. Evolution of
the displacement of the marked point in time is given in Fig.E.1, which verifies the
implementation of the implicit ULFEM.

Appendix F
Implementing the Material Point Method Using
Julia

Many researchers, including us, today do their day-to-day work in dynamic lan-
guages such as Matlab, Python, Mathmematica. The reasons are several: (i)
these languages are easy to use, (ii) they provide a friendly user interface that inte-
grates computing and graphics into one single platform, (iii) they are ideal for rapid
prototyping and (iv) they can be used perfectly for educational purposes. However,
the resulting codes are usually slow and not suitable for computationally intensive
problems; problems that are suitable for static languages such as Fortran and
C/C++. To solve this problem, one usually resorts to the two language programming
paradigm in which a high level programming language is used for certain portion of
the code and a low level language, e.g. Fortran or C++, is used for another portion
of the code: the hotspot.

The ‘ideal’ programming language, from the point of view of a researcher, is the
one that is as easy to use as Matlab/Python and as fast as Fortran/C++ so that
time would be spent on testing new scientific ideas rather than on studying difficult
programming topics and code optimization techniques. This ‘ideal’ programming
language would allow researchers to not only do prototypes but also solve their
large-scale models within the same language, instead of resorting to two language
solutions when performance is needed. In the search for such a language, Julia
was created in 2012 (Bezanson et al. 2012, 2014). Julia is designed to be easy and
fast thanks to the LLVM-based just-in-time (JIT) compilation (Lattner and A. 2004).
In other words, with Julia, one can have machine performance without sacrificing
human convenience (Bezanson et al. 2012).

Sinaie et al. (2017) programmed a (UL)MPM code written in Julia to verify
the efficiency claims of the Julia community. They showed that a quick Julia
implementation was eight times faster than the Matlab code presented in Chap. 6.
That MPM code written in Julia 0.7.0 is, however, not compatible to the current
version, at the time of writing this book, of Julia (Julia 1.7.2).

The aim of this appendix are multi-fold. First, we re-write that code using Julia
1.7.2. Second, we program another code which is more efficient and general than
Sinaie’s code; it also supports the GPIC. We verify its efficiency compared with our

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Switzerland AG 2023
N. V. Phu et al., The Material Point Method, Scientific Computation,
https://doi.org/10.1007/978-3-031-24070-6

435

https://doi.org/10.1007/978-3-031-24070-6

436 Appendix F: Implementing the Material Point Method Using Julia

Matlab code and Karamelo, a C++ code. Third, this appendix serves as a concise
introduction to Julia in the context of computational mechanics. We refer to Xiao
et al. (2021), Vigliotti and Auricchio (2021) for the use of the Julia language in
computational mechanics.

We start with a short presentation of Julia in Sect. F.1. We did not attempt
to be exhaustive and refer to the documentation of Julia for detail. We focus on
Julia features required for the implementation of an MPM code. Then, we present
our revised MPM code in Sect. F.2. This code is 5× faster than the Matlab code
described in Sect. 6. Next, a much more efficient code (15× faster than the old code
or 75× faster than the Matlab code) is described in Sect. F.3. Yet, this code is still
slower than Karamelo. Therefore, an optimized code is given in Sect. F.4.

By presenting various versions of the code, we demonstrate the common prac-
tice of writing codes using Julia: a program is first quickly implemented sim-
ilar to Matlab/Python. Next, performance is examined and modifications are
made to have a really fast code. These codes are available at https://github.com/
vinhphunguyen/jump. Note that we do not discuss parallel computing in this
appendix. And our Julia codes only implement the ULMPM (with hat, quadratic
and cubic B-splines weighting functions) and GPIC. In other words, the codes do
not support the TLMPM.

F.1 A Short Introduction to Julia

We begin this introduction with installation and code editing in Sect.F.1.1. Next,
we discuss the comparison between for-loops and vectorized operators (Sect. F.1.2).
We then describe how a new type can be defined in Julia (Sect. F.1.3). Arrays
are discussed in Sect. F.1.4, sets and dictionaries in Appendix F.1.5 and memory
allocation in Sect. F.1.6. Next, we present types and multiple dispatch—a key feature
of Julia in Sect. F.1.7. Type stability is treated in Sect. F.1.8. Modules, a way to
avoid name collision in Julia, are treated in Sect. F.1.9.

F.1.1 Julia: Installation and Code Editor

Julia can be downloaded for free, under theMIT license, from the web page http://
julialang.org/downloads. There are a couple of ways to interact with Julia. First,
Julia comes with a full-featured interactive command-line REPL (read-eval-print
loop) built into the julia executable (Fig.F.1). If an IDE (integrated development
environment) is preferred, there is Juno at http://junolab.org, see Fig.F.2. A good
document on how to get Juno and Atom is given at https://techytok.com/atom-and-
juno-setup-for-julia/. Alternatively, Julia can be launched from a web browser
using a Jupyter notebook, andListing F.1 presents how to install Jupyterwith Julia.

https://github.com/vinhphunguyen/jump
https://github.com/vinhphunguyen/jump
http://julialang.org/downloads
http://julialang.org/downloads
http://junolab.org
https://techytok.com/atom-and-juno-setup-for-julia/
https://techytok.com/atom-and-juno-setup-for-julia/

Appendix F: Implementing the Material Point Method Using Julia 437

Fig. F.1 Julia’s command-line REPL (read-eval-print loop). We also show commands to run
a certain Julia script. Alternatively, a script can be run directly in a terminal by tying: julia
–optimize=3 script-name.jl. To remove Julia, rm -rf /.julia/

Fig. F.2 Juno IDE atom

F.1.2 Using ‘for’ Loops Versus Vectorization

Performing a fixed set of operations on large arrays of data (consisting of nodal data
and material point data) encompasses a significant part of an MPM implementation.
In Julia, similar to Matlab, such operations can be carried out using either for-
loops or vectorized operators. While vectorized operators are efficient in Matlab,
for-loops tend to be faster than vectorized operators inJulia. However, this depends
on how the for-loop is implemented.

To check the performance of for-loops versus vectorized operators, three large
arrays are created and assigned with initial values (Listing F.2). The initial values
assigned to the arrays are arbitrary. Three functions in which a summation is per-
formed on the first two arrays and assigned to the third array are coded (Listing F.3).
A simple summation has been selected, so that the run time is more representative
of the iterations, rather than the calculations. Each function is iterated 1000 times,
whereby the time duration is monitored using the @time function (Listing F.4).

438 Appendix F: Implementing the Material Point Method Using Julia

Table F.1 Performance comparison of for-loops against vectorized operators on large data arrays
in Julia. Results obtained with single thread on an Intel Core i7-6700 CPU with a RAM of 16
GB

Array size Type Iterations/Second

i-j loop j-i loop Vectorized

106 Real 2.70 – 2.52

106 Float64 668.90 – 293.00

106 × 10 Float64 33.39 63.29 38.05

10 × 106 Float64 9.17 35.57 32.21

The performance is evaluated in terms of “Iterations/run-time second” i.e., the
more iterations per second, the more efficient the code is. The first observation made
by these results is the poor performance of abstract data types. Although Julia
allows the use of abstract data types such as Real, which has attractive design
implication towards polymorphism, it is always best to declare variables using con-
crete types when performance is an issue. This is readily seen by comparing the first
two rows of TableF.1. As a result, the Float64 concrete data type is used for our
implementation. Actually, for things that hold data, such as arrays, dictionaries, or
fields in composite types, it is best to explicitly define the type that it will hold.

FromTableF.1, in Julia, for-loops can perform better than vectorized operators.
For one-dimensional arrays, the speed at which for loops are carried out is more than
twice the speed of vectorized operators. However, for two-dimensional arrays, to
have noticeable advantage over

Listing F.1 Installation of IJulia and Jupyter.

1 julia> using IJulia
2 julia> notebook()
3 install Jupyter via conda, y/n? [y]: y

Listing F.2 Creating three two dimensional arrays of size (10, 1000000) of
Float64. Note that there is no semicolon ‘;’ at the end of a statement.

1 using Printf # this is to use package Printf
2 println("Creating arrays...")
3 array1 = Array{Float64}(undef,10,1000000) # this array is not initialized
4 array2 = Array{Float64}(undef,10,1000000)
5 array3 = Array{Float64}(undef,10,1000000)
6 # Arrays index starts from 1
7 for i = 1:1:size(array1,1)
8 for j = 1:1:size(array1,2)
9 array1[i,j] = 1.0*i

10 array2[i,j] = -1.0*i
11 array3[i,j] = 0
12 end
13 end
14 println("...done\n")

vectorized operators, nested for-loops have to be consistent with the column-major
order of which data is stored inmemory (similar toMatlab and Fortran). In other
words, the inner loop should iterate over the first index of the two-dimensional array.

Appendix F: Implementing the Material Point Method Using Julia 439

Such order is termed as ‘j-i loop’ in Listing F.3 and TableF.1. The poor performance
of vectorized operators is due to array allocations which are expensive.

All the codes presented in Listing F.2–F.4 are put in a script file Main_Vec.jl.
By convention, Julia scripts have names that end with .jl. Launch Julia, and
type the following in the REPL to run this script

Listing F.3 Three sum functions. Note that there is no space between the function name
and the argument list. Each of the sum operation is called 1000 times. Function parameters
are passed by reference; if a function modifies an array, the changes will be visible in the
caller. There is no need to annotate the type of arguments in Julia functions, unless if needed.

1 function sum1(r, x1, x2) # vectorized version
2 #function sum1(r::Array{Float64}, x1, x2) # with type declaration
3 for count=1:iterations
4 r = x1 + x2
5 end
6 end
7 function sum2(r, x1, x2) # loop version i-j
8 ni = size(x1,1)
9 nj = size(x2,2)

10 for count=1:iterations
11 for i = 1:ni
12 for j = 1:nj
13 r[i,j] = x1[i,j] + x2[i,j]
14 end
15 end
16 end
17 end
18 function sum3(r, x1, x2) # loop version j-i
19 for count=1:iterations
20 for j = 1:nj
21 for i = 1:ni
22 r[i,j] = x1[i,j] + x2[i,j]
23 end
24 end
25 end
26 end

Listing F.4 Measuring the time of three functions.

1 @time sum1(array3, array1, array2)
2 @time sum2(array3, array1, array2)
3 @time sum3(array3, array1, array2)

julia> cd("juMP/SpeedTest/")

julia> include("Main_Vec.jl")

Albeit irrelevant here, Julia is very well suited for non-vectorized problems
such as those arising from stochastic processes modeled by Monte Carlo methods.

