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Preface

Simulation-based Engineering Science (SBES) has become the third pillar of
modern science and technology, a peer alongside theory and physical experi-
ment [1]. Computer modeling and simulation are now an indispensable tool for
resolving a multitude of scientific and technological problems we are facing [2].
To model and simulate those extreme loading events such as hypervelocity
impact, penetration, blast, machining, transient crack propagation and multi-
phase (solid–liquid–gas) interactions involving failure evolution, however, how
to effectively describe localized large deformations, the transition from contin-
uous to discontinuous failure modes, and fragmentation remains a challenging
task.

Both Lagrangian and Eulerian approaches have been used in SBES to tackle
different kinds of extreme events. Lagrangian methods have a computational
grid embedded and deformed with the material [3,4]. As a result, material in-
terfaces can be easily tracked, and history-dependent constitutive models can
be readily implemented. However, Lagrangian methods suffer from the diffi-
culties associated with grid distortion and element entanglement, which make
Lagrangian methods unsuitable for solving problems involving localized large
deformation, fragmentation, melting and vaporization. By contrast, in Eulerian
methods, the computational grid is fixed in space, and mass flows through the
grid. There is no difficulty associated with grid distortion and element entan-
glement in Eulerian methods so that they can easily solve the problems involv-
ing extreme deformation, fragmentation, melting and vaporization. However,
special procedures are required to identify the material interfaces and history-
dependency, which are very computationally intensive as compared with La-
grangian methods.

To take advantage of both Eulerian and Lagrangian methods while avoiding
the shortcomings of each, the Material Point Method (MPM) has evolved over
more than twenty years since its first journal paper was published in 1994 [5].
The MPM is an extension of the particle-in-cell (PIC) method in computa-
tional fluid dynamics to computational solid dynamics, formulated using the
weak formulation and including the history-dependency of constitutive models.

xiii



xiv Preface

It discretizes a continuum body into a set of material points (particles) moving
through an Eulerian background grid. Hence, the MPM is a continuum-based
particle method. The particles carry all material properties such as mass, veloc-
ity, stress, strain and state variables so that it is easy to track material interfaces
and to implement history-dependent constitutive models. As the equations of
motion are solved on the Eulerian background grid, there is no grid distortion
or element entanglement, which makes the MPM robust in dealing with various
types of extreme loading events.

After providing the necessary background information, this book describes
the fundamental theory, implementation and application of the MPM as well as
its recent extensions. It contains eight chapters. Chapter 1 briefly introduces
the basic ideas and features of the Lagrangian methods, Eulerian methods,
hybrid methods and meshfree methods, respectively. Chapter 2 reviews the La-
grangian and Eulerian descriptions of deformation and motion, as well as the
strain and stress measures in large deformation theory. The governing equa-
tions of motion in an updated Lagrangian framework are given. Based on the
updated Lagrangian description, Chapter 3 establishes the MPM formulation
by discretizing a continuum body into a set of particles. Both explicit and im-
plicit formulations are presented. The Generalized Interpolation Material Point
(GIMP) method, contact algorithm, adaptive MPM, incompressible MPM and
non-reflection boundary are discussed in detail. The computer implementation
of the MPM and corresponding source codes are described in Chapter 4 based on
our open source MPM code, MPM3D-F90. A user’s guide and several numerical
examples of the MPM3D-F90 code are also presented, for which the input data
files can be downloaded from our web site: http://mpm3d.comdyn.cn. Chapter 5
first reviews the explicit finite element method, and then presents the material
point finite element method, coupled material point finite element method, adap-
tive material point finite element method and hybrid material point finite element
method as developed in the Computational Dynamics Lab of the School of
Aerospace Engineering at Tsinghua University. Chapter 6 discusses the consti-
tutive models which describe different types of material behaviors, with a focus
on the extreme events. The computer implementation of these constitutive mod-
els is specified in detail, and corresponding source codes are provided. Chapter 7
introduces a multiscale MPM that could couple discrete forcing functions as
used in molecular dynamics with constitutive models as used in the continuous
approaches in a single computational domain. The mapping and remapping pro-
cess in the MPM could effectively coarse-grain fine details. Chapter 8 describes
the applications of the MPM and its extensions in those extreme events such
as transient crack propagation, impact/penetration, blast, fluid–structure inter-
action, and biomechanical responses to extreme loading.

http://mpm3d.comdyn.cn


Preface xv

The most materials of this book were based on our MPM book in Chi-
nese [6] with significant extensions and revisions. Zhen Chen added Sect. 3.2.3
and Chapter 7 while Yan Liu drafted Chapter 8. The remaining chapters were
drafted by Xiong Zhang. Xiong Zhang and Zhen Chen have revised the whole
book.

Finally, the first author wishes to acknowledge his students, S. Ma, P. Huang,
Z.T. Ma, Y.P. Lian, H.K. Wang, W.W. Gong, S.Z. Zhou, P.F. Yang, X.X. Cui,
P. Liu, Y.T. Zhang, X.J. Wang, Z.X. Hu, J.G. Li, Z.P. Chen and F. Zhang,
for their contributions to the algorithm development and programming related
to the book. Especially, Tamás Benedek who implemented a subroutine in
MPM3D-F90 to output simulation results to ParaView [7] for postprocessing
when he worked on his master thesis at Tsinghua University.



Chapter 1

Introduction
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1.3.3 Material Point Method 6
1.4 Meshfree Methods 7

Simulation-based Engineering Science (SBES) [2] is the third pillar of the
modern science and engineering, a peer alongside theory and physical experi-
ment [1]. Compared with physical experiment, SBES has the advantages of low
cost, safety, and efficiency in solving various kinds of challenging problems. To
better simulate those extreme events such as hypervelocity impact, penetration,
blast, crack propagation, and multi-phase (solid–liquid–gas) interactions involv-
ing failure evolution, yet effectively discretize localized large deformation, the
transition among different types of failure modes and fragmentation remains a
very difficult task. Based on the way how deformation and motion are described,
existing spatial discretization methods can be classified into Lagrangian, Eule-
rian, and hybrid ones, respectively.

1.1 LAGRANGIAN METHODS

In Lagrangian methods the computational grid is embedded and deformed with
the material. Since there is no advection between the grid and material, no ad-
vection term appears in the governing equations, which significantly simplifies
the solution process. The mass of each material element keeps constant during
the solution process, but the element volume varies due to element deformation.
Lagrangian methods have the following advantages:

1. They are conceptually more simple and efficient than Eulerian methods. Be-
cause there is no advection term that describes the mass flow across element
boundaries, the conservation equations for mass, momentum, and energy are
simple in form, and can be efficiently solved.

The Material Point Method. http://dx.doi.org/10.1016/B978-0-12-407716-4.00001-6
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2 The Material Point Method

FIGURE 1.1 Lagrangian grid.

2. Element boundaries coincide with the material interfaces during the solution
process so that it is easy to impose boundary conditions and to track material
interfaces.

3. Since Lagrangian methods track the flow of individual masses, it is easy to
implement history-dependent constitutive models.

Fig. 1.1 shows a typical Lagrangian grid which is embedded and deformed with
the material. Severe element distortion results in significant errors in numerical
solution, and even leads to a negative element volume or area which would cause
abnormal termination of the computation. To obtain a stable solution with an ex-
plicit time integration scheme, the time step must be smaller than a critical time
step which is controlled by the minimum characteristic length of all elements
in the grid. Because severe element distortion would significantly decrease the
characteristic element length, the time step in a Lagrangian calculation could
become smaller and smaller, and finally approach zero, which makes the com-
putation impossible to be completed. To complete a Lagrangian computation for
an extreme loading case, a distorted grid must be remeshed and its result must
be interpolated to the remeshed grid. The remesh or rezone technique has been
successfully used in solving many 1D and 2D problems, but rezoning a com-
plicated 3D material domain is still a challenging task. For a history-dependent
material, the history variables are also required to be interpolated from the old
grid to the new grid, which may further cause numerical error in stress calcula-
tion.

Another way to eliminate the element distortion is to use the erosion tech-
nique, which simply deletes the heavily distorted elements. An element is
considered to be heavily distorted if its equivalent plastic strain exceeds a user-
defined erosion strain value, or the critical time step size is less than a prescribed
value. Introducing element erosion can resolve some of the issues related to
the severe element distortion, but also introduce new issues. The global system
will lose both mass and energy, which can severely affect the simulation out-
come. Furthermore, the erosion technique cannot model the formation process
of debris cloud and its interaction with other panels in hypervelocity impact
simulation.
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FIGURE 1.2 Eulerian grid.

Many Lagrangian codes have been developed, as shown in the open lit-
erature. The HEMP [8] was developed in the early 1960s by Wilkins at the
Lawrence Livermore National Laboratory. The HEMP was an explicit La-
grangian finite-difference code that could handle large strains, elastic–plastic
flow, wave propagation, and sliding interfaces. The EPIC code [9] was an ex-
plicit Lagrangian finite element code developed in the 1970s by Johnson. Both
the rezoning and erosion techniques were employed in the EPIC to simulate high
velocity impact and blast problems. The PRONTO3D code [10] was a 3D tran-
sient solid dynamics code developed at the Sandia National Laboratory for an-
alyzing large deformations of highly nonlinear materials subjected to extremely
high strain rates. This code was based on an explicit finite element formulation,
and had been coupled with the smoothed particle hydrodynamics (SPH) method
through a contact-like algorithm [11]. The DYNA2D and DYNA3D codes were
developed in the 1970s at the Lawrence Livermore National Laboratory as ex-
plicit Lagrangian finite element codes and were successfully commercialized
[12–14].