F.1.3 Composite Types Versus Arrays

A composite type is a collection of named fields, an instance of which can be treated
as a single value. In many languages, composite types are the only kind of user-
defined type. In mainstream object oriented languages, such as C++, Java, and
Python, composite types also have named functions associated with them. How-
ever, in Julia, functions are not bundled with the objects they operate on. Thus, a

440 Appendix F: Implementing the Material Point Method Using Julia

composite type is similar to a struct in C and can be thought of as roughly equivalent
to a class without behavior in object-oriented languages.

Given the common use of composite types, the performance of an array of such
types are compared to the performance of multi-dimensional arrays.

First, we define a new type named testDataStructure (lines 4–9 in Listing
F.5). Then, we create three large arrays containing one million
testDataStructure (lines 7–9). Finally, we assign concrete values to these
three arrays. To see built in types in Julia, in the REPL, type: typeof(3),
typeof(3.0), you will get Int64 and Float64, respectively. Note that, Julia’s
standard numeric types e.g. Float64, Int64, etc. are concrete subtypes of the
abstract type Number. We refer to Sect. F.1.7 for a discussion on abstract types and
subtypes.

Listing F.5 Definition of a new type named testDataStructure,
and creating three arrays of this type and initializing them. ’::’ is the
type-assertion operator; it specifies a concrete type for any variables.

1 #= Define a type ‘testDataStructure’
2 with one member ‘vMember’ which is an array of 100 Float64
3 =#
4 struct testDataStructure
5 vMember::Array{Float64}
6 function testDataStructure() # this is an inner constructor
7 new(zeros(100))
8 end
9 end

10 thisDataStructure01 = Array{testDataStructure}(undef,1000000)
11 thisDataStructure02 = Array{testDataStructure}(undef,1000000)
12 thisDataStructure03 = Array{testDataStructure}(undef,1000000)
13 for i = 1:1000000
14 thisDataStructure01[i] = testDataStructure()
15 thisDataStructure02[i] = testDataStructure()
16 thisDataStructure03[i] = testDataStructure()
17 for j = 1:100
18 thisDataStructure01[i].vMember[j] = 1.0*i
19 thisDataStructure02[i].vMember[j] = -1.0*i
20 thisDataStructure03[i].vMember[j] = 0
21 end
22 end

Next, we define three methods to access data members shown in Listing F.6. Note
that, based on previous finding, for-loops are used over vectorized operators. The
results, given in TableF.2, indicate a consistent performance advantage of multi-
dimensional arrays over composite types. However, TableF.2 also demonstrates that
removing redundant access calls to the members of a composite type improves the
performance of operations on composite types (compare column 5 with columns 3
and 4).

Listing F.6 Three methods to access data members of a composite type.

1 function fun1(x::Array{testDataStructure},
2 y::Array{testDataStructure},
3 z::Array{testDataStructure})
4 for count in 1:1000
5 for i = 1:1000000
6 for j = 1:100
7 z[i].vMember[j] = x[i].vMember[j] + y[i].vMember[j]
8 end
9 end

10 end
11 end
12 function fun2(x::Array{testDataStructure},
13 y::Array{testDataStructure},

Appendix F: Implementing the Material Point Method Using Julia 441

Table F.2 Performance comparison of accessing elements of an array as opposed to members of
a composite type. Methods 1–3 refer to different methods of access specified in Listing F.6

Array size Iterations/Second

Array Method 1 Method 2 Method 3

106 × 10 58.51 17.85 22.15 25.36

106 × 100 5.77 1.88 2.50 3.01

14 z::Array{testDataStructure})
15 for count in 1:1000
16 for i = 1:1000000
17 this01 = x[i]
18 this02 = y[i]
19 this03 = z[i]
20 for j = 1:100
21 this03.vMember[j] = this01.vMember[j] + this02.vMember[j]
22 end
23 end
24 end
25 end
26 function fun3(x::Array{testDataStructure},
27 y::Array{testDataStructure},
28 z::Array{testDataStructure})
29 for count in 1:1000
30 for i = 1:1000000
31 this01 = x[i].vMember
32 this02 = y[i].vMember
33 this03 = z[i].vMember
34 for j = 1:100
35 this03[j] = this01[j] + this02[j]
36 end
37 end
38 end
39 end

While the performance advantage ofmulti-dimensional arrays as opposed to com-
posite types is significant enough to be taken advantage of, one also has to consider
the benefits derived from composite types in terms of code organization and read-
ability. Taking this into account, composite types are used the code presented in
Appendix F.2.

Funtions. Julia function arguments follow a convention sometimes called “pass-
by-reference”, which means that values are not copied when they are passed to
functions. Function arguments themselves act as new variable bindings (new loca-
tions that can refer to values), but the values they refer to are identical to the passed
values. Modifications to mutable values (such as Arrays) made within a function will
be visible to the caller. Listing F.7 gives a summary of Julia functions.

Listing F.7 Functions in Julia.

1 # one-line function
2 play(::Type{Rock}, ::Type{Paper}) = "Paper wins"
3 # full form
4 function play(a::Type{Rock}, b::Type{Paper})
5 return "Paper wins"
6 end
7 # anonymous function
8 data["pressure"] = [(1,"force",t -> 400*exp(-10000*t))]
9 # modify float inputs by returning a tuple

10 # a tuple = immutable fixed-length container that can hold any values

442 Appendix F: Implementing the Material Point Method Using Julia

11 function func(damage,damage_init,...)
12 damage += 1.
13 damage_init += 1.
14 return (damage,damage_init)
15 end
16 # function with keyword arguments
17 function plot(x, y; style="solid", width4=1., color="black") #=> plot(x,y,width=2)
18 # types of keyword arguments can be made explicit
19 function plot(x, y; style="solid", width::Float64=1., color="black")

F.1.4 Arrays

Multi-dimensional arrays are popular in engineering and sciences. This section
briefly presents their use in Julia. See Listing F.8 for many ways of array cre-
ations and Listing F.9 for common operations on them. In Julia, array slices create
a copy of the slice, and this can be avoided by using the macro @view (see line 14
in Listing F.9).

Listing F.8 Arrays in Julia.

1 using LinearAlgebra
2 using StaticArrays
3 # declare one vector and one 2D matrix of known dimensions
4 v1 = Array{Float64,1}(undef,3) # un-initialized array of 3 Float64
5 m1 = Array{Float64,2}(undef,2,3) # un-initialized matrix of 2x3 Float64
6 # initialize the vector v1
7 [v1[i] = 2*i for i=1:3] # using comprehension
8 for i = 1: 3 v1[i] = 2*i end # using for-loop
9 # declare one vector with unknown length

10 v2 = Array{Float64,1}
11 # fill v2
12 v2 = fill(0,3) # => v2= [3 3 3]
13 # declare one vector with 0 element, then add numbers to it
14 v3 = Array{Float64,1}()
15 push!(v3,1.)
16 # declare arrays directly
17 v4 = [1. 2. 3.] # => 2D array: 1x3 Array{Float64,2}
18 v5 = [1., 2., 3.] # => 1D array: 3-element Array{Float64,1}
19 a = [1. 2.;3. 4.] #
20 a6 = zeros(Int64, 5, 4) # => 2D array: 5x4 of 0 (int)
21 a7 = Array{Float64}(undef, 0, 2) # 0 row and 2 cols
22 a7 = [a7;[1 2]]

Elementwise operations. Julia supports methods for carrying out an operation
on every element of a vector. To do this we add a period or dot before the operator.

Listing F.9 Some remarks on array operations.

1 a = [1 2 3]
2 a = a + 1 # ERROR: MethodError: no method matching +(::Array{Int64,2}, ::Int64)
3 # we need to use ’.+‘’ to get element-wise addition
4 a .= a .+ 1 # .= : in-place assignment operator
5 a .+= 1 # shorter notation of a .= a .+ 1
6 x = zeros(3) # x = [0.,0.,0.]
7 y = x # b points to x, change b, change x!!!
8 y[1] = 1. # x = y = [1.0,0.,0.]
9 meds = ["FEM","MPM","SPH"]

10 for m in meds
11 println(m) # "FEM", then "MPM", then "SPH"
12 end
13 b = a[1:2] # slicing makes copy, b[1] = 10 => a=[10,2,3]
14 b = @view a[1:2] # using view, now b is just another name for a[1:2]
15 map(x-> x/sum(vector),vector)

Appendix F: Implementing the Material Point Method Using Julia 443

F.1.5 Sets and Dictionaries

Sets and dictionaries are common datastructures. The former are best to store arrays
of unique items. We demonstrate their basic usage in Listing F.10.

Listing F.10 Sets and dictionaries in Julia.

1 set1 = Set()
2 push!(1,set1)
3 push!(2,set1)
4 push!(1,set1) # => set1 = [1,2]
5 Dict([("A", 1), ("B", 2)]) # Dict{String,Int64} with 2 entries: "B" => 2, "A" => 1
6 Dict("A"=>1, "B"=>2)
7 mutable struct FEMesh
8 nodes :: Dict{Int, Vector{Float64}} # node Id => coords
9 node_sets :: Dict{String, Set{Int}}

10 elements :: Dict{Int, Vector{Int}} # elem id => connectivity
11 element_sets :: Dict{String, Set{Int}}
12 end
13 mesh = FEMesh()
14 mesh.nodes[nid] = ncoords
15 mesh.node_sets["boundary1"] = [1,5,7]
16 if haskey(mesh.element_sets, "force") end

F.1.6 Memory Allocation

Even though Julia code can be as fast as C/Fortran code, you have to make
sure the least amount of memory allocation. There exists packages to track allocation
such asBenchmarkTools and TimerOutputs. In Listing F.11, we demonstrate
the usage of the former package and illustrate memory allocation occurs in common
matrix operations. Use of TimerOutputs is shown in Listing F.12 and Fig.F.3.
When unexpected allocation is present, one can use the macro @code_warntype
to examine the code (see Sect. F.1.8). When looking at the output of this macro, pay
attention to things in red such as Any, Union etc.

Listing F.11 Memory allocations arise when array operations are not properly used.

1 a = ones(10000)
2 b = ones(10000)
3 c = ones(10000)
4 function func1(a,b,c)
5 a .= b .+ 2 .* c
6 end
7 function func2(a,b,c)
8 a = b + 2*c
9 end

10 @btime func1(a,b,c) # => 27.957 ns (0 allocations: 0 bytes)
11 @btime func2(a,b,c) # => 108.846 ns (2 allocations: 224 bytes)

Listing F.12 Usage of package TimerOutputs.

1 reset_timer!()
2 @time solve_explicit_dynamics_2D(grid,solids,basis,algo2,output2,fix,Tf,dtime)
3 print_timer()

444 Appendix F: Implementing the Material Point Method Using Julia

Fig. F.3 Excellent output of the time andmemory allocation reported by packageTimerOutputs

F.1.7 Types and Multiple Dispatch

For many people, the reason why they use Julia is “multiple dispatch”. Multiple
dispatch is a feature where different code is called by a function depending on the
types of the arguments. Combined with the JIT (Just-in-time compiler), Julia will
automatically compile specialized code, depending on the types of the arguments you
give it. For instance, when the user writes a generic code, f(x, y) = x + y,
without annotating the types of x and y, Julia just-in-time compiler will generate
efficient and specialized codes for any given pair of x and y whose addition is well
defined.

To demonstrate this concept, we borrow the implementation of the game ‘rock-
paper-scissors’ by Mose Giordano at https://giordano.github.io/blog/2017-11-03-
rock-paper-scissors/. The code is shown inListingF.13. First, an abstract typeShape
is defined; you cannot use this abstract type to define variables. Then, three concrete
sub-types are defined: Rock, Paper and Scissors. After that, three methods
(or functions) are defined: they have the same name play, but their arguments are
different.

Listing F.13 Abstract type and sub-types.

1 abstract type Shape end
2
3 struct Rock <: Shape end
4 struct Paper <: Shape end
5 struct Scissors<: Shape end
6 # methods or functions on these types
7 play(::Type{Rock}, ::Type{Paper}) = "Paper wins"
8 play(::Type{Rock}, ::Type{Scissors}) = "Rock wins"
9 play(::Type{Paper},::Type{Scissors}) = "Scissors wins"

10 play(::Type{T}, ::Type{T}) where (T<:Shape) = "Tie"
11 # Note that we did not define play(Paper,Rock) or play(Scissors,Rock)
12 play(a::Type{<:Shape},b::Type{<:Shape}) = play(b,a)
13 # Now, start playing
14 play(Scissors,Paper) # => "Scissors wins"

https://giordano.github.io/blog/2017-11-03-rock-paper-scissors/
https://giordano.github.io/blog/2017-11-03-rock-paper-scissors/

Appendix F: Implementing the Material Point Method Using Julia 445

Instead of writing explicit functions for the cases of a tie, line 10 shows a generic
code with a parametrized argument T. The play function as defined above is called
a one-line function, its full form is given in Listing F.7, which is more verbose. The
primary use for anonymous functions is passing them to functions which take other
functions as arguments. A classic example is map, which applies a function to each
value of an array and returns a new array containing the resulting values.

F.1.8 Type Stability

Julia’s main appeal is speed. But achieving peak performance in Julia requires
that programmers understand a few subtle concepts that are generally unfamiliar to
users of weakly typed languages (e.g. Python or Matlab).

One particularly subtle performance pitfall is the need to write type-stable code.
Code is said to be type-stable if the type of every variable does not vary over time.
To clarify this idea, consider the following function:

julia> function foo(x)

x += 1.

end

where the type of x is not specified. Julia generates a code for x = 1, and using
the macro @code_warntype, we will see that

julia> @code_warntype foo(1)

Variables

#self#::Core.Compiler.Const(foo, false)

x@_2::Int64

x@_3::Union{Float64, Int64}

That means that the type of x was changed from integer to float; type instability has
occurred. Similarly, for x = 1.0, no type instability occurs:

julia> @code_warntype foo(1.)

Variables

#self#::Core.Compiler.Const(foo, false)

x@_2::Float64

x@_3::Float64

446 Appendix F: Implementing the Material Point Method Using Julia

F.1.9 Modules

To demonstrate how to create a module, we define a module named MyModulewith
one type named MyStruct and one function foo. They are exported so that they
can be used externally (Listing F.14).

Listing F.14 Example of writing a module.

1 module MyModule
2 using LinearAlgebra
3
4 struct MyStruct
5 vel :: Vector{Float64}
6 end
7 function foo(x::MyStruct) end
8
9 export MyStruct

10 export foo
11 end

Then, we can use this module as follows

julia> using MyModule

julia> x = MyStruct

julia> foo(x)

In the parlance of Julia, the struct MyStruct is immutable. So,Julia forbids
directly modify a struct member entirely as follows

julia> using MyModule
julia> x = MyStruct(zeros(3))
julia> x.vel = ones(3) # ERROR: setfield! immutable struct cannot be changed
julia> x.vel .= ones(3) # ok
julia> x.vel .+= 1 # ok

F.2 A Simple MPM Code in Julia

Having discussed some implementation choices for common operations in theMPM,
we now proceed to a simple implementation of theMPM in Julia for solidmechan-
ics. Composite types are used to store the attributes of grid points andmaterial points.
We start with a discussion on the code structure in Sect. F.2.1. Then, we present the
composite types for the grid and particle in Sect.F.2.2. Solution algorithm is given
in Sect. F.2.3 and finally, one example is provided to discuss the performance of the
code (Sect. F.2.4).

Appendix F: Implementing the Material Point Method Using Julia 447

Table F.3 Organization of the presented MPM code

Main.jl Main script 379 lines (including plotting)

Basis.jl Shape functions 53 lines

Grid.jl Grid and grid points 104 lines

MaterialPoint.jl Material points 139 lines

F.2.1 Code Organization

Our complete MPM code is organized into four Julia files as shown in TableF.3.
Julia comes with a full-featured interactive command-line REPL built into the
julia executable. To run the simulations one launches the Julia REPL using the
julia command, and change to the directory where the source code is found and type
include(“Main.jl”). We used @time include(“Main.jl”) to measure the runtime of
the examples presented in Sect. F.2.4.

F.2.2 Data Structures

We implement the concept of a grid point using the GridPoint struct and of a
material point using the MaterialPoint struct. The declaration of these types
are presented in Listings F.15 and F.16, respectively. Note that, for simplicity, the
nodal quantity vectors e.g. positions are initialized for 2D problems.

Listing F.15 Julia code listing for the declaration of GridPoint composite type.

1 struct GridPoint
2 Fixed :: Vector{Bool} # fixation in different directions
3 Mass :: Float64
4 Position :: Vector{Float64}
5 Momentum :: Vector{Float64}
6 Force :: Vector{Float64} # total force=internal force+external force
7 # constructor, set all values to zero, the following is for 2D problems
8 function GridPoint()
9 new (

10 [false;false],
11 0.0,
12 zeros(2),
13 zeros(2),
14 zeros(2)
15);
16 end
17 end

Next, we define an array of grid points, cf. line 2 of Listing F.17 and array(s) of
particles (Listing F.17). Note that, for brevity, we just created one particle.

448 Appendix F: Implementing the Material Point Method Using Julia

Listing F.16 Julia code listing for the declaration of MaterialPoint composite type.

1 struct MaterialPoint
2 Mass :: Float64
3 VolumeInitial :: Float64
4 Volume :: Float64
5 Centroid :: Vector{Float64} # particle position
6 Velocity :: Vector{Float64}
7 Momentum :: Vector{Float64}
8 ExternalForce :: Vector{Float64}
9 DeforGradient :: Vector{Float64} # deformation grad F

10 Stress :: Vector{Float64} # strain/stress as vectors (Voigt notation)
11 function MaterialPoint()
12 # constructor, set all above variables to zero
13 end
14 end

Listing F.17 Julia code listing for generation of material points. By convention, the exclamation
mark “!” is appended to names of functions thatmodify their arguments:push! in this code snippet.

1 # grid creation, Lx, Ly, # nodes x, # nodes y
2 thisGrid = mpmGrid(1.0, 1.0, 21, 21)
3 thisMaterialDomain = Array{MaterialPoint}(0)
4 # repeat the following until the desired number of particles is obtained
5 thisMaterialPoint = MaterialPoint()
6 thisMaterialPoint.Centroid = [1.0; 1.0]
7 # appending to the end of arrays, similar to push_back in C++ STL
8 push!(thisMaterialDomain, thisMaterialPoint)

F.2.3 Solution Phase

Now, we have the grid and some particles, it is ready to move to the solution phase.
Listing F.18 presents the implementation of a 2DMPM for elastic bodies. For brevity,
only the particle to grid phase was presented.

F.2.4 Examples

This section presents one numerical example to demonstrate the performance advan-
tage of Julia as a development tool for the MPM. All simulations are carried out
using in-house MPM codes written in Matlab and Julia. The Matlab code is
described in Chap.6.

There are three primary variants affecting the accuracy of MPM solutions: the
time-step size, the grid density and the particle density. Decreasing the time-step size
will increase the number of time-integration steps needed to complete the analysis,
and hence, will increase run-time. Given the trivial relation between time-step size
and run-time, i.e. a linear scaling between the two, there is no need to examine it
here. However, what is worth examining is the scaling of run-time with grid and
particle density. To eliminate the effect of time-step size in this process,

Appendix F: Implementing the Material Point Method Using Julia 449

Fig. F.4 Geometry and
initial conditions for the
impact of two elastic bodies
(units in N and mm)

A

B

Listing F.18 Particle to grid phase. All grid points and material points are stored into arrays
denoted by allGP and allMP, respectively. GP: Grid Point, MP: Material Point, AGP: Adjacent
Grid Point. The prefix ‘this’ indicates the reference of the object currently being processed.

1 for iIndex_MP in 1:length(allMaterialPoint)
2 thisMP = allMaterialPoint[iIndex_MP]
3 thisAdjacentGridPoints = getAdjacentGridPoints(thisMP, thisGrid)
4 for iIndex in 1:length(thisAdjacentGridPoints)
5 thisGridPoint = thisGrid.GridPoints[thisAdjacentGridPoints[iIndex]]
6 N, dN = getShapeAndGradient(thisMP, thisGridPoint, thisGrid)
7 # mass, momentum, internal force and external force
8 thisGridPoint.fMass += N * thisMP.fMass
9 thisGridPoint.v2Momentum += N * thisMP.fMass * thisMP.v2Velocity

10 end
11 end

performance is evaluated in terms of ‘Iterations/run-time seconds’. Note that each
iteration constitutes a single time step of the analysis, and run-time refers to the actual
time it takes to complete the analysis using a single thread on an Intel Core i7-6700
CPU with a RAM of 16 GB. We also provide the total runtime of all the conducted
simulations.

We reconsider the problemof impact between two identical elastic disks (Fig.F.4).
Details can be found in Sect. 6.15.2. We used the USL algorithm with a cutoff value
of 10−8 and hat weighting functions. Note that using theMUSL gives the same result
(Fig.F.5). AQ1

To demonstrate the use of graphics in Julia, see Sect. F.3.5 for more detail, the
movement of the two disks and their impact are given in Fig.F.4.We nowmove to the
main point: performance of Julia code. TableF.4 shows the performance results
for different cases of number of particles and number of grid points. The Julia
code is consistently faster than the Matlab code. Note that increasing the number
of particles or making the grid more dense, causes the performance ratio to vary.
However, for all cases, the Julia code is observed to perform more than 5 times
faster than the Matlab code. In fact, the performance ratio is rather significant,
especially when it comes to simulations that can potentially take hours or days to
complete. For example, the simulation given in the last rows took 2.6h with the
Matlab code and only 0.46h with the Julia code.