1.2 EULERIAN METHODS

For problems in which a material domain could become heavily distorted or
different materials are mixed, an Eulerian method is more appropriate. In Eu-
lerian methods, the computational grid is fixed in space and does not move
with the material such that the material flows through the grid, as shown in
Fig. 1.2.

There is no element distortion in Eulerian methods, but the physical vari-
ables, such as mass, momentum, and energy, advect between adjacent elements
across their interface. The volume of each element keeps constant during the
simulation, but its density varies due to the advection of mass. Eulerian meth-
ods are suited for modeling large deformations of materials so that most of
computational fluid dynamics codes and early hydrocodes for impact and blast
simulation employ Eulerian methods.

Eulerian methods only calculate the material quantities advected between
elements without explicitly and accurately determining the position of material
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interface and free surface so that they are quite awkward in following deforming
material interfaces and moving boundaries. Significant efforts have been made
to develop interface reconstruction methods.

HELP (Hydrodynamic plus ELastic Plastic) [15], developed by Walsh and
Hageman in the 1960s, is a multi-material Eulerian finite difference program
for compressible fluid and elastic–plastic flows. To treat the material interface
or free surface, massless tracer particles are used, which define the surface po-
sition and move across the Eulerian grid. CTH [16] is an Eulerian finite volume
code developed at Sandia National Laboratories to model multi-dimensional,
multi-material, large deformation, and strong shock wave physics. The CTH
code employs a two-step Eulerian solution scheme, a Lagrangian step in which
the cells distort to follow the material motion, and a remesh step where the
distorted cells are mapped back to the Eulerian mesh. Material interfaces are re-
constructed using the Sandia Modified Young’s Reconstruction Algorithm. The
CTH has adaptive mesh refinement and uses second-order accurate numerical
methods to reduce numerical dispersion and dissipation. It is still under devel-
opment at Sandia National Laboratories [17].

The Zapotec developed at Sandia National Laboratories is a framework that
tightly couples the CTH and PRONTO codes [18,19]. In a Zapotec analysis,
both CTH and PRONTO are run concurrently. For a given time step, the Zapotec
maps the current configuration of a Lagrangian body onto the fixed Eulerian
mesh. Any overlapping Lagrangian material is inserted into the Eulerian mesh
with the updated mesh data passed back to the CTH. After that the external
loading on the Lagrangian material surfaces is determined from the stress state
in the Eulerian mesh. These loads are passed back to PRONTO as a set of ex-
ternal nodal forces. After the coupled treatment is completed, both CTH and
PRONTO are run independently over the next time step.

1.3 HYBRID METHODS

Both purely Lagrangian and purely Eulerian methods possess different short-
comings and advantages so that it is desirable to find new approaches to take
advantage of both methods to better tackle challenging problems. The arbitrary
Lagrangian–Eulerian (ALE) method [20] and the particle-in-cell (PIC) method
[21,22] are two representatives.

1.3.1 Arbitrary Eulerian–Lagrangian Method and Its Variations

The ALE method was first proposed in the finite difference and finite volume
context [23,24], and was subsequently adopted in the finite element context
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FIGURE 1.3 ALE grid.

[25–27]. The mixed Eulerian–Lagrangian method [24] involves the Eulerian
set-up with respect to one dimension and the Lagrangian one to the other di-
mension which corresponds to the direction of fluid flow. The coupled Eulerian–
Lagrangian [23] code employs an Eulerian mesh for the entire region and
Lagrangian meshes for the subregions of fluids with nonstationary boundaries
approximated by Lagrangian lines.

In the above methods, the computational mesh may be moved with the ma-
terial in Lagrangian manner, or be held fixed in Eulerian manner, or be moved
independently of material deformation to optimize element shapes and to de-
scribe the boundaries accurately [20], as shown in Fig. 1.3. Because these
methods offer great flexibility in moving the computational mesh, they can han-
dle a much greater distortion of the material than a Lagrangian method, with a
higher resolution than that afforded by an Eulerian method. However, the con-
vective terms still pose some problems. Furthermore, designing an efficient and
effective mesh-moving algorithm for complicated 3D problems remains a chal-
lenging task.

1.3.2 Particle-In-Cell Method and Its Variations

The PIC method was proposed and developed at Los Alamos National Labora-
tory by Harlow in the late 1950s [21,22,28]. PIC makes use of both Lagrangian
and Eulerian descriptions, namely, the fluid is discretized as a set of Lagrangian
particles that carry material position, mass, and species information, but the
computational mesh is a uniform Eulerian one. A computational cycle is di-
vided into two phases, a Lagrangian phase and an Eulerian (remap or rezone)
phase. In the Lagrangian phase, all the variables, including the mesh coordi-
nates and the particle positions, are advanced. In the Eulerian phase, the mesh
is mapped back into its original configuration, leaving the particles at their new
locations. This process can also be viewed in a time splitting way, namely, the
Lagrangian phase updates the quantities by all the processes except for advec-
tion, while the Eulerian phase moves the particles and accomplishes all of the
advective fluxing [29].
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As a variation of the PIC method, the marker-and-cell (MAC) method was
developed by Harlow and Welch [30,31] to treat incompressible and free surface
flows. In the MAC method, particles are used as markers to define the location
of the free-surface, and the Poisson equation for the pressure is solved to treat
the fluid incompressibility. The MAC method was the first successful technique
for simulating incompressible flows [32].

The original version of PIC is not a fully Lagrangian particle method be-
cause only the material position, mass, and species information is carried by
the particles, while the remaining quantities are still stored in the computa-
tional grid. The transfer of information between the particles and the underlying
grid leads to significant numerical diffusion. There are two strategies to reduce
the numerical diffusion, namely, second-order accuracy advection scheme [33]
and fully Lagrangian particle method. Brackbill et al. developed a fully La-
grangian particle method, FLuid-Implicit-Particle (FLIP) method [34,35], in
which each particle carries all of the properties of the fluid, including mo-
mentum and energy. FLIP preserves the ability of the original PIC to resolve
contact discontinuities, but eliminates the major source of numerical diffu-
sion.

1.3.3 Material Point Method

When working on the penetration problems in the early 1990, Zhen Chen and
his former PhD advisor, Buck Schreyer, faced a challenging task to improve the
computational fidelity and efficiency of the finite element method (FEM), due
to its limitation in the required use of a pin-hole in the mesh design. In a semi-
nar at University of New Mexico, Deborah Sulsky presented the advances of the
PIC method, based on her collaborative research on computational fluid dynam-
ics with the scientists at Los Alamos National Laboratory. Since the particle
motion in fluid is similar to the penetrator’s motion in solid from the view-
point of hard–soft body interaction, Sulsky’s seminar opened Chen’s eyes to a
new direction of research so that he initiated an interdisciplinary discussion. In
collaboration with Sandia National Laboratories, the team of three folks with
diversified tastes then started to combine computational fluid dynamics with
computational solid dynamics to develop a continuum-based particle method
with its first journal paper published in 1994 [5], which was later named as the
Material Point Method (MPM). Over the last two decades, many research teams
in the world have further developed the MPM and combined the MPM with
other numerical methods for multiphase, multiphysics, and multiscale simula-
tions to advance SBES.
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The MPM is an extension of the FLIP method from computational fluid
dynamics to computational solid dynamics with two key differences. First, the
constitutive equations are solved at the particles (material points) rather than
the grid cell centers such that the MPM can readily model history-dependent
materials. Second, the MPM is formulated in the weak form consistent with the
FEM so that the FEM and MPM could be effectively combined together [36–41]
for large-scale simulations.

The MPM is a fully Lagrangian particle method which utilizes the advan-
tages of both Eulerian and Lagrangian methods. As compared with Eulerian
methods, the numerical dissipation normally associated with a Eulerian method
is eliminated, while the complete deformation history of material points are
tracked. Compared with Lagrangian methods, mesh distortion and element en-
tanglement are avoided. Therefore, the MPM has demonstrated obvious ad-
vantages in tackling those extreme events such as impact, blast, penetration,
perforation, machining, fragmentation, and multi-phase interaction involving
failure evolution, as demonstrated in Chapter 8.

1.4 MESHFREE METHODS

In addition to the evolution of the MPM, different types of meshfree and particle
methods for improved spatial discretization in different problems have also been
proposed and developed in the SBES community [42]. Since all these meshfree
and particle methods do not use a rigid mesh connectivity compared with the
conventional mesh-based methods such as the FEM, they have been applied to
many challenging problems of current interests such as impact/contact, local-
ization, crack propagation, penetration, perforation, and fragmentation. Never-
theless, many of the meshfree methods suffer from higher computational costs,
and the accuracy of some meshfree methods is still dependent on the node reg-
ularities to some extent.

Smoothed particle hydrodynamics (SPH) [43–46] is one of the earliest mesh-
free Lagrangian particle methods. The SPH was first proposed by Lucy [43] and
Gingold and Monaghan [44] in 1977 to solve astrophysical problems in the 3D
open space, and has been extensively studied and extended to solid and fluid
dynamics problems with large deformations. The SPH and its improved ver-
sions have been successfully applied to the hypervelocity impact simulations,
and become some of the most popular meshfree methods in this area. Because
of their good performance, several commercial softwares, such as AUTODYN,
PAM-CRASH, and LS-DYNA, have incorporated the SPH into their solvers.
However, the SPH is limited in simulating multiphase interactions involving
failure evolution.
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FIGURE 1.4 Efficiency comparison between the MPM and SPH [47].