450 Appendix F: Implementing the Material Point Method Using Julia

t = 0.5 s t = 1.0 s t = 1.5 s

t = 2.0 s t = 2.5 s t = 3.0 s

Fig. F.5 Snapshots for the impact of two elastic bodies before, during and after impact (Sinaie
et al. 2017). These images were created using the PyPlot graphical package (Johnson 2012)

Table F.4 Performance comparison of Julia and Matlab code for the two-disk impact problem

Particles Grid Iterations/Second Total time [s]

Matlab Julia Matlab Julia Ratio

416 20 × 20 20.16 132.80 148.81 22.59 6.59

1624 20 × 20 5.30 33.37 566.36 89.90 6.30

1624 40 × 40 5.07 26.45 591.25 113.42 5.21

25784 80 × 80 0.32 1.82 9375.00 1651.07 5.68

F.3 A More Efficient Julia MPM Code

The code presented in Sect. F.2 was quickly programmed to verify whether Julia
is fast. Furthermore, the main coder (Sina Sinaie) was new to the language. Thus,
that code was not efficient and limited. We present herein a more efficient and better
implementation of an explicit dynamics MPM. We name our code juMP.

We startwith a discussion on grid and particle data structure (Sect. F.3.1). Based on
the findings in Sect. F.1.3 about composite type versus array, we decided to organize
grid/particle data using large arrays for the whole grid (or the whole solid). Basis
functions are described in Sect. F.3.2, followed by materials in Sect. F.3.3. To handle

Appendix F: Implementing the Material Point Method Using Julia 451

Table F.5 Organization of juMP

Basis.jl Basis functions

Grid.jl Grid1D, Grid2D, Grid3D

Solid.jl Solid2D, Solid3D

Material.jl Materials

Output.jl Particle data output

Problem.jl The problem

Algorithm.jl Types for USL, MUSL

Bsplines.jl Modified quadratic and cubic B-splines

Mesh.jl Finite elements and shape functions (for GPIC)

Fem.jl Meshed solids (for GPIC)

Dirichlet.jl Functions to handle Dirichlet BCs

Neumann.jl Functions to handle Neumann BCs

Main_*.jl Input file for each simulation

*.geo, *.msh Gmsh geo and mesh files

*.inp Abaqus mesh files (GPIC)

different problem types e.g. solid mechanics or heat transfer, a problem type was
coded (Sect. F.3.4). Post-processing is discussed in Sect.F.3.5 and a complete setup
for a typical simulation is given in Sect.F.3.6. In Sect. F.3.7, the implementation of
GPIC is given. To verify our implementation and test its efficiency, we provide some
comparative examples in Sect. F.3.8.

The code organization is shown in TableF.5, where each file (except the input
files) defines a module. We also made a git repository for the code, see Listing F.19.
This was convenient for code development and we take this opportunity to briefly
introduce this powerful tool for code development.

Below is how to get the code juMP and run the provided examples:

1. Install Julia;
2. Get the source code of juMP at https://github.com/vinhphunguyen/jump;
3. Open a terminal and go to the folder that contains the source of juMP;
4. Launch Julia by typing julia and enter on the terminal;
5. Within the REPL of Julia, type include(“install_script.jl”) to install required

packages;
6. Within the REPL of Julia, type include(“Main_TwoDisks.jl”) to run the two

disk collision example;
7. A new sub-folder “twodisks-mpm” is created by juMP where you can find the

output LAMMPS dump files which can be opened usingOvito for visualization.

https://github.com/vinhphunguyen/jump

452 Appendix F: Implementing the Material Point Method Using Julia

Listing F.19 Some common git commands.

1 # make a local git folder ./git in the folder containing the code
2 git init
3 # link it with the github repo
4 git remote add origin git@github.com:vinhphunguyen/Material-Point-Method-in-Julia.git
5 # add files
6 git add *.jl
7 git commit -m ‘1st commit’
8 git push origin master
9 # work on the code for a while, then

10 git add *.jl
11 git commit -m ‘your message’
12 git push origin master
13 # if you need to go back in time
14 git checkout <commit hash> <filename> # to revert filename back to commit hash

F.3.1 Grid and Particle Data Structure

Limiting to 2D problems, our grid is coded as a composite type Grid2D which
contains all data for the whole grid (rather than a grid node as in our previous
implementation). This type is implemented in module Grid (file Grid.jl), see
Listing F.20. We store grid data as a large array: for example, the grid momentum
is a vector (of which length is equal the number of grid points) of a static vector of
length 2 i.e., Vector{SVector{2,Float64}}}.
Listing F.20 Type Grid2D.

1 module Grid
2 struct Grid2D
3 lx :: Float64 # length in x dir
4 ly :: Float64 # length in y dir
5 dx :: Float64 # cell size in y dir
6 dy :: Float64 # cell size in y dir
7
8 mass :: Vector{Float64}
9 pos :: Vector{SVector{2,Float64}}

10 momentum :: Vector{SVector{2,Float64}}
11 force :: Vector{SVector{2,Float64}}
12
13 # constructor, GL_x is length of the grid in x dir
14 # iN_x: number of nodes in x dir
15 function Grid2D(fGL_x, fGL_y, iN_x, iN_y)
16 dx = fGL_x / Float64(iN_x - 1.0)
17 dy = fGL_y / Float64(iN_y - 1.0)
18 mass = fill(0,iN_x*iN_y)
19 momentum = fill(zeros(2),iN_x*iN_y)
20 force = fill(zeros(2),iN_x*iN_y)
21 pos = fill(zeros(2),iN_x*iN_y)
22 # some code skipped here...
23 return new(fGL_x,fGL_y,....)
24 end
25 end
26 end

We adopt the package StaticArrays to use its SVector, SMatrix and
MMatrix. Those static arrays are efficient for small arrays with known dimensions
than the generic Array.

In the same manner, we code a type named Solid2D (Listing21). A solid repre-
sents a group of particles. Note that we store a particle stress (and other second order
tensors) as a 2 × 2 matrix, not a 3 × 1 vector using the Voigt notation. This is to
follow Karamelo’s implementation and thus code sharing. Also, a solid is attached

Appendix F: Implementing the Material Point Method Using Julia 453

to a material. To this end, we coded a type named MaterialType to be discussed
in Sect. F.3.3.

Listing F.21 Type Solid2D.

1 module Solid
2 using LinearAlgebra
3 using StaticArrays
4 using Material
5
6 struct Solid2D
7 mass :: Vector{Float64}
8 volumeInitial :: Vector{Float64}
9 volume :: Vector{Float64}

10 pos :: Vector{SVector{2,Float64}} # position
11 velocity :: Vector{SVector{2,Float64}} # velocity
12 strain :: Vector{SMatrix{2,2,Float64}} # strain, 2x2 matrix
13 stress :: Vector{MMatrix{2,2,Float64}} # stress
14 parCount :: Int64
15 mat :: MaterialType
16 end
17 end

To do 1D and 3D simulations, we also code Solid1D, Solid3D and Grid1D
and Grid3D. It is clear that this design has some code duplication, but we wanted
to maximize the speed.

We now want to provide some details on how to find to which nodes a particle
xp contribute in 3D. Assume that we use a 3D grid as shown in Fig.F.6. We first
determine the 3D index (i, j, k) of the lower bottom corner of the cell containing xp

using

Fig. F.6 A three dimensional structured grid. The nodes are numbered from left to right in the x
direction, then from bottom to up in the y direction for the plane z = zmin. Then, for the next plane
up to z = zmax

454 Appendix F: Implementing the Material Point Method Using Julia

i = int

[
floor

(
xp
Δx

)
+ 1.0

]
(F.1)

j = int

[
floor

(
yp
Δy

)
+ 1.0

]
(F.2)

k = int

[
floor

(
z p
Δz

)
+ 1.0

]
(F.3)

where in Julia, the floor function returns a real, so we needed to convert its output
to an integer. Then, we find the 1D index of this point, i i by

i i = numX ∗ numY ∗ (k − 1) + numY ∗ (j − 1) + i (F.4)

wherenumX/Y denotes the number of nodes along the x and y direction, respectively.
Then, particle p will contribute to the following nodes

[i i, i i + 1, i i + numX, i i + 1 + numX,

i i + numXY, i i + 1 + numXY, i i + numX+ numXY, i i + numX+ 1 + numXY]
(F.5)

where numXY is short for numX*numY. Note that the first two nodes in this equation
is for 1D grids, the first four nodes is for 2D grids.

F.3.2 Basis Functions

To cover different basis functions and for different grids (i.e., dimensions), we code a
module named Basis shown in Listing F.22. We provide different implementations
of getShapeAndGradient, one for a particular basis e.g. linear or quadratic
B-splines and a concrete grid (e.g. 1D or 2D).

Listing F.22 Module Basis.

1 module Basis
2 using Grid
3 using Solid
4
5 export LinearBasis, CPDIQ4Basis
6 export getShapeAndGradient, getShapeFunctions
7 struct LinearBasis end
8 struct CPDIQ4Basis end
9 function getShapeAndGradient(nearPoints::Vector{Int64}, funcs::Vector{Float64},

10 ders::Vector{Float64}, p::Int64, grid::Grid1D,
11 solid,basis::LinearBasis)
12 function getShapeAndGradient(nearPoints::Vector{Int64}, funcs::Vector{Float64},
13 ders::Vector{Float64}, p::Int64, grid::Grid2D,
14 solid,basis::LinearBasis)

The function getShapeAndGradient, for a given particle p, computes: (i)
the node indices I to which p contributes, (ii) the basis functions of these nodes φI p

and (iii) their gradients ∇φI p. To reduce memory allocation, the arrays storing these
quantities are allocated once for the entire simulation.

Appendix F: Implementing the Material Point Method Using Julia 455

F.3.3 Material

To have aMPM code that can adopt different types of materials, we coded an abstract
type named MaterialType and some sub-types such as ElasticMaterial
and ElastoPlasticMaterial, see Listing F.23. We have made a decision that
for inelasticmaterials, history variables are stored as fields (ormembers) of amaterial
sub-type, not in the solid particles. This helps to reducememory storage, but themain
reason for our implementation is that it allows a unified interface for the function
update_stress! for all materials. This has one downside: writing particle data
to files is harder as the particles have different data. For example, an elastic solid
does not have plastic strain whereas a plastic solid does.

It is clear that our implementation of the update_stress! cannot handle
all material models. For example, for hyperelastic solids, one needs the gradient
deformation tensor F and its determinant J for the stress update. Implementing a
generic interface that can cover all material models is simply beyond our capability.

Listing F.23 Type MaterialType and some sub-types for elastic and plastic materials.

1 abstract type MaterialType end
2
3 struct ElasticMaterial <: MaterialType
4 E ::Float64
5 nu ::Float64
6 density::Float64
7
8 function ElasticMaterial(E,nu,density)
9 end

10 end
11
12 function update_stress!(sigma::MMatrix{2,2,Float64},
13 mat::ElasticMaterial,
14 epsilon::SMatrix{2,2,Float64},ip)
15 sigma .= mat.lambda*(epsilon[1,1]+epsilon[2,2])*Identity + 2.0 * mat.mu * epsilon
16 end
17
18 struct ElastoPlasticMaterial <: MaterialType
19 fy ::Float64 # yield stress
20 k1 ::Float64 # hardening modulus
21
22 pstrain::Vector{MVector{3,Float64}} # plastic strain
23 alpha ::Vector{Float64} # equivalent plastic strain
24
25 function ElastoPlasticMaterial(E,nu,density,fy,k1,parCount)
26 end
27 end
28
29 function update_stress!(sig::MMatrix{2,2,Float64},
30 mat::ElastoPlasticMaterial,
31 eps::SMatrix{2,2,Float64},ip)
32 end

F.3.4 Problem

To handle different problems e.g. explicit dynamics, thermal analysis or thermo-
mechanical analyses, a type named ExplicitSolidMechanicswas coded, see
Listing F.24. This type contains a grid and a list of solids and implements a function
solve.

456 Appendix F: Implementing the Material Point Method Using Julia

F.3.5 Graphics

We use PyPlot for real-time graphics in juMP and Ovito for post-processing;
we refer to Sect. 5.5 for a discussion on visualization of MPM results. The package
PyPlot uses the Julia PyCall package to call Matplotlib directly from
Julia with little or no overhead (arrays are passed without making a copy). You
will need to have the Python Matplotlib library installed on your machine to
use PyPlot.

Listing F.24 Type ExplicitSolidMechanics.

1 struct ExplicitSolidMechanics
2 grid ::Grid2D
3 solids ::Vector{Solid2D}
4 basis
5 output ::OutputType
6 Tf ::Float64
7 kinEnergy ::Vector{Float64}
8 strEnergy ::Vector{Float64}
9 recordTime::Vector{Float64}

10
11 function ExplicitSolidMechanics(grid::Grid2D,solids::Vector{Solid2D}, basis,
12 output::OutputType,Tf::Float64)
13 end
14 end
15
16 function solve(problem::ExplicitSolidMechanics,alg::MUSL,dtime)
17 end
18 function solve(problem::ExplicitSolidMechanics,alg::USL,dtime)
19 end

To support different graphics, we define an abstract type and two sub-types (one
for PyPlot and the other for Ovito) as shown in Listing F.25. There are two
functions, plotParticles, specialized for each sub-type. In the constructor of
OvitoOutput, we used some Julia features to work with directories and files
(Listing F.26). We have used the package Glob to easily get files with a certain
extension.

F.3.6 A Complete Example

Having presented all components of juMP, it is now ready to solve a concrete
problem. The steps are: (1) creating the grid, (2) choosing a basis, (3) creating some
geometries, (4) creating some materials, (5) creating some solids by associating a
geometry with a material, (6) assigning initial velocities to the solids (if any), (7)
defining the problem, (8) choosing an algorithm (USL or MUSL supported), (9)
providing an output e.g. Ovito-based or PyPlot and finally (10) solving that
problem. Listing F.27 presents an example for the two disk collision problem.

Appendix F: Implementing the Material Point Method Using Julia 457

F.3.7 Implementation of GPIC

This section presents the implementation of GPIC (discussed in Sect. 3.7), which is a
version of theMPM that uses amesh to represent the solids and thus faithfully capture
its boundary and GPIC can handle boundary conditions effortlessly. For brevity we
do not discuss frictional contact.

A typical simulation set up using GPIC is given in Listing F.28. We will
discuss FEM2D and solve_explicit_dynamics_femp_2D. Check the file
FemMPM.jl to see all the supported algorithms. Line 18 in Listing F.28 specifies
whether a UL, TL or TL with full quadrature is adopted.

Listing F.25 Graphics supporting PyPlot and Ovito.

1 module Output
2 import PyPlot
3 using Solid
4
5 abstract type OutputType end
6 struct PyPlotOutput <: OutputType
7 interval ::Int64
8 dir ::String
9 function PyPlotOutput(interval::Int64,dir::String)

10 if !isdir(dir) mkdir(dir) end
11 new(interval,dir)
12 end
13 end
14 struct OvitoOutput <: OutputType
15 interval ::Int64
16 dir ::String
17 function OvitoOutput(interval::Int64,dir::String)
18 end
19 end
20 function plotParticles(plot::PyPlotOutput,solids::Vector{Solid2D},
21 lims::Vector{Float64},ncells::Vector{Int64},
22 counter)
23 function plotParticles(plot::OvitoOutput,solids::Vector{Solid2D},
24 lims::Vector{Float64},ncells::Vector{Int64},
25 counter)
26 end

Listing F.26 Working with directories and files.

1 function OvitoOutput(interval::Int64,dir::String,outs)
2 if isdir(dir) # if dir exists
3 dumpfiles = Glob.glob(string(dir,"*.LAMMPS")) # get all files *.LAMMPS
4 if (length(dumpfiles) > 0) # if found, delete them
5 [rm(file) for file in dumpfiles]
6 end
7 else
8 mkdir(dir)
9 end

10 new(interval,dir,outs)
11 end
12 # write to dump files to be processed by Ovito
13 fileName = string(plot.dir,"dump_p.","$(Int(counter)).LAMMPS")
14 file = open(fileName, "a")
15 write(file, "ITEM: TIMESTEP \n")
16 write(file, "ITEM: NUMBER OF ATOMS\n")
17 write(file, "$(parCount) \n")

Listing F.27 A typical simulation setup in juMP.

1 grid = Grid2D(0.0,1.0, 0.0, 1.0, 41, 41) # 1x1 domain with 40x40 cellss
2 basis = LinearBasis()
3 fOffset = 0.2/16 # there are 8 material points over the radius (16 MPs)
4 coords1 = buildParticleForCircle([0.2; 0.2], 0.2, fOffset)

458 Appendix F: Implementing the Material Point Method Using Julia

5 coords2 = buildParticleForCircle([0.8; 0.8], 0.2, fOffset)
6 material = ElasticMaterial(youngModulus,poissonRatio,density)
7 solid1 = Solid2D(coords1,material)
8 solid2 = Solid2D(coords2,material)
9 assign_velocity(solid1, SVector{2,Float64}([0.1 0.1]))

10 assign_velocity(solid2,-SVector{2,Float64}([0.1 0.1]))
11 solids = [solid1, solid2]
12 Tf = 3.5
13 output = PyPlotOutput(interval,"results/","Two Disks Collision",(4., 4.))
14 problem = ExplicitSolidMechanics(grid,solids,basis,output,Tf)
15 algo = MUSL(0.99)
16 solve(problem,algo,0.001)

Listing F.28 A typical GPIC simulation setup in juMP.

1 grid = Grid2D(0,1.05, 0,1.05, 21, 21)
2 basis = LinearBasis()
3 material = ElasticMaterial(youngModulus,poissonRatio,density,0,0)
4 solid1 = FEM2D("disk.msh")
5 solid2 = FEM2D("disk.msh")
6
7 v0 = SVector{2,Float64}([0.1 0.1])
8 Fem.assign_velocity(solid1, v0)
9 Fem.assign_velocity(solid2,-v0)

10 # as the mesh of the disks was created with the center of the disk at (0,0)
11 Fem.move(solid1,SVector{2,Float64}([0.2+0.05, 0.2+0.05]))
12 Fem.move(solid2,SVector{2,Float64}([0.2+.6,0.2+.6]))
13
14 solids = [solid1 solid2]
15 mats = [material, material]
16 output2 = VTKOutput(interval,"twodisks-femp/",["pressure"])
17 fix = EnergiesFix(solids,"twodisks-femp/energies.txt")
18 algo1 = TLFEM(0.,1.) # other options: ULFEM(0.), TLFEMFull(1.)
19 body = ConstantBodyForce2D([0.,0.])
20 data = Dict()
21 data["total_time"] = Tf
22 data["dt"] = dtime
23 solve_explicit_dynamics_femp_2D(grid,solids, mats, basis,body,algo1,output2,fix,data)

FEM2D. To represent a 2D solid a structure named FEM2D is coded. The main
interface of this structure is given in Listing F.29. It is quite similar to Solid2Dwith
a few differences. Similar to FEM, we store the velocity, mass, volume, coordinates,
internal/external forces at the nodes and stress/strain at Gauss points. The FE mesh
for a solid is stored in the variablemesh, which is of typeFEMesh.We do not discuss
FEMesh; it is mainly used to store all data of a FEmesh. The code only supports two-
node line elements, three-node triangle element, four-node quadrilateral elements,
four-node tetrahedral elements and eight-node hexahedral elements.

The constructor of FEM2D is given in Listing F.30. Its function is to read a mesh
from a file name and intialize all data. Currently the code supports Gmsh and Abaqus
mesh files.

Similarly we also coded FEM3D for 3D solids and FEMAxis for axisymmetric
solids (see Fig. 7.9 for an axisymmetric simulation using juMP).

Listing F.29 Structure FEM2D.

1 struct FEM2D
2 mass :: Vector{Float64}
3 volume :: Vector{Float64}
4 centerX :: Vector{Float64} # centroids of elements
5 pos0 :: Vector{SVector{2,Float64}} # node coords initial
6 pos :: Vector{SVector{2,Float64}} # position
7 velocity :: Vector{SVector{2,Float64}} # velocity
8 dU :: Vector{SVector{2,Float64}} # incremental displacements
9 fint :: Vector{SVector{2,Float64}} # internal forces at FE nodes

10 ftrac :: Vector{SVector{2,Float64}} # external forces
11 deformationGradient :: Vector{SMatrix{2,2,Float64,4}} # F, 2x2 matrix

Appendix F: Implementing the Material Point Method Using Julia 459

12 strain :: Vector{SMatrix{2,2,Float64,4}} # stress, 2x2 matrix
13 stress :: Vector{SMatrix{2,2,Float64,4}} # strain
14 parCount :: Int64 # same as element count in the mesh
15 nodeCount :: Int64 # number of nodes in the mesh
16 elems :: Array{Int64,2}
17 mesh :: FEMesh
18 basis :: FiniteElement # finite element basis function
19 end

Solution phase. The function solve_explicit_dynamics_femp_2D imple-
ments the GPIC algorithm described in Algorithm 5. For every time step, the solution
phase consists of 4 steps:

• M2G: Listing F.31
• Updating grid: this is identical to MPM;
• G2M1: update the position/velocity of the solid nodes; similar to MPM
• G2M2: update stress at GPs and internal forces at solid nodes, see Listing F.32.