Ma et al. [47] compared the basic formulation and features of the MPM with
SPH from the following aspects: neighbor searching, approximation functions,
consistency of shape functions, tensile instability, time integration, boundary
conditions, and contact algorithm. A comparative study showed that the MPM
possesses many prominent features. The formulation of the MPM is simple
and similar to the traditional FEM. The time consuming neighbor searching,
which is compulsory in most meshfree methods, is not required in the MPM.
The MPM shape functions exactly satisfy the constant and linear consistency.
The MPM avoids tensile instability that is annoying in the SPH. The bound-
ary conditions can be applied in the MPM as easily as in the FEM, and the
contact algorithm can be efficiently implemented whose cost is linear in the
number of material points involved. Because the same regular computational
grid can be used in all time steps, the time step keeps constant in the MPM sim-
ulations. Numerical studies have showed that the computational efficiency and
stability of our MPM3D code are much higher than those of LS-DYNA SPH
module.

Fig. 1.4 compares the CPU time per step as used by LS-DYNA SPH mod-
ule and our MPM3D code in the simulation of the translation motion of a cubic
block [48]. It demonstrates that the CPU time per step used by both methods in-
creases linearly with the increase of number of particles, but the rate of increase
of the SPH is much higher than that of the MPM.

Ma et al. [47] also investigated the accuracy and efficiency of the SPH and
MPM by simulating the impact of a copper cylinder to a rigid wall with an im-
pact velocity of 190 m/s. In the SPH simulations, the constant associated with
the smoothing length was set to 1.2 (SPH1) and 1.4 (SPH2), respectively. The
value of 1.2 is the default value used in LS-DYNA, and a larger value will in-
crease the computational time but may improve the result with more neighbors
for each particle. Fig. 1.5 compares the final configurations of the bar obtained
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FIGURE 1.5 Final configurations of the Taylor bar impact (top view): (a) SPH1, (b) SPH2, and
(c) MPM3D [47].

by the SPH and MPM, which shows that the SPH algorithm suffers from nu-
merical fracture due to tensile instability. Enlarging the smoothing length can
alleviate the numerical fracture, but particle clumps may still exist. Furthermore,
enlarging the smoothing length increases the time step size, which raises the
one-step computational cost significantly.
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For large deformation problems, such as the evolution of localized failure under
extreme loading conditions, the finite strain theory should be used to establish
the governing equations. This chapter briefly introduces the descriptions of mo-
tion in both Lagrangian and Eulerian frameworks, the deformation gradient,
the rate of deformation, the Cauchy stress, and the Jaumann rate of Cauchy
stress. The equations governing the motion and deformation of materials are
formulated in the updated Lagrangian frame that is used in the MPM and FEM
formulations in the book. For continuum-based variables or equations, bold-
faced letters denote tensors of 1st or higher orders while indicial notation is
adopted to represent their components. Matrix notation is employed to describe
discrete variables or equations for numerical implementation.

2.1 DESCRIPTION OF MOTION

Considering the motion of a continuum body within which a material point (par-
ticle) moves from its original position P at time t = 0 to its current position p

at time t , as shown in Fig. 2.1. The region of three-dimensional (3D) Euclidean
space occupied by the body at time t = 0 is called the initial or undeformed
configuration (Ω0), while the region of 3D Euclidean space occupied by the
body at time t is called the current or deformed configuration (Ω). To mea-
sure the motion of the body, one particular configuration should be selected as
the reference configuration to which the motion of the body will be referred.

The Material Point Method. http://dx.doi.org/10.1016/B978-0-12-407716-4.00002-8
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FIGURE 2.1 Initial configuration and current configuration.

Any possible configuration can be chosen as the reference configuration, but a
common practice is to choose the initial configuration as the reference configu-
ration.

The original position vector X of a particle in the reference configuration
can be expressed as

X = XiEi , i = 1,2,3 (2.1)

where Ei is the unit vector that defines the basis of the material (body-frame)
coordinate system, and the components Xi are the coordinates of the particle
in the material coordinate system. In this book, the subscripts with lowercase
Latin alphabet, such as i, j , and k, indicate the spatial components following
Einstein summation convention, namely, repeated indices imply the summation
over all the values of the index. The original position vector X of the particle
P serves as a label to the particle. The coordinates Xi are called the material
coordinates or Lagrangian coordinates.

The position vector x of the particle X in the current configuration, as shown
in Fig. 2.1, can be written as

x = xiei , i = 1,2,3 (2.2)

where ei is the unit vector that defines the basis of the spatial coordinate system,
and the components xi are the coordinates of the particle in the spatial coordi-
nate system. The coordinates xi define the spatial position of the particle such
that they are called the spatial coordinates or Eulerian coordinates.

The motion and deformation of a continuum body can be described by the
evolution of configuration with time. There are two types of descriptions for the
motion, namely, material or Lagrangian description and spatial or Eulerian
description. The Lagrangian description is in terms of the material coordinates
so that the position and physical properties of the particle are described in terms
of the material coordinates X and time t . The reference configuration is the
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initial configuration at t = 0. In the Lagrangian description, an observer standing
in the body-frame observes the changes in the position and physical properties
as the continuum body moves in space with time, which is commonly used in
solid mechanics.

The Eulerian description is in terms of the spatial coordinates x and time t ,
in which the current configuration is selected as the reference configuration. The
Eulerian description is focused on what is occurring at a fixed point in space as
time advances, rather than individual particles as they move through space with
time. No history-dependency is considered in the Eulerian description. There-
fore, this approach is commonly used in fluid mechanics.

In the Lagrangian description, the motion of a continuum body can be ex-
pressed as

x = χ(X, t) = x(X, t) (2.3)

which is a mapping from the initial configuration Ω0 onto the current con-
figuration Ω . It states that a particle with a position vector X in the initial
configuration Ω0 will occupy the position x in the current configuration Ω at
time t . In continuum mechanics, the mapping operation χ(·, ·) is assumed to
be invertible at each time t and differentiable as many times as necessary with
respect to both X and t .

In the Eulerian description, the motion of a continuum body can be expressed
as

X = χ−1(x, t) = X(x, t) (2.4)

which states that the particle, which occupies the position x in the current con-
figuration, is the one with the position vector X in the initial configuration.

In the Lagrangian description, the displacement field is expressed in terms
of the material coordinates as

u = x(X, t) − X. (2.5)

In the Eulerian description, the displacement field is expressed in terms of
the spatial coordinates as

u = x − X(x, t). (2.6)

The velocity of the particle X is the time rate of change of its instantaneous
position vector x, namely, the partial derivative of x with respect to time t , hold-
ing X constant. The partial derivative of any quantity for a moving continuum
body with respect to time t , holding X constant, is called the material deriva-
tive of that quantity, which is also known as the total derivative or Lagrangian
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derivative. It can be considered as the time rate of change of the quantity fol-
lowing a particle. Therefore, the velocity field of the body can be obtained from
the material derivative of Eq. (2.5) as

v = ẋ = ∂x(X, t)

∂t
= ∂u(X, t)

∂t
, (2.7)

and the acceleration field can be obtained from the material derivative of the
velocity filed (2.7) as

a = v̇ = ∂v(X, t)

∂t
= ∂2u(X, t)

∂t2
. (2.8)

In the Eulerian description, the material derivative of a quantity F(x, t) can
be obtained by using the chain rule and Eq. (2.3) as

DF(x, t)

Dt
= ∂F (x, t)

∂t
+ ∂F (x, t)

∂x
· ∂x(X, t)

∂t

= ∂F (x, t)

∂t
+ v · ∇F(x, t). (2.9)

The first term on the right-hand side of Eq. (2.9) is the local derivative
or Eulerian derivative, which yields the local rate of change of the quantity
occurring at position x. The second term of the right-hand side is the convec-
tive derivative that expresses the rate of change of the quantity contributed by
the particle motion due to the nonuniformity of the quantity in space. The ma-
terial derivative (2.9) establishes a link between the Eulerian description and
Lagrangian one of continuum deformation.

By following the motion of material points, the Lagrangian description
can readily track material interfaces and implement history-dependent material
models so that it is commonly used in solid mechanics. Only the strain and stress
measures that use the Lagrangian description are considered in this chapter.

2.2 DEFORMATION GRADIENT

The partial derivative of x with respect to X,

F = ∂x(X, t)

∂X
= ∂xi

∂Xj

ei ⊗ Ej ,

is called the deformation gradient that is a second-order, asymmetric, and two-
point tensor as it is related to both the reference and current configurations.
Consider an infinitesimal linear element dX joining a particle P with the po-
sition vector X and its neighbor Q with the position vector X + dX in the
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reference configuration Ω0. In the current configuration, the linear element be-
comes dx, which can be expressed as

dx = x(X + dX, t) − x(X, t). (2.10)

Expanding x(X + dX, t) in Eq. (2.10) into Taylor series about X and ne-
glecting higher order terms results in

dx = ∂x

∂X
· dX. (2.11)

Eq. (2.11) implies that the material deformation gradient tensor F is a lin-
ear mapping operator, which maps each infinitesimal linear element dX in the
reference configuration into an infinitesimal linear element dx in the current
configuration. Therefore, the deformation gradient tensor F describes the map-
ping from the infinitesimal neighborhood of X to the infinitesimal neighborhood
of x such that F (X, t) is a measure of both the stretch and rotation in the in-
finitesimal neighborhood of X as it deforms to x at time t .

A necessary and sufficient condition for the motion (2.3) to be invertible
for all X and times t is that the determinant of the deformation gradient, often
referred to as the Jacobian, be nonzero, namely

J =
∣∣∣∣ ∂x

∂X

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂X1

∂x1

∂X2

∂x1

∂X3

∂x2

∂X1

∂x2

∂X2

∂x2

∂X3

∂x3

∂X1

∂x3

∂X2

∂x3

∂X3

∣∣∣∣∣∣∣∣∣∣∣∣∣
= eijk

∂xi

∂X1

∂xj

∂X2

∂xk

∂X3
�= 0 (2.12)

where eijk is the Levi-Civita symbol (also called permutation symbol or alter-
nating symbol), which is equal to 1 if (i, j, k) is an even permutation of (1,2,3),
−1 if it is an odd permutation, and 0 if any index is repeated.

Consider a parallelepiped formed by three linear elements dX, δX, and �X

at point X in the reference configuration, which deforms to the parallelepiped
formed by the linear element dx, δx, and �x at point x in the current config-
uration, as shown in Fig. 2.2. According to Eq. (2.11), the linear elements dx,
δx, and �x are related to the linear elements dX, δX, and �X by

dx = ∂x

∂X
· dX, δx = ∂x

∂X
· δX, �x = ∂x

∂X
· �X.
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FIGURE 2.2 The volume elements dV0 and dV .

In the current configuration, the volume of the parallelepiped formed by the
linear element dx, δx, and �x at point x is

dV =

∣∣∣∣∣∣∣
dx1 dx2 dx3

δx1 δx2 δx3

�x1 �x2 �x3

∣∣∣∣∣∣∣ = JdV0. (2.13)

Therefore, the Jacobian of the deformation gradient is related to the local
volume change experienced by an infinitesimal parallelepiped during the defor-
mation of the continuum body. The dilatation or normalized volume change is
defined as

μ = dV − dV0

dV0
= J − 1. (2.14)

2.3 RATE OF DEFORMATION

Consider a particle P and its neighboring particle P ′. Their position vectors at
time t are x and x + dx, respectively, while their velocity vectors at time t are
v(x, t) and v(x + dx, t), respectively. The difference between the velocity of
particle P ′ and that of particle P then becomes

dv = v(x + dx, t) − v(x, t) = L · dx (2.15)

where

L = ∂v

∂x
(2.16)

is the velocity gradient that can be decomposed into a symmetric tensor D and
a skew-symmetric tensor Ω , i.e.,

L = D + Ω (2.17)
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where

Ω = 1

2

(
L − LT)

, (2.18)

D = 1

2

(
L + LT)

(2.19)

are referred to as the spin tensor (or vorticity tensor) and the rate of deforma-
tion tensor, respectively. The rate of deformation tensor D represents the rate of
stretching of a line element, while the spin tensor Ω indicates the rate of rotation
or vorticity of the line element.

Similar to the decomposition of the velocity gradient tensor, the relative ve-
locity dv in Eq. (2.15) can also be decomposed as

dv = dv∗ + dv∗∗ (2.20)

where

dv∗ = Ω · dx, dv∗∗ = D · dx. (2.21)

The spin tensor Ω is a skew-symmetric tensor so that there exists a unique
vector ω such that

Ω · s = ω × s (2.22)

for any vector s. The vector ω is the axial vector of the spin tensor Ω , called the
angular velocity vector.

Substituting Eq. (2.22) into the first equation in Eq. (2.21) leads to

dv∗ = ω × dx. (2.23)

Eq. (2.23) states that the relative velocity dv∗ equals the vector cross-product
of ω and dx. That is to say, within the neighbor of particle P , the relative ve-
locity dv∗ corresponds to the rigid body rotation of the neighbor of the particle
about an axis with the angular velocity ω.

Note that the rate of deformation D is the rate of true strain ε̇, i.e.,

D = ε̇, (2.24)

which is the true strain measure that corresponds to the current configuration of
the continuum body.

2.4 CAUCHY STRESS

Consider an infinitesimal area element ndA oriented in an arbitrary direction
specified by a unit normal vector n, as shown in Fig. 2.3. The contact force
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FIGURE 2.3 Infinitesimal tetrahedron.

acting on the area element due to the interaction between the two portions of
a continuum body separated by the area element is denoted as dT . Thus, the
stress vector t (n), also called traction vector, acting on the area is defined as
the ratio of the contact force dT applied on the area element to its area dA, i.e.,

t (n) = dT

dA
. (2.25)

The infinitesimal area element ndA forms a tetrahedron with three faces
n(k)dAk (k = 1,2,3) perpendicular to the coordinate axis xk , as shown in
Fig. 2.3. The area of each face, dAk (k = 1,2,3), is related to the area dA by
dAk = dAnk , where nk is the component of the unit normal vector n along the
axis ek . The stress vectors acting on the faces of the tetrahedron are denoted as
t (k) (k = 1,2,3). The equilibrium of forces results in

dT = t (n)dA = t (k)dAk = t (k)dAnk = n · σdA (2.26)

where σki = t (k)ei is the component of the stress vector t (k) acting on the area
element n(k)dAk in the direction along the ith coordinate. The nine components
of σki define a 2nd-order tensor, called the Cauchy stress tensor or true stress
tensor. The Cauchy stress tensor completely defines the state of stress at a point
inside a continuum body in the deformed configuration. It can be further shown
from the equilibrium of moments that the Cauchy stress tensor is symmetric if
there is no body couple, i.e.,

σ = σT. (2.27)

Substituting Eq. (2.26) into Eq. (2.25) leads to

t (n) = n · σ . (2.28)

Eq. (2.28) shows that the Cauchy stress tensor relates a unit normal vector n

to the stress vector t (n) across an imaginary surface perpendicular to n.
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FIGURE 2.4 Rotation of a bar under initial uniaxial stress.

2.5 JAUMANN STRESS RATE

The material response should not depend on the frame of reference. Thus, any
constitutive model should be objective, namely, not depend on the frame of ref-
erence. Many constitutive equations relate a stress-rate to a strain-rate or the
rate of deformation, but the time derivative of the Cauchy stress tensor is not
objective.

To demonstrate the above point, consider the rotation of a bar under uniaxial
stress in the initial configuration, as shown in Fig. 2.4. When the bar is parallel
to the axial axis x1, σ11 = σ and σ22 = 0. However, when the bar rotates to the
position parallel to the axis x2, σ11 = 0 and σ22 = σ . Although no deformation
occurs during the rigid body rotation, the Cauchy stress expressed in the fixed
coordinate system has changed so that the time derivative of the Cauchy stress
is not objective, and should not be used in any constitutive model.

Fig. 2.4 illustrates that although the rate of the Cauchy stress in the fixed
coordinate system Px1x2 is not objective, the rate of the Cauchy stress in the
co-rotational coordinate system rotating with the bar is objective. Therefore, we
can obtain an objective stress rate by taking the co-rotational stress as the stress
measure. The co-rotational Cauchy stress σ̂ can be obtained as

σ̂ = RT · σ · R (2.29)

where R represents the rotation of the co-rotational coordinate system. Consid-
ering the co-rotational coordinate system coincident with the reference coordi-
nate system at time t but rotating with the spin tensor Ω , we have

R = I , Ṙ = Ω. (2.30)

Taking the material derivative in Eq. (2.29) and then invoking Eq. (2.30)
results in

˙̂σ = Ṙ
T · σ · R + RT · σ̇ · R + RT · σ · Ṙ

= σ̇ + ΩT · σ + σ · Ω. (2.31)
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The co-rotational rate of the Cauchy stress given in Eq. (2.31) is often

called the Jaumann rate and denoted by
∇
σ . Due to the skew symmetry of the

spin tensor Ω , the Jaumann rate of the Cauchy stress can be rewritten as

∇
σ = σ̇ − Ω · σ − σ · ΩT. (2.32)

The Jaumann rate is used widely because it is relatively easy to be imple-
mented in numerical procedures, and leads to symmetric tangent moduli. There
are many other objective stress rates, such as the Truesdell rate of the Cauchy
stress and the Green–Naghdi rate of the Cauchy stress. However, the Jaumann
rate will be used in this book.

2.6 UPDATED LAGRANGIAN FORMULATION

The governing equations in continuum mechanics are based on the conservation
laws for mass, momentum, and energy, constitutive models, and kinematic con-
ditions. To discretize the governing equations in Lagrangian meshes, the mesh
nodes must move with the continuum body so that material boundaries and in-
terfaces always coincide with element edges. Thus material interfaces can be
precisely followed and boundary conditions can be easily applied. Quadrature
points also move with the material and follow the same material points such that
it is straightforward to implement history-dependent constitutive models.

The finite element discretization with Lagrangian meshes can be classified
into two categories, the updated Lagrangian approach and total Lagrangian
one. Both approaches use Lagrangian description, namely, the independent vari-
ables in both approaches are the Lagrangian (material) coordinate system X and
time t . In the total Lagrangian approach, the stress and strain measures are de-
fined with respect to the initial (reference) configuration, namely, the nominal
stress and Green strain are used. Derivatives and integrals are evaluated with
respect to the Lagrangian coordinate system X. In the updated Lagrangian ap-
proach, however, the stress and strain measures are defined with respect to the
current configuration, namely, the Cauchy stress and rate of deformation are
used. Derivatives and integrals are computed with respect to the Eulerian co-
ordinate system x. The updated Lagrangian approach has been widely used in
the MPM such that the governing equations are only given in the updated La-
grangian formulation in this book.

2.6.1 Reynolds’ Transport Theorem

The material derivative of the volume integral of function f(x, t) over the time-
dependent region Ω(t) that has boundary ∂Ω(t) can be evaluated by using
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Eq. (2.13) as follows:

D

Dt

∫
Ω

f (x, t)dV = D

Dt

∫
Ω0

f (x, t)JdV0

=
∫

Ω0

[
ḟ (x, t)J + f (x, t)

DJ

Dt

]
dV0 (2.33)

where ḟ (x, t) = Df (x, t)/Dt is the material derivative of function f (x, t) with
respective to time t .