Listing F.30 Constructor of FEM2D.

1 function FEM2D(fileName)
2 mesh = read_GMSH(fileName)
3 nodeCount = length(mesh.nodes) # node count
4 parCount = length(mesh.element_sets["All"]) # element count
5 Identity = SMatrix{2,2}(1, 0, 0, 1)
6 F = fill(Identity, parCount)
7 strain = fill(zeros(2,2),parCount)
8 x = fill(zeros(2),nodeCount)
9 elems = Array{Array{Int64,1},1}(undef,0) # element nodes

10 velo = fill(zeros(2),nodeCount)
11 end

Listing F.31 Solution in GPIC: M2G phase. Note that there is no need for the gradient of the
grid weighting functions. Instead we need the shape functions and its gradient for the solid mesh.

1 for s = 1:solidCount
2 solid = solids[s]
3 xx = solid.pos
4 mm = solid.mass
5 vv = solid.velocity
6 fint = solid.fint
7 for ip = 1:solid.nodeCount
8 support = getShapeFunctions(nearPoints,funcs,ip, grid, solid,basis)
9 fMass = mm[ip]

10 vp = vv[ip]
11 fp = fint[ip]
12 for i = 1:support
13 id = nearPoints[i]; # index of node ’i’
14 Ni = funcs[i]
15 Nim = Ni * fMass
16 nodalForce[id] -= Ni * fp
17 end
18 end
19 end

F.3.8 Performance Tests

To test the performance of juMP compared with the old Julia code, we consider
two examples: the two disk collision and the high velocity impact.

460 Appendix F: Implementing the Material Point Method Using Julia

Table F.6 Performance comparison of two Julia codes for the two-disk impact problem. No
output or real-time visualization. Simulations carried out with a MacBook Pro 2018 with 3.1GHz
Quad-Core Intel Core i7 and 16GB of RAM

Particles Grid Total time [s]

Old Julia New Julia Ratio

416 20 × 20 69.48 4.46 16

1624 20 × 20 270.99 17.34 15

1624 40 × 40 271.33 18.22 15

25784 80 × 80 4689.47 327.46 14

Collision of two elastic disks. We consider again this popular problem, and the
performance of the twoMPM codes is given in TableF.6. The new one is consistently
15× faster than the old one, and thus it is about 75 × faster than the Matlab code.2

This is not surprising as the performance of large arrays is much better than the use
of arrays of composite types (Sect. F.1.3).

Listing F.32 Solution in GPIC: stress update phase.

1 for s = 1:solidCount
2 solid = solids[s]
3 XX = solid.pos0; du = solid.dU
4 stress = solid.stress; elems = solid.elems; fint = solid.fint
5 for ip = 1:solid.parCount
6 elemNodes = @view elems[ip,:]
7 coords = @view XX[elemNodes]
8 vel_grad = SMatrix{2,2}(0., 0., 0., 0.)
9 for gp = 1:noGP

10 xieta = @view gpCoords[:,gp]
11 detJ = lagrange_basis_derivatives!(N, dNdx, meshBasis, xieta, coords)
12 w = detJ * weights[gp]
13 for i = 1:length(elemNodes)
14 in = elemNodes[i]; # index of node ’i’
15 dNi = @view dNdx[:,i]
16 vI = du[in]
17 vel_grad += SMatrix{2,2}(dNi[1]*vI[1], dNi[1]*vI[2],dNi[2]*vI[1], dNi[2]*vI[2])
18 end
19 D = 0.5 * (vel_grad + vel_grad’)
20 F1 = Identity + vel_grad
21 J = det(F1)
22 sigma = ...
23 P = J*sigma*inv(F1)’ # convert to 1st Piola Kirchoof stress
24 for i = 1:length(elemNodes)
25 in = elemNodes[i]; # index of node ’i’
26 dNi = @view dNdx[:,i]
27 fint[in] += w * @SVector[P[1,1] * dNi[1] + P[1,2] * dNi[2],
28 P[2,1] * dNi[1] + P[2,2] * dNi[2]]
29 end
30 end
31 end
32 end

High velocity impact. We consider again the high velocity impact presented in
Sect. 6.15.3. The aims are: (1) to demonstrate the flexibility of juMP in treating dif-
ferent materials in a simulation and in setting an output type (PyPlot or Ovito)

2 This comparison should not be taken seriously as we spent time to optimize the Julia code but
did not do the same thing with the Matlab code. This is because we though that we should use
open source and free tools.

Appendix F: Implementing the Material Point Method Using Julia 461

(a) Plastic strain

0 5 10 15 20 25 30 35 40 45

time in microsecond

0

5

10

15

20

25

pe
ne

tr
at
io
n
[m

m
]

MPM
GPIC

(b) Penetration

Fig. F.7 High velocity impact problem: plot of the equivalent plastic strain at the end of the
simulation in Ovito (a) and evolution of the penetration (b)

and (2) to compare the efficiency of this code with Karamelo. The results given
in Fig.F.7 verified the implementation. However, our Julia code is still less effi-
cient compared to Karamelo. We present in Sect. F.4 modifications to increase the
efficiency of juMP.

Collision of two elastic spheres. Since Julia is quite fast it is possible to do 3D
simulations. As a simplest test for 3D, we consider again the popular problem of two
disk collision but now extended to 3D. Two spheres with centers at (0, 2, 0.2, 0.5)
and (0.8, 0.8, 0.5) are put in a grid of 1 × 1 × 1 size (Fig.F.8a). As the thickness does
not play any role, only one layer of cells can be used in the z direction. The initial
velocities are (0.1, 0.1, 0.0) and (−0.1,−0.1, 0.0) for the left and right spheres,
respectively. The solution must be similar to the 2D problem, except the magnitude
of the kinetic and strain energies (Fig.F.8).

F.4 Tweaks for Speed

A careful examination of the previous code using the macro @code_warntype
reveals that our type Solid2D is not concrete i.e., it contains mat::Material
Type which is an abstract type. And this decreases the efficiency significantly.
To avoid this issue, we implemented Solid2D as a parameterized type with the
parameter being the type of the material. Listing F.33 is the new implementation,
which is only a slight modification to the previous one.

462 Appendix F: Implementing the Material Point Method Using Julia

(a) Initial setup (b) At collision

(c) Energies in time

Fig. F.8 Collision of two elastic spheres: USL was used with cut-off tolerance of 10−9

Listing F.33 The new Solid2D, which is a parameterized type.

1 struct Solid2D{T <: MaterialType}
2 deformationGradient :: Vector{SMatrix{2,2,Float64,4}} # F, 2x2 matrix
3 strain :: Vector{SMatrix{2,2,Float64,4}} # strain, 2x2 matrix
4 stress :: Vector{MMatrix{2,2,Float64,4}} # stress
5 mat :: T
6 # inner constructor
7 function Solid2D(pts::Vector{SVector{2,Float64}},mat::T) where {T <: MaterialType}
8 return new{T}(...)
9 end

10 end

Any function working on Vector{Solid2D} or Vector{Solid3D} needs
modification as these types are now parameterized and thus the correct types are
Vector{Solid2D{T}} and Vector{Solid3D{T}}. The modified function is
shown in Listing F.34.

Similarly, the type Problem is a not a concrete type. So, we no longer use this
type, and instead directly implement different solve() functions. See Listing F.35
for one of them. To get maximum efficiency, we pre-allocate arrays used in the
calculation such as ones to store the basis functions, the derivatives, the strain rate

Appendix F: Implementing the Material Point Method Using Julia 463

matrix. And for matrix-matrix multiplication, we explicitly code the operation (lines
23 and 41). Doing so removed allocation for temporary arrays. Finally, we added the
macro @inbounds to bypass array index bound checking. Macro @view is used
to avoid copying when a slice of an array is needed. Li j = vi, j was explicitly coded
to avoid temporary arrays.

Listing F.34 Functions with Vector{Solid2D{T}}.
1 function plotParticles(plot::OvitoOutput,solids::Vector{Solid2D{T}},
2 lims::Vector{Float64},ncells::Vector{Int64},counter::Int64) where {T<:MaterialType}
3 // exactly as before
4 end
5 function plotParticles(plot::OvitoOutput,solids::Vector{Solid3D{T}},
6 lims::Vector{Float64},ncells::Vector{Int64},counter::Int64) where {T<:MaterialType}
7 // exactly as before
8 end

Git. It is always a good idea not to modify a working piece of code to experiment
something else. So, wemade a new branch, work on that branch for themodifications
presented in this section. The git commands for this are given in Listing F.36.

Listing F.35 USL algorithm implemented in juMP.

1 function solve_explicit_dynamics_2D(grid,solids,basis,alg::MUSL,output,fixes,Tf,dtime)
2 t = 0. # not t = 0 => type instability issue
3 Identity = UniformScaling(1.) # identity matrix
4 nearPoints,funcs, ders = initialise(grid,basis)
5 D = SMatrix{2,2}(0., 0., 0., 0.) #zeros(Float64,2,2)
6 while t < Tf
7 @inbounds for i = 1:grid.nodeCount
8 nodalMass[i] = 0.
9 nodalMomentum0[i] = @SVector[0., 0.]

10 end
11 # P2G step
12 for s = 1:solidCount
13 solid = solids[s]; xx = solid.pos
14 @inbounds for ip = 1:solid.parCount
15 support = getShapeAndGradient(nearPoints,funcs,ders,ip, grid, solid,basis)
16 volp = vol[ip]
17 sigma = stress[ip]
18 @inbounds for i = 1:support
19 id = nearPoints[i]
20 dNi = @view ders[:,i]
21 nodalForce[id] -= volp*@SVector[sigma[1,1] * dNi[1] + sigma[1,2] * dNi[2],
22 sigma[2,1] * dNi[1] + sigma[2,2] * dNi[2]]
23 end
24 end
25 end
26 # G2P step
27 @inbounds for s = 1:solidCount
28 solid = solids[s]; xx = solid.pos
29 @inbounds for ip = 1:solid.parCount
30 support = getShapeAndGradient(nearPoints,funcs,ders,ip,grid,solid,basis)
31 vel_grad = SMatrix{2,2}(0., 0., 0., 0.)
32 for i = 1:support
33 dNi= @view ders[:,i]
34 m = nodalMass[id]
35 if (m > 0.)
36 vI = nodalMomentum2[id] /m
37 xx[ip] += (Ni * nodalMomentum[id]/m) * dtime
38 vel_grad += SMatrix{2,2}(dNi[1]*vI[1], dNi[2]*vI[1],
39 dNi[1]*vI[2], dNi[2]*vI[2])
40 end
41 end
42 D = 0.5 * (vel_grad + vel_grad’)
43 strain[ip] += dtime * D
44 F[ip] *= (Identity + vel_grad*dtime)
45 J = det(F[ip])
46 end
47 end
48 end

464 Appendix F: Implementing the Material Point Method Using Julia

Listing F.36 Making a new git branch and related commands.

1 git branch parameterized-solid # make a new branch
2 git checkout parameterized-solid # move to that branch
3 # edit the code, e.g. Solid.jl
4 git add Solid.jl
5 git commit -m ‘Solid’
6 git push origin parameterized-solid
7 git checkout master # to work on the original code

References

Belytschko, T., Liu,W.K.,Moran, B.: Nonlinear Finite Elements for Continua and Structures.Wiley,
Chichester, England (2000)

Bezanson, J., Edelman, A., S. K., Shah, V.B.: Julia: a fresh approach to numerical computing.
CoRR, abs (2014). arXiv:1411.1607

Bezanson, J., S.K., Shah, V.B., Edelman, A.: Julia: a fast dynamic language for technical computing.
CoRR, abs (2012). arXiv:1209.5145

Felippa, C.A.: The linear tetrahedron. http://www.colorado.edu/engineering/CAS/courses.d/
AFEM.d/AFEM.Ch09.d/AFEM.Ch09.pdf

Hughes, T.J.R.: The Finite Element Method - Linear Static and Dynamic Finite Element Analysis.
Prentice-Hall, London, England (1987)

Johnson, S.G.: PyPlot module for Julia (2012). https://github.com/stevengj/PyPlot.jl
Lattner, C., Vikram A.: LLVM: a compilation framework for lifelong program analysis & transfor-
mation. In: Proceedings of the International Symposium on Code Generation and Optimization:
Feedback-directed and RuntimeOptimization, CGO ’04, pp. 75–. IEEEComputer Society (2004)

Sadeghirad, A., Brannon, R.M., Burghardt, J.: A convicted particle domain interpolation technique
to extend applicability of thematerial point method for problems involvingmassive deformations.
Int. J. Numer. Meth. Eng. 86(12), 1435–1456 (2011)

Sinaie, S., Nguyen, V.P., Nguyen, C.T., Bordas, S.: Programming the material point method in Julia.
Adv. Eng. Softw. 105, 17–29 (2017)

Vigliotti, A., Auricchio, F.: Automatic differentiation for solid mechanics. Arch. Comput. Methods
Eng. 28(3), 875–895 (2021)

Wu, S.R., Wu, L.: Introduction to the Explicit Finite Element Method for Nonlinear Transient
Dynamics. Wiley (2012)

Xiao, L.,Mei, G., Xi, N., Piccialli, F.: Julia language in computational mechanics: a new competitor.
In: Archives of Computational Methods in Engineering, pp. 1–14 (2021)

http://arxiv.org/abs/1411.1607
http://arxiv.org/abs/1209.5145
http://www.colorado.edu/engineering/CAS/courses.d/AFEM.d/AFEM.Ch09.d/AFEM.Ch09.pdf
http://www.colorado.edu/engineering/CAS/courses.d/AFEM.d/AFEM.Ch09.d/AFEM.Ch09.pdf
https://github.com/stevengj/PyPlot.jl

Index

A
Acceleration, 66

B
Berstein weighting functions, 107
B-splines, 70, 104
Bubnov-Galerkin method, 6, 66

C
Cartesian grid, 95, 162
Cauchy stress, 61, 83
Computational models, 1
Computer Algebra System (CAS), 405
Computer experiments, 2
Computer simulations, 2
Conservation equations, 62
Conservation of energy, 63
Conservation of linear momentum, 63
Consistent mass matrix, 67
Constitutive equation, 63
Contact algorithm, 227
Continuum mechanics, 2
Convective Particle Domain Interpolation

(CPDI), 70, 109
Convergence rate, 305, 325
Convergence tests, 348
CPDI-L2, 109
CPDI-Poly, 115
CPDI-Q4, 113
CPDI-R4, 110
CPDI-T3, 114
CPDI-Tet4, 115

CpGIMP, 102
Cutoff value, 79

D
Deformation gradient tensor, 59
Dirichlet boundary conditions, 4, 146

E
Element-based implementation, 161
Equation of continuity, 62
Error measure, 324
Eulerian, 14
Euler method, 71, 72
Explicit dynamic Lagrangian finite ele-

ments, 415
External force vector, 67

F
FEM, 415
Fluids, 361

G
Gases, 361
Generalized Interpolation Material Point

(GIMP), 70, 99
Generalized Particle in Cell (GPIC), 120
Gradient deformation, 74, 75
Green-Naghdi rate, 62
Green strain tensor, 60

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Switzerland AG 2023
N. V. Phu et al., The Material Point Method, Scientific Computation,
https://doi.org/10.1007/978-3-031-24070-6

465

https://doi.org/10.1007/978-3-031-24070-6

466 Index

I
Implicit FEM, 427
Initial-Boundary Value Problem (IBVP), 3
Initial conditions, 145, 146
Integration by parts, 5
Internal force vector, 67
Irregular particle distribution, 141
Isotropic linear elastic materials, 131

J
Jaumman rate, 62
Johnson-Cook model, 134
Julia, 42, 435
JuMP, 450

K
Karamelo, 41, 205
Kronecker delta property, 8

L
Lagrangian, 14
Least square approximation, 328
Linear weighting function, 96
Lumped mass matrix, 71

M
Machining, 293
Mass lumping, 8
Mass matrix, 7, 8
Material coordinate, 64
Material time derivative, 59
Message Passing Interface (MPI), 205
Method of Manufactured Solutions (MMS),

318
Mixed integration, 155
Moving Least Square (MLS), 331
Moving least square approximation, 331
Modified Update Stress Last (MUSL), 70,

71

N
Neo-Hookean material, 132
Neumann boundary conditions, 148
Nodal forces, 163
Nodal mass, 163
Nodal momenta, 163
Nodal support, 6

Numerical dissipation, 74
Numerical integration, 5

O
Objective stress srate, 62
Ordinary differential equation, 6

P
Particle-based implementation, 161
Particle distribution, 139
Particle registration, 155
1st PK stress, 61, 83
2nd PK stress, 61

Q
Quadrature points, 9
Quasi-static MPM formulation, 80
Quasi-static problems, 80

R
Rate of deformation , 61
Rate of deformation tensor, 60
Regular particle distribution, 140
Remeshing, 11
Right Cauchy-Green deformation tensor, 60
Rigid bodies, 151

S
SageMath, 405
Semi-discrete equation, 8, 67
Shape functions, 6, 95
Stress update algorithm, 76, 131
Strong form, 5

T
Taylor-Quinney coefficient, 135, 384
Thermo-mechanical, 375
Time integration methods, 8
Total Lagrangian FEM (TLFEM), 418
Total Lagrangian MPM (TLMPM), 15, 83,

294
Truesdell rate, 62

U
ULMPM, 15

Index 467

Unchanged GIMP (UGIMP), 101
Unstructured grid, 154
Updated Lagrangian FEM (ULFEM), 416
Update Stress First (USF), 80
Update Stress Last (USL), 70, 71

V
Velocity, 66
Velocity gradient, 76

Virtual power equation, 392

W
Wave equation, 4
Weak form, 5
Weak form integrals, 7
Weight function, 5
Weighting function, 95
Weighting gradient, 95

	Preface
	Reference

	Contents
	1 Introduction
	1.1 Computational Sciences and Engineering
	1.2 The Role of Experiments in CSE
	1.3 One Dimensional Wave Equation
	1.4 Mesh-Based and Meshfree Methods
	1.4.1 Mesh-Based Methods
	1.4.2 Meshless Methods

	1.5 A Brief Introduction to the MPM
	1.5.1 Lagrangian Particles and Eulerian Grid
	1.5.2 The Basic MPM Algorithm
	1.5.3 Advantages and Disadvantages of the MPM
	1.5.4 Existing MPM Formulations
	1.5.5 Multiphysics MPM
	1.5.6 Contacts
	1.5.7 Fracture
	1.5.8 Fluids and Gases
	1.5.9 The MPM Versus Other Methods
	1.5.10 Coupling the MPM with Other Methods

	1.6 Applications of the MPM
	1.6.1 Large Strain Geo-Technical Engineering
	1.6.2 Fluid-Structure Interaction
	1.6.3 Image-Based Simulations
	1.6.4 Computer Graphics
	1.6.5 Other Applications

	1.7 Open Source and Commercial MPM Codes
	1.8 Layout
	1.9 Notations
	References

	2 A General MPM for Solid Mechanics
	2.1 Basic Concepts of Continuum Mechanics
	2.1.1 Motion and Deformation
	2.1.2 Strain Measures
	2.1.3 Stress Measures
	2.1.4 Objective Stress Rates
	2.1.5 Conservation Equations
	2.1.6 Constitutive Models

	2.2 Strong Form
	2.3 Weak Form and Spatial Discretization
	2.4 MPM as FEM with Particles as Integration Points
	2.5 Temporal Discretization and Resulting MPM Algorithms
	2.5.1 Lumped Mass Matrix
	2.5.2 Calculation of Nodal Velocities (Momenta)
	2.5.3 Standard Formulation (USL)
	2.5.4 Modified Update Stress Last (MUSL)
	2.5.5 Update Stress First (USF)

	2.6 Total Lagrangian MPM (TLMPM)
	2.6.1 Motivation: Numerical Fracture
	2.6.2 Derivation of TLMPM

	2.7 Axi-Symmetric MPM
	2.7.1 Axi-Symmetric ULMPM
	2.7.2 Axi-Symmetric TLMPM

	2.8 Adaptive Time Step
	2.9 Particle/Element Inversion
	2.10 Adaptivity
	2.10.1 Grid Adaptive Refinement
	2.10.2 Particle Splitting and Merging

	References

	3 Various MPM Formulations
	3.1 Properties of Weighting Functions
	3.2 Standard Linear Basis Functions
	3.3 Generalized Interpolation Material Point (GIMP)
	3.3.1 uGIMP
	3.3.2 cpGIMP