Taking the material derivative of Eq. (2.12) with respective to time t and
making use of the property of the determinant that the determinant of a matrix
with repeated rows is zero gives

DJ

Dt
= J∇ · v. (2.34)

Substituting Eq. (2.34) into Eq. (2.33) results in the Reynold’s transport the-
orem

D

Dt

∫
Ω

f (x, t)dV =
∫

Ω

[
ḟ (x, t) + f (x, t)∇ · v]

dV. (2.35)

2.6.2 Conservation of Mass

The total mass of a continuum body in the current configuration is

m =
∫

Ω

ρ(x, t)dV (2.36)

where ρ(x, t) is the local density of the continuum body in the current configu-
ration. The conservation of mass requires that the material derivative of the total
mass equal zero, namely

D

Dt

∫
Ω

ρ(x, t)dV =
∫

Ω

(ρ̇ + ρ∇ · v)dV = 0. (2.37)

Thus

ρ̇ + ρ∇ · v = 0. (2.38)

Eq. (2.38) is the continuity equation expressed with respect to the current
configuration. Eq. (2.36) can be rewritten in the initial configuration as∫

Ω

ρdV =
∫

Ω0

ρ0dV0 (2.39)
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where ρ0 is the local density of the continuum body in the initial configuration.
By using Eq. (2.13), Eq. (2.39) becomes∫

Ω0

(ρJ − ρ0)dV0 = 0. (2.40)

Therefore, the conservation of mass can also be written as

ρ(X, t)J (X, t) = ρ0(X). (2.41)

Although the continuity equation (2.38) can be used to obtain the current
density in the Lagrangian approach, it is simpler and more accurate to use
Eq. (2.41).

2.6.3 Conservation of Linear Momentum

The conservation of linear momentum requires that the material derivative of
the linear momentum of the continuum body Ω equal the resultant force acting
on it, i.e.,

D

Dt

∫
Ω

ρv(x, t)dV =
∫

Ω

ρb(x, t)dV +
∫

Γ

t(x, t)dA (2.42)

where b is the body force per unit mass acting on the continuum body, t = n · σ
is the external traction acting on the surface Γ with the normal n that bounds Ω .

Using the Reynold’s transport theorem (2.35), the left side of Eq. (2.42) can
be reduced to

D

Dt

∫
Ω

ρv(x, t)dV =
∫

Ω

[
D(ρv)

Dt
+ ρv∇ · v

]
dV

=
∫

Ω

[ρv̇ + v (ρ̇ + ρ∇ · v)] dV. (2.43)

Substituting the continuity equation (2.38) into Eq. (2.43) results in

D

Dt

∫
Ω

ρv(x, t)dV =
∫

Ω

ρv̇dV. (2.44)

Similarly, for any function φ(x, t), we have

D

Dt

∫
Ω

ρφ(x, t)dV =
∫

Ω

ρφ̇dV. (2.45)

Applying the divergence theorem (Gauss’ theorem) to the second term on
the right side of Eq. (2.42) gives∫

Γ

t(x, t)dA =
∫

Γ

n · σdA =
∫

Ω

σ · ∇dV. (2.46)
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Substituting Eqs. (2.44) and (2.46) into (2.42) leads to

∫
Ω

(ρv̇ − ρb − σ · ∇)dV = 0. (2.47)

Therefore, the conservation of linear momentum for the updated Lagrangian
approach takes the form of

ρv̇ − ρb − σ · ∇ = 0. (2.48)

2.6.4 Conservation of Energy

The first law of thermodynamics requires that the material derivative of the total
energy of a continuum body Ω in the current configuration equal the sum of the
net rate of change in mechanical work done on the body and the net heat flux
into the body, i.e.,

D

Dt

∫
Ω

(
ρe + 1

2
ρv · v

)
dV =

∫
Ω

ρsdV −
∫

Γ

n · qdA

+
∫

Ω

ρv · bdV +
∫

Γ

v · tdA (2.49)

where e is the specific internal energy (internal energy per unit mass), s is the
heat supply, and q is the heat flux vector that represents the thermal energy flow
per unit time and per unit area in the deformed body. The Fourier’s Law of Heat
Conduction states that the local heat flux vector is proportional to the negative
local temperature gradient, i.e.,

q = −k
∂T

∂x
(2.50)

where k denotes the material’s conductivity, and T is the temperature.
The two terms on the left side of Eq. (2.49) are the rate of the total internal

energy and the rate of the total kinetic energy, respectively. The last two terms
on the right side are the rate of work done by the body force and the external
traction, respectively. Using Eq. (2.45), the left side of Eq. (2.49) can be reduced
to

D

Dt

∫
Ω

(
ρe + 1

2
ρv · v

)
dV =

∫
Ω

(ρė + ρv · v̇)dV. (2.51)

The last term on the right side of Eq. (2.49) can be rewritten with the use
of Gauss’s theorem and Ω : σ = 0 due to the antisymmetry of spin tensor Ω as
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follows: ∫
Γ

v · tdA =
∫

Γ

n · σ · vdA =
∫

Ω

∇ · (σ · v)dV

=
∫

Ω

(∇v : σ + v · (σ · ∇))dV

=
∫

Ω

(D : σ + v · (σ · ∇))dV. (2.52)

Substituting Eqs. (2.51) and (2.52) into Eq. (2.49) and applying Gauss’ the-
orem in the second term on the right side of Eq. (2.49) yields∫

Ω

[
ρė − D : σ − ρs − ∇ · (k∇T ) + v · (ρv̇ − σ · ∇ − ρb)

]
dV = 0. (2.53)

Substituting the conservation of linear momentum (2.48) into Eq. (2.53)
gives the conservation of energy for the updated Lagrangian approach as be-
low

ρė = ρs + ∇ · (k∇T ) + D : σ . (2.54)

2.6.5 Governing Equations

The governing equations consist of the conservation equations as derived above
for the updated Lagrangian approach, constitutive equation, kinematic condi-
tion, and boundary/initial data, summarized as follows:

(Conservation of mass) ρJ = J0, (2.55)

(Conservation of momentum) σ · ∇ + ρb = ρv̇, (2.56)

(Conservation of energy) ρė = D : σ + ρs + ∇ · (k∇T ) , (2.57)

(Constitutive equation) σ∇ = σ∇(D, σ, etc.), (2.58)

(Rate of deformation) D = 1

2

(
L + LT)

, (2.59)

(Boundary conditions)

{
(n · σ )|Γt

= t̄,

v|Γu
= v̄,

(2.60)

(Initial conditions) v(X,0) = v0(X), u(X,0) = u0(X) (2.61)

where Γt denotes the traction boundary, Γu denotes the displacement boundary,
σ is the Cauchy stress, ρ is the current density, b is the body force per unit mass
acting on the continuum, v̇ is the acceleration, and n is the unit normal of the
boundary Γt .



Governing Equations Chapter | 2 25

2.7 WEAK FORM OF THE UPDATED LAGRANGIAN
FORMULATION

The governing equations presented in Sect. 2.6.5 result in a set of partial dif-

ferential equations (PDEs) which describe the motion of a continuum. These

governing equations could be solved exactly for some simple problems, but have

to be solved numerically for most of modern engineering problems with com-

plicated domains and boundary conditions.

There are two kinds of numerical methods for solving partial differential

equations. The first kind of methods obtain directly the approximate solution

of the PDEs with their initial and boundary conditions. Fox example, the finite

difference method (FDM) converts PDEs into a set of linear equations by ap-

proximating the derivatives in the PDEs with corresponding differences at grid

points. The FDM has been widely used in the computational fluid dynamics to

tackle fluid flows in space, but it is cumbersome in solving the problems with

arbitrarily shaped domains.

The second kind of methods first establish a week form equivalent to the

original PDEs with their initial and boundary conditions, and then solve the

weak form numerically. For example, the method of weighted residual (MWR)

minimizes the integral error of numerical solutions in a certain way. Similar to

the FEM, the MPM is also formulated based on the weak form.

For the isothermal problems to be considered in this book, conservation of

mass and momentum implies that of energy. Conservation of mass is inherent in

the MPM, as shown later. To discretize the governing equations in space, hence,

the momentum equation (2.56) must be satisfied everywhere within the solution

domain Ω . In the MWR, the error (residual) due to the spacial discretization

is forced to be zero in an average sense over the solution domain. Taking the

virtual displacements δuj ∈ �0, �0 = {δuj |δuj ∈ C0, δuj

∣∣
Γu

= 0} as the test

functions, the weak forms equivalent to the momentum equation (2.56) and the

traction boundary conditions (2.60) are given by

∫
Ω

δui

(
σij,j + ρbi − ρüi

)
dV = 0, (2.62)∫

Γt

δui

(
σijnj − t̄i

)
dV = 0, (2.63)

respectively. The first term on the left side of Eq. (2.62) can be rewritten with

the use of integration by parts, Eq. (2.63), and δui |Γu
= 0 (due to the condition
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ui |Γu
being prescribed) as follows:

∫
Ω

δuiσij,j dV =
∫

Ω

[(δuiσij ),j − δui,j σij ]dV

=
∫

Γ

δuiσij nj dA −
∫

Ω

δui,j σij dV (2.64)

=
∫

Γt

δui t̄idA −
∫

Ω

δui,j σij dV .

Substituting Eq. (2.64) into Eq. (2.62) leads to

∫
Ω

ρüiδuidV +
∫

Ω

σij δui,j dV −
∫

Ω

ρbiδuidV −
∫

Γt

t̄iδuidA = 0. (2.65)

Eq. (2.65) is the weak form equivalent to the momentum equation and the
traction boundary condition, or the virtual work equation. The highest order
of derivatives of the displacement ui with respect to the coordinate system in
Eq. (2.65) is one, which is one order lower than that appearing in the strong
form (2.56). Thus, the trial function ui could only be C0. The weak form (2.65)
will be used in Sect. 5.1 to establish the FEM formulation.

Eq. (2.65) can be rewritten as

δw = δwint − δwext + δwkin = 0 (2.66)

where

δwint =
∫

Ω

δui,j σij dV, (2.67)

δwext =
∫

Ω

δuiρbidV +
∫

Γt

δui t̄idA, and (2.68)

δwkin =
∫

Ω

δuiρüidV (2.69)

are the virtual work of the internal force, external force, and inertial force, re-
spectively.

The weak form (2.65) can also take the form of

∫
Ω

ρüiδuidV +
∫

Ω

ρσ s
ij δui,j dV −

∫
Ω

ρbiδuidV −
∫

Γt

ρt̄ si δuidA = 0 (2.70)

in which σ s
ij = σij /ρ is the specific stress, and t̄ si = t̄i/ρ is the specific traction.

The weak form (2.70) will be used in Chapter 3 to formulate the MPM.
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FIGURE 2.5 A steady shock wave propagating with velocity us .

2.8 SHOCK WAVE

A shock wave is a type of propagating disturbance. The thickness of the shocked
layer is negligibly small as compared with other physically relevant dimensions
so that the shock front may be viewed as a moving surface across which the
state variables change discontinuously [49].

2.8.1 Rankine–Hugoniot Equations

Consider the case of a uniform pressure suddenly propagating with velocity us

into a plate of compressible material that is initially at rest with density ρ0,
pressure p0, and specific internal energy e0, which imparts a particle velocity
up , density ρ, pressure p, and specific internal energy e to the plate, as shown
in Fig. 2.5. At time t , the shock front is located at AA, but propagates to the
position BB at time t + dt . The particles located at AA at time t move to the
position CC at time t + dt .

Consider a segment of the material with a unit cross-sectional area. At time t ,
the density ahead of the shock front AA is ρ0 such that the mass of the material
segment in the region AABB equals ρ0usdt . After time interval dt , the material
in the region AABB is compressed into the region CCBB with density of ρ and
mass of ρ(us − up)dt . The conservation of mass gives

ρ0us = ρ(us − up). (2.71)

During the time interval dt , the material in the region AABB is accelerated to
velocity up from rest such that the change of momentum in the material segment
is ρ0usdtup , with the net pressure impulse being (p − p0)dt . The conservation
of momentum gives

p − p0 = ρ0usup (2.72)

where ρ0us is often called the shock impedance.
During the time interval dt , the incremental kinetic energy of the material

segment in the region AABB is 1
2ρ0usdtu2

p , the incremental internal energy is
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ρ0usdt (e − e0), and the work done by the pressure is pupdt . The conservation
of energy yields

1

2
ρ0usu

2
p + ρ0us(e − e0) = pup. (2.73)

Eqs. (2.71), (2.72), and (2.73) are the jump conditions that describe the rela-
tionship between the states on both sides of a shock wave, called the Rankine–
Hugoniot equations or Rankine–Hugoniot jump conditions.

Using the Rankine–Hugoniot equations for the conservation of mass and mo-
mentum to eliminate the particle velocity up results in the relationship among
the shock velocity us , pressure p, and density ρ. From the conservation of mass,
(2.71), we have

us = v0

v0 − v
up (2.74)

where v0 = 1/ρ0 and v = 1/ρ are the uncompressed and compressed specific
volumes. Solving us from the conservation of momentum, (2.72), we get

up = p − p0

ρ0us

. (2.75)

Substituting Eq. (2.75) into Eq. (2.74) leads to

u2
s = 1

ρ2
0

p − p0

v0 − v
. (2.76)

Eq. (2.76) is the equation of a line with slope −(ρ0us)
2 in the p–v plane.

This line is called the Rayleigh line. Eq. (2.76) represents a series of thermody-
namic paths which the continuum follows when being shocked from its initial
to final state.

Eliminating the particle velocity up and shock velocity us by using
Eqs. (2.75) and (2.76) from the conservation of energy, (2.73), the conservation
laws reduce to a single equation, knowns as the Rankine–Hugoniot relation,
namely

e − e0 = 1

2
(p + p0)(v0 − v). (2.77)

When the initial state (v0,p0) ahead of the shock front and p behind the
shock front are given, the above relation can be used in the p–v plane if the
equation of state (EOS), p = p(e, v), of the material is known. The Hugoniot
curve can be plotted using the Rankine–Hugoniot relation (2.77) and the EOS,
as shown in Fig. 2.6. The compressed specific volume v can be found because p

is given. The shock velocity us can be obtained from the slope of the Rayleigh
line, and the specific energy e can be obtained from Eq. (2.77).
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FIGURE 2.6 Hugoniot curve.

The Hugoniot curve describes the locus of all possible thermodynamic states
that can be achieved from a given initial state in a material behind a shock. How-
ever, these states should follow a thermodynamic path dictated by the Rayleigh
line, as shown in Fig. 2.6. Thus, successive states along the Hugoniot curve
cannot be achieved from each other as a shock propagates.

For most of solid materials, experimental studies have shown that the shock
velocity us and the particle velocity up can be empirically described in the re-
gions where a substantial phase change in the continuum does not occur, via the
following equation:

us = c0 + sup (2.78)

where c0 is the bulk sound velocity at ambient pressure, and s is a material
constant. The monograph of Meyers [50] listed the value of parameters c0, s,
and γ0 for many different materials.

The shock velocity us and particle velocity up can be expressed as a function
of the specific volume v by solving Eqs. (2.74) and (2.78) for us and up , namely

up = c0(v0 − v)

v0 − s(v0 − v)
, (2.79)

us = c0v0

v0 − s(v0 − v)
. (2.80)

Substituting Eqs. (2.79) and (2.80) into Eq. (2.72) gives the pressure-specific
volume relationship, called the shock Hugoniot, as follows:

p = p0 + c2
0(v0 − v)

[v0 − s(v0 − v)]2
. (2.81)

2.8.2 Artificial Bulk Viscosity

A shock front mathematically represents a traveling surface of discontinuity
which can be described as a moving boundary condition inside the continuum.
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FIGURE 2.7 Artificial bulk viscosity.

Therefore, this problem could be solved with the use of a shock fitting technique
that explicitly locates and tracks the motion of the shock front. The tracked dis-
continuities are treated as interior boundaries at which the Rankine–Hugoniot
jump conditions are imposed. This technique is cumbersome and inefficient
when applied to multidimensional problems so that it has been almost com-
pletely abandoned nowadays in favor of the shock-capturing approach.

Shock capturing schemes make use of numerical damping to remove the
oscillations near the discontinuities, and any shock waves or discontinuities
are computed as a part of the solution. Artificial bulk viscosity proposed by
von Neumann and Richtmyer in 1950 [51] is an attractive approach to capture
the shock wave, in which a viscous term q is added to the pressure p within
a transition region in the vicinity of the shock wave to smear out the disconti-
nuities into a rapidly varying but continuous transitioning region, as shown in
Fig. 2.7. The Rankine–Hugoniot jump conditions are satisfied across the transi-
tion region such that no special treatment is required to take care of the shocks
themselves.

The viscosity proposed by von Neumann and Richtmyer [51] has the
quadratic form as below

q =
{

c0ρl2tr(ε̇)2 if tr(ε̇) < 0,

0 if tr(ε̇) � 0
(2.82)

where c0 is a dimensionless constant, l = 3
√

V is the characteristic length of a
grid cell, ρ is the density in the current configuration, tr(ε̇) = ε̇11 + ε̇22 + ε̇33 is
the trace of the strain rate tensor, i.e., volumetric strain rate.

To damp out numerical oscillations behind the shock front, Landshoof sug-
gested the addition of a linear term [52] as follows:

q =
{

−c1ρlctr(ε̇) if tr(ε̇) < 0,

0 if tr(ε̇) � 0
(2.83)
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where c1 is a dimensionless constant, and c is the local sound speed. Combina-
tion of the linear and quadratic terms yields

q =
{

c0ρl2tr(ε̇)2 − c1ρlctr(ε̇) if tr(ε̇) < 0,

0 if tr(ε̇) � 0.
(2.84)

This artificial viscosity disappears as cell size h → 0 and does not affect the
solution in smooth solution regimes. However, the shock waves predicted by the
shock-capturing schemes are generally not sharp, and smeared over several grid
cells.

After adding the artificial viscosity term q , the stress tensor can be calculated
as

σ = s − (p + q)1 (2.85)

where s is the deviatoric stress tensor, 1 is the identity tensor, and p is the
pressure (positive in compression) such that

p = −1

3
tr(σ ) − q. (2.86)

The conservation of energy, (2.57), can be rewritten for isothermal cases as
follows:

Ė = JD : s − J (p + q)tr(ε̇) (2.87)

where Ė = ρė is the rate of internal energy per initial volume.
The artificial bulk viscosity introduces into the system a damping term with

the damping ratio given by

ξ = − q

ρlctr(ε̇)
= Q

c
(2.88)

with

Q =
{

c1c − c0ltr(ε̇) if tr(ε̇) < 0,

0 if tr(ε̇) � 0.
(2.89)

Thus, after adding the artificial viscosity term into the system of discrete
equations, the critical time step size for an explicit time integration becomes

�te = l

Q + (Q2 + c2)1/2
. (2.90)
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FIGURE 2.8 CJ detonation model.