	3.4 B-Splines Basis Functions
	3.4.1 Recursive B-Splines
	3.4.2 Boundary Modified B-Splines

	3.5 Bernstein Functions
	3.6 Convected Particle Domain Interpolation
	3.6.1 One Dimensional Linear CPDI (CPDI-L2)
	3.6.2 Convected Particle Domain Interpolation (CPDI-R4)
	3.6.3 Quadrilateral Convected Particle Domain Interpolation (CPDI-Q4)
	3.6.4 Triangular Convected Particle Domain Interpolation (CPDI-T3)
	3.6.5 Three Dimensional Linear Tetrahedron CPDI (CPDI-Tet4)
	3.6.6 Polygonal and Polyhedral CPDI
	3.6.7 Complications in GIMP/CPDIs

	3.7 The Generalized Particle in Cell Method
	3.7.1 General Algorithms
	3.7.2 Computation of Mass and Forces on FE Meshes
	3.7.3 Finite Element Basis Functions
	3.7.4 Equivalence Between CPDI and GPIC
	3.7.5 Axi-Symmetric GPIC

	References

	4 Constitutive Models
	4.1 Linear Elastic Isotropic Material
	4.2 Hyperelastic Solids
	4.3 Elasto-Plastic Materials
	4.3.1 Equation of State
	4.3.2 Johnson-Cook Flow Model
	4.3.3 Damage
	4.3.4 Algorithm

	References

	5 Implementation
	5.1 Initial Particle Distribution
	5.1.1 Regular Particle Distribution
	5.1.2 Irregular Particle Distribution
	5.1.3 Particle Distribution from CAD
	5.1.4 Particle Distribution from Images

	5.2 Initial and Boundary Conditions
	5.2.1 Dirichlet Boundary Conditions
	5.2.2 Symmetric Boundary Conditions
	5.2.3 Neumann Boundary Conditions
	5.2.4 Neumann Boundary Conditions with CPDI
	5.2.5 Boundary Conditions in GPIC
	5.2.6 Rigid Bodies

	5.3 Implementation of CPDI
	5.4 MPM Using an Unstructured Grid
	5.4.1 Shape Functions
	5.4.2 Particle Registration
	5.4.3 Mixed Integration
	5.4.4 uMPM with C1 Shape Functions

	5.5 Visualization
	References

	6 MPMat: A MPM Matlab Code
	6.1 Code Structure
	6.2 Background Grid
	6.3 Particle Data
	6.4 Particle Generation
	6.4.1 Particle Generation Using a Mesh
	6.4.2 Particle Generation for Simple Geometries

	6.5 Solution Algorithm
	6.6 Three Dimensions
	6.7 Implementation of (u/cp)GIMP
	6.8 B-splines MPM
	6.8.1 Recursive B-splines MPM
	6.8.2 Bézier Extraction B-splines MPM

	6.9 Implementation of CPDI-R4
	6.9.1 Data Structure for Particles
	6.9.2 Evaluation of φIp and φIp
	6.9.3 Time Advance

	6.10 Implementation of CPDI2s (CPDI-Q4, CPDI-T3)
	6.11 Implementation of CPDI-Poly
	6.12 Visualization Toolkit (VTK)
	6.13 Some Efficiency Improvements
	6.14 More Improvements Using MEX Files
	6.15 Examples
	6.15.1 One Dimensional Examples
	6.15.2 Impact of Two Elastic Disks
	6.15.3 High Velocity Impact
	6.15.4 Large Deformation Vibration of a Compliant Cantilever Beam
	6.15.5 Lateral Compression of Thin-Walled Tubes

	References

	7 Karamelo: A Multi-CPU/GPU C++ Parallel MPM Code
	7.1 Karamelo in a Nutshell
	7.2 Hierarchical Class System
	7.3 Pre and Post-processing
	7.4 Input Files
	7.5 Parallelization Using MPI
	7.6 Compilation
	7.7 Extending Karamelo
	7.8 GPU Support
	7.9 Some Simulations
	7.9.1 Taylor Anvil Test
	7.9.2 Upsetting of a Cylindrical Billet
	7.9.3 Cold Spraying
	7.9.4 Scalability Tests

	7.10 Conclusions
	References

	8 Contact and Fracture
	8.1 Contacts in the ULMPM
	8.1.1 Contact Without Friction
	8.1.2 Contact with Coulomb Friction
	8.1.3 Derivation
	8.1.4 Calculation of Normal Vector
	8.1.5 Algorithm
	8.1.6 Contact Between a Deformable Solid and a Rigid Wall
	8.1.7 Matlab Implementation
	8.1.8 Differences of MPM Contacts with Other Contacts
	8.1.9 Final Remarks

	8.2 Contacts in the TLMPM
	8.2.1 Enforcing Non-penetration
	8.2.2 Complete Algorithm

	8.3 Contact in GPIC
	8.4 Contact Simulations
	8.4.1 Test 1: Collision of Two Compressible Neo-Hookean Rings
	8.4.2 Test 2: High Velocity Impact of a Steel Disk Onto an Aluminum Target
	8.4.3 Test 3: Contact of a Rigid Sphere with a Half Plane
	8.4.4 Test 4: Cylinder Rolling on an Inclined Plane
	8.4.5 Test 5: Stress Wave in a Granular Material
	8.4.6 Test 6: Penetration of a Steel Sphere Into an Aluminium Cylinder
	8.4.7 Test 7: Scratch Test

	8.5 Fracture Modeling
	8.5.1 Fracture Modeling Within the MPM Framework
	8.5.2 Variational Fracture Theories
	8.5.3 Implementation of Variational Fracture Phase-Field Model
	8.5.4 Nonlocal Johnson-Cook Damage Models

	8.6 Some Fracture Simulations
	8.6.1 Tensile Test Specimen Experiencing Necking and Damage
	8.6.2 Double Circular Notched Specimen
	8.6.3 Compact Tension Specimen
	8.6.4 Machining Simulations
	8.6.5 High Velocity Impact of a Bullet Into a Steel Plate

	References

	9 Stability, Accuracy and Recent Improvements
	9.1 Energy and Momenta Conservation
	9.1.1 Linear Momentum Conservation
	9.1.2 Angular Momentum Conservation
	9.1.3 Total Energy Conservation

	9.2 The Method of Manufactured Solutions (MMS)
	9.2.1 An One Dimensional Manufactured Solution
	9.2.2 A Two Dimensional MMS
	9.2.3 Generalized Vortex Problem
	9.2.4 Norms
	9.2.5 Convergence Rate
	9.2.6 Convergence Rate of the MPM

	9.3 Moving Least Square MPM
	9.3.1 Least Square Approximations
	9.3.2 Velocity Projection
	9.3.3 One Point Quadrature
	9.3.4 Implementation
	9.3.5 Improved Implementation

	9.4 The Affine Particle in Cell (APIC)
	9.4.1 The Gradient Enhancement Technique
	9.4.2 Derivation
	9.4.3 Implementation
	9.4.4 Momenta Conservation
	9.4.5 Energy Conservation

	9.5 Convergence Tests
	9.5.1 One Dimensional Convergence Test
	9.5.2 Generalized Vortex Problem

	9.6 Volumetric Locking
	9.6.1 Overview of the F-bar Method
	9.6.2 F-bar Method in MPM: Cell Averaging
	9.6.3 F-bar Method in MPM: Nodal Averaging

	References

	10 Other Topics: Modeling of Fluids, Membranes and Temperature Effects
	10.1 Fluids and Gases
	10.1.1 Fluids
	10.1.2 Gases
	10.1.3 Some Examples

	10.2 Modeling Membranes
	10.2.1 York's MPM Algorithm for Membranes
	10.2.2 A Coupled FEM-MPM for Modeling Membranes

	10.3 Thermo-Mechanical Problems
	10.3.1 Thermal Problem
	10.3.2 Coupled Thermo-Mechanical MPM
	10.3.3 Verification Tests

	10.4 Fluid-Structure Interaction
	References

	Appendix A Strong Form, Weak Form and Completeness
	A.1 Weak Formulation
	A.1.1 Strong Form to Weak Form
	A.1.2 Weak Form to Strong Form
	A.2 Completeness
	Appendix B Derivation of CPDI Basis Functions
	B.1 CPDI-L2 Basis
	B.2 CPDI-L3 Basis
	B.3 CPDI-Q4 Basis
	B.4 Derivation of CPDI-T3 Basis
	B.5 Derivation of CPDI-Tet4 Basis
	Appendix C Utilities
	C.1 Scripts to Plot Basis Functions
	C.2 Symbolic Calculus
	C.3 Derivation of B-Spline Basis Functions
	C.3.1 Cubic B-Splines
	C.3.2 Quadratic B-Splines
	C.4 Running Simulations Using a Remote Machine
	C.5 Units
	Appendix D Explicit Lagrangian Finite Elements
	D.1 Updated Lagrangian Finite Elements
	D.1.1 General Flowchart
	D.1.2 Computation of Internal Force
	D.2 Total Lagrangian Finite Elements
	D.3 Implementation
	D.4 Examples
	D.4.1 One Dimensional Convergence Test
	D.4.2 Two Dimensional Convergence Test
	D.4.3 Large Deformation Vibration of a Cantilever Beam
	Appendix E Implicit Lagrangian Finite Elements
	E.1 Implicit Dynamics FEM
	E.1.1 General Case
	E.1.2 Linear Case
	E.2 Implementation
	E.3 Examples
	Appendix F Implementing the Material Point Method Using Julia
	F.1 A Short Introduction to Julia
	F.1.1 Julia: Installation and Code Editor
	F.1.2 Using `for' Loops Versus Vectorization
	F.1.3 Composite Types Versus Arrays
	F.1.4 Arrays
	F.1.5 Sets and Dictionaries
	F.1.6 Memory Allocation
	F.1.7 Types and Multiple Dispatch
	F.1.8 Type Stability
	F.1.9 Modules
	F.2 A Simple MPM Code in Julia
	F.2.1 Code Organization
	F.2.2 Data Structures
	F.2.3 Solution Phase
	F.2.4 Examples
	F.3 A More Efficient Julia MPM Code
	F.3.1 Grid and Particle Data Structure
	F.3.2 Basis Functions
	F.3.3 Material
	F.3.4 Problem
	F.3.5 Graphics
	F.3.6 A Complete Example
	F.3.7 Implementation of GPIC
	F.3.8 Performance Tests
	F.4 Tweaks for Speed
	References

	Index

 HistoryItem_V1
 InsertBlanks

 Where: before current page
 Number of pages: 1
 same as current

 1
 1
 1
 482
 277

 CurrentAVDoc

 SameAsCur
 BeforeCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