2.9 DETONATION WAVE

A detonation wave is a combustion wave propagating at a supersonic speed. It is
composed of a leading shock followed by a chemical reaction zone. The leading
shock compresses the high-explosive material, and converts the high-explosive
into gaseous products with very high pressure and temperature in the reaction
zone. During this process, an enormous amount of energy is released in just
billionths of a second, which sustains the shock wave traveling at the supersonic
velocity. Thus, the detonation wave is a shock wave in a reactive medium that
is sustained by the energy released in chemical reactions triggered by the shock
wave itself [53].

2.9.1 CJ Detonation Model

The CJ detonation model was developed by David Chapman [54] and Émile
Jouguet [55,56] independently around the turn of the 20th century. The CJ model
neglects the thickness of the chemical reaction zone and simplifies the detona-
tion wave as a one-dimensional steady discontinuity. As a result, the detonation
shock front raises the pressure from zero to the detonation pressure instanta-
neously with a complete chemical reaction. The thickness of the reaction zone
is usually about 10−7 m, which is negligible as compared with the size of a
typical explosive charge. Furthermore, the time required for a detonation wave
to travel through the reaction zone is about 10−7 s, which is also much smaller
than the time (about 10−5 s) required for the explosion process of the explosive
charge to complete. Therefore, the assumption of the CJ model is reasonable in
most of engineering cases.

The shock separates the upstream unburned explosive and downstream
burned products, as shown in Fig. 2.8. The unburned explosive is at rest with
density ρ0, pressure p0, and specific energy e0. The detonation velocity D and
downstream state (ρ, p, e) need to be determined.

Across the shock front, the Rankine–Hugoniot conditions must hold. In
Eqs. (2.71)–(2.73), replacing the shock velocity us with the detonation velocity
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FIGURE 2.9 Detonation Hugoniot and shock Hugoniot.

D and adding the specific chemical energy release Qv of the detonation reaction
to the conservation of energy leads to

(Conservation of mass) ρ0D = ρ(D − up), (2.91)

(Conservation of momentum) p − p0 = ρ0Dup, (2.92)

(Conservation of energy) e − e0 = 1

2
(p + p0)(v0 − v) + Qv. (2.93)

To fully describe the thermodynamic state of the gaseous product, five un-
knowns (p, ρ, e, up , and D) must be determined. However, we have only four
equations, i.e., three equations of conservation (2.91)–(2.93), plus an EOS of
the product. To make this problem solvable, Chapman and Jouguet established
the fifth equation by studying the condition of a detonation wave propagating
steadily within a high-explosive [54–56].

When the EOS p = p(e, v) of the detonation product is known, the Hugo-
niot curve of the detonation product, called the detonation Hugoniot, can be
plotted in the p–v plane using Eq. (2.93) and EOS, as shown in Fig. 2.9, in
which the shock Hugoniot of the unreacted explosive and the Rayleigh line are
also plotted. Due to the energy release, the detonation Hugoniot does not pass
through the initial state point O(p0, v0) of the unreacted explosive, but is lo-
cated in the upper right of the shock Hugoniot of the unreacted explosive, as
shown in Fig. 2.9.

The Rayleigh line is emanated from the initial state point O(p0, v0) of
the unreacted explosive in the shock Hugoniot with the slope of −ρ2

0D2. The
Rayleigh lines with different slopes correspond to different values of detonation
velocity D. The horizontal line OB corresponds to D = 0, while the vertical
line OA corresponds to D = ∞. The detonation Hugoniot can be divided into
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three branches: MA, AB, and BL. In branch AB, p > p0 and v > v0, which cor-
responds to an imaginary detonation velocity D so that this branch does not
exist physically and is plotted as a dashed line in Fig. 2.9. At point B , v > v0,
p = p0, and D = 0, which corresponds to a constant-pressure combustion. In
branch BL, the detonation velocity D is positive, but, according to Eq. (2.75), the
particle velocity up is negative behind the detonation front. Thus, the particles
behind the detonation front move opposite to the detonation propagation direc-
tion, which corresponds to subsonic waves (deflagrations) so that the branch
BL is called the deflagration branch. At point A, v = v0, p > p0, and D = ∞,
which corresponds to a constant-volume detonation. In branch AM, v < v0 and
p > p0, both the detonation velocity D and the particle velocity up are positive
such that the particles behind the detonation front move in the same direction as
detonation propagation. Hence, the branch AM corresponds to detonation, and
it is called the detonation branch.

Fig. 2.9 shows that the leading shock wave traveling at the detonation veloc-
ity D compresses the unreacted explosive from the initial state point O(p0, v0)

along the Rayleigh line to its intersection point N with the shock Hugoniot
curve. The pressure at the intersection point N is called the von Neumann spike,
and is denoted as pVN. At the von Neumann spike point N , the explosive re-
mains unreacted. The exothermic chemical reaction starts from the spike, and
completes at the Chapman–Jouguet state. Because the chemical reaction energy
Qv has been fully released behind the detonation front, the final state of the det-
onation product behind the detonation front corresponds to the intersection point
or tangent point of the Rayleigh line with the detonation Hugoniot. In Fig. 2.9,
the detonation Hugoniot represents the locus of all possible thermodynamic
states that could be achieved by the detonation product behind the detonation
front from the initial state (p0, v0), but these states have to be achieved via a
thermodynamical path given by the Rayleigh line. Thus, when and only when
the denotation product achieves the thermodynamic state corresponding to the
tangent point C of the detonation Hugoniot and the Rayleigh line, the detona-
tion wave can travel steadily. The tangent point C is called the CJ point, which
corresponds to the CJ state, denoted by the subscript “CJ”.

The slope of the detonation Hugoniot is given by

∂p

∂v
= −ρ2 ∂p

∂ρ
= −ρ2c2 (2.94)

where c = √
∂p/∂ρ is the local sound speed. At the CJ point, the Rayleigh line

is tangent to the detonation Hugoniot so that the slope −ρ2D2 of the Rayleigh
line equals the slope −ρ2c2 of the detonation Hugoniot. In other words, the
detonation velocity D corresponding to the CJ state is equal to the local sound
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FIGURE 2.10 The structure of detonation wave and pressure profile [50].

speed c of the detonation product behind the detonation front. Thus, it follows
that

D = cCJ + upCJ (2.95)

where cCJ is the sound speed in the detonation products behind the detonation
front, and upCJ is the particle velocity of the detonation product. Eq. (2.95) is
called the CJ condition.

Given the EOS of the detonation product, the final thermodynamic state
of the product behind the detonation front can be completely determined from
Eqs. (2.91)–(2.93), Eq. (2.95), and the EOS.

2.9.2 ZND Detonation Model

Chapman–Jouguet theory assumes that chemical reactions take place instan-
taneously inside the zero-thickness, steady-traveling wave at a velocity D =
c + up . Chapman–Jouguet theory is quite successful in explaining detonations,
but real chemical detonations show a complex three-dimensional structure, with
parts of the wave traveling faster than the average velocity.

The ZND detonation model, proposed independently by Y.B. Zel’dovich,
John von Neumann, and Werner Döring, describes the detonation wave as
a leading shock followed by a finite-thickness zone of chemical reaction pro-
ceeding at a finite velocity that depends on the local chemical composition
and thermodynamic state, as shown in Fig. 2.10. The leading shock wave adia-
batically compresses the explosive to the von Neumann spike and initiates the
exothermic chemical reaction. The chemical reaction completes at the CJ state.
In the ZND detonation model, hence, the chemical reaction zone is assumed to
be traveling at the detonation velocity D.

With the ZND model, the leading shock wave compresses the unreacted ex-
plosive from the initial state point O(p0, v0) to the von Neumann spike N in
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the shock Hugoniot curve and initiates the chemical reaction. The following
exothermic reaction proceeds along the Rayleigh line from the von Neumann
spike N at which the reaction starts (λ = 0) to the CJ point C at which the
reaction is complete (λ = 1).

Consider a unit cross-sectional area within the reaction zone in which the
fraction of reaction is λ. The conservation laws across the area take the following
forms:

(Conservation of mass) ρ0D = ρ(D − up), (2.96)

(Conservation of momentum) p − p0 = ρ0Dup, (2.97)

(Conservation of energy) e − e0 = 1

2
(p + p0)(v0 − v) + λQv. (2.98)

The EOS is a function of pressure p, specific volume v, and fraction of
reaction λ, i.e.,

e = e(p, v,λ). (2.99)

The ZND model assumes that the fraction of reaction λ increases continu-
ously from the leading shock to the CJ interface, which is determined from the
reaction rate equation as follows:

dλ

dt
= r(p, v,λ). (2.100)

The final state, p, ρ, e, λ, and up , can be obtained by solving the above five
equations.
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This chapter establishes the MPM formulation by discretizing a continuum body
into a set of material points (particles). Both explicit and implicit formulations
are presented. The Generalized Interpolation Material Point (GIMP) method,
contact algorithm, adaptive MPM, incompressible MPM, and non-reflecting
boundary are discussed in detail.

3.1 MATERIAL POINT DISCRETIZATION

The MPM discretizes the material domain Ω with a set of particles (material
points) moving through an Eulerian background grid, as shown in Fig. 3.1. Each
particle represents a subdomain Ωp with all its information such as mass, mo-
mentum, energy, strain, stress, and internal state variables for history-dependent
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FIGURE 3.1 Sketch of typical MPM discretization.

constitutive modeling. The fixed Eulerian grid provides the means for determin-
ing spatial gradient and divergence terms, and carries no permanent informa-
tion.

The MPM computational cycle can be divided into two phases, a Lagrangian
phase followed by an Eulerian/convective phase. In the Lagrangian phase, the
particles are attached to the grid and deform with it so that the grid provides a
Lagrangian finite element discretization of the material domain. As a result, the
momentum equation of the material domain can be solved by using the standard
finite element formulation with the grid. In this phase, the grid serves as an up-
dated Lagrangian frame, and the usual convection term associated with Eulerian
formulations does not appear. In the Eulerian phase, the grid is simply reset to its
original position to take care of the convection term, while the particles remain
in their updated positions within a time step, as detailed below.

3.1.1 Lagrangian Phase

Because the material domain is discretized into particles, as shown in Fig. 3.1,
the material density can be approximated with

ρ(x) =
np∑

p=1

mpδ(x − xp) (3.1)

where np is the total number of the particles, mp is the mass of particle p, δ

is the Dirac delta function with dimension of the inverse of volume, and xp is
the spatial coordinates of particle p. Substituting Eq. (3.1) into the weak form
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(2.70) gives

np∑
p=1

mpüipδuip +
np∑

p=1

mpσs
ijpδuip,j −

np∑
p=1

mpbipδuip −
np∑

p=1

mpt̄siph−1δuip = 0

(3.2)

where uip = ui(xp), δuip,j = δui,j (xp), σ s
ijp = σ s

ij (xp), bip = bi(xp), t̄ sip =
t̄ si (xp), and h is the thickness of the fictitious layer used to convert the surface
integral in the last term on the left side of Eq. (2.70) into a volume integral.
Eq. (3.2) shows that the volume integrals in the weak form are evaluated in the
MPM as the sum of values of the integrand at each particle multiplied by the
particle’s volume, namely∫

g(x, y, z)dxdydz =
np∑

p=1

g(ξp, ηp, ζp)Vp. (3.3)

As compared with the Gauss quadrature (5.31) in the FEM, Eq. (3.3) can be
viewed as a particle quadrature.

In the Lagrangian phase, the particles are rigidly attached to the grid so that
the background grid serves as the finite element discretization of the material
domain. Therefore, the spatial coordinates xip of a particle p can be interpolated
from the grid nodal spatial coordinates xiI as

xip = NIpxiI , I = 1,2, . . . , ng (3.4)

where subscript I denotes the variables associated with the grid nodal point I ,
subscript p denotes the variables associated with the particle p, and ng is the
total number of grid nodal points related to the particle p. The repeated index
I denotes the summation over its values. NIp = NI (xp) is the shape function
NI (x) associated with grid point I evaluated at the position of the particle p.
For a background grid consisting of hexahedron cells for 3D problems, the shape
function is given by

NI (ξ, η, ζ ) = 1

8
(1 + ξI ξ)(1 + ηIη)(1 + ζI ζ )

where ξ , η, and ζ are the natural coordinates of the particle, and ξI , ηI , and ζI

are the natural coordinates of node I , which take values of (±1,±1).
Similarly, the displacement uip of the particle p and its derivatives uip,j can

also be interpolated from the grid nodal displacement uiI , i.e.,

uip = NIpuiI , (3.5)

uip,j = NIp,juiI . (3.6)
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Other kinematic quantities of a particle, such as the velocity u̇ip and acceler-
ation üip , can be interpolated from their grid nodal quantities in the same way.
For example, the virtual displacement δuip of a particle p can be approximated
by

δuip = NIpδuiI . (3.7)

Substituting Eqs. (3.5)–(3.7) into the weak form (3.2) and invoking the ar-
bitrariness of δuiI and δuiI |Γu

= 0 leads to the discrete momentum equation at
each grid point, as follows:

ṗiI = f int
iI + f ext

iI , xI /∈ Γu (3.8)

in which

piI = mIJ u̇iJ (3.9)

is the ith component of momentum at grid point I ,

mIJ =
np∑

p=1

mpNIpNJp (3.10)

is the consistent mass matrix associated with the background grid, and

f int
iI = −

np∑
p=1

NIp,jσijp

mp

ρp

(3.11)

and

f ext
iI =

np∑
p=1

mpNIpbip +
np∑

p=1

NIpt̄iph−1 mp

ρp

(3.12)

are the internal and external nodal forces, respectively, with σijp = σij (xp) be-
ing the stress of a particle p which can be obtained from its rate of deformation
and spin tensors with the use of a constitutive model (refer to Chapter 6 for more
details).

To implement a nonlinear constitutive model into the MPM code, an incre-
mental strain–stress relation is used in this book. The incremental strain 
εij

and incremental vorticity 
Ωij of a particle p can be obtained from Eqs. (3.5),
(2.19), and (2.18), as follows:


εijp = 1

2
(NIp,j viI + NIp,ivjI )
t, (3.13)


Ωijp = 1

2
(NIp,j viI − NIp,ivjI )
t. (3.14)
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To improve the computational efficiency, the lumped grid mass matrix

mI =
ng∑

J=1

mIJ =
np∑

p=1

mpNIp (3.15)

can be used such that the grid nodal momentum piI can be simplified to

piI = mI u̇iI , (3.16)

and the grid nodal momentum equation (3.8) can then be rewritten as

mI üiI = f int
iI + f ext

iI , xI /∈ Γu. (3.17)

Note that in Eqs. (3.16) and (3.17), the index I is a free index so that the
repeated index I in these two equations does not represent the summation over
its values.

Once the accelerations üiI at the grid points are determined from Eq. (3.17),
the use of an explicit time integration gives the grid nodal velocity u̇L

iI at the
end of the Lagrangian phase such that the velocity vL

ip and position xL
ip of each

particle at the end of the Lagrangian phase can be updated with the use of

xL
ip = xip + 
t

8∑
I=1

u̇L
iINIp, (3.18)

vL
ip = vip + 
t

8∑
I=1

üiINIp (3.19)

where xip and vip are the position and velocity of the particle at the beginning
of the Lagrangian phase.

3.1.2 Convective Phase

If we keep the grid attached to the material during the whole solution process,
the grid will be severely distorted as in the Lagrangian finite element methods
so that the computation may be terminated abnormally. In the MPM, all material
properties are carried by the particles. Thus, the grid is solely used as a scratch
pad for determining the gradient and divergence terms, and carries no permanent
information. A great advantage of the MPM is that the background grid can
be chosen freely for convenience. For example, the grid can be fixed in space
when the particles move through the grid, and transport the material properties
assigned to them without introducing an error.

In the convective phase following the Lagrangian phase, the grid is sim-
ply reset from its deformed position to its original position, while the particles
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remain in their current positions. The solution on the new grid can be re-
constructed from the information carried by the particles. The consistent and
lumped grid mass matrices can be reconstructed using Eqs. (3.10) and (3.15)
such that only the reconstruction of velocity on the new grid is specified below.

If the grid nodal velocities are known, the velocity of all particles can be
easily determined using the grid nodal shape functions, as follows:

vip = NIpviI , p = 1,2, . . . , np; I = 1,2, . . . , ng. (3.20)

However, the construction of grid nodal velocities from the updated particle
velocities are not straightforward due to np �= ng . The FLIP determines the grid
nodal velocities from the particle velocities using the weighted least squares.
Multiplying both sides of Eq. (3.20) by mpNJp and summing over all particles
yields

np∑
p=1

mpNJpvip =
np∑

p=1

mpNJpNIpviI . (3.21)

Eq. (3.21) can be rewritten using Eq. (3.10) as

mIJ viJ =
np∑

p=1

NIpmpvip. (3.22)

If the lumped mass matrix Eq. (3.15) is used, Eq. (3.22) can be further sim-
plified to

viI = 1

mI

np∑
p=1

NIpmpvip. (3.23)

Burgess [57] has shown that the consistent mass matrix formulation (3.22)
conserves kinetic energy, linear and angular momenta. However, the lumped
mass matrix formulation (3.23) results in some numerical dissipation of kinetic
energy [34,35,57], although its use reduces the computational cost compared
with the consistent mass matrix.

3.2 EXPLICIT MATERIAL POINT METHOD

The equation of motion (3.8) is a second-order ordinary differential equation
with respect to time and can be solved by using an explicit integration scheme
or an implicit integration scheme. The explicit integration scheme finds the state
variable y(t + 
t) at next time step based on the state variable y(t) at current
time step, while the implicit integration scheme finds the state variable y(t +
t)

by solving an equation G(y(t), y(t +
t)) = 0 that involves both the current and
later state variables.
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FIGURE 3.2 Central difference method.

3.2.1 Explicit Time Integration

In transient problems such as impact and blast, the duration of load is very small
(on the order of microseconds) so that a large number of high frequencies are ex-
cited in the system. To accurately capture the high-frequency transient response,
a very small time step is required which is about the same as the time step size
required by the stability limit of explicit methods. Hence, an explicit method
with a lumped (diagonal) mass matrix is usually used because its computational
cost per time step is much lower than that required for an implicit method. The
central difference method is a common choice for explicit time integration.

3.2.1.1 Central Difference Method

Assume that the displacement, velocity and acceleration at time 0, t1, t2, . . . , tn

are known, and the solution at time tn+1 is needed. In the variable-step central
difference method, the velocity u̇

n+1/2
iI at time tn+1/2 and acceleration ün

iI at
time tn are approximated as

u̇
n+1/2
iI = un+1

iI − un
iI

tn+1 − tn
= 1


tn+1/2

(
un+1

iI − un
iI

)
, (3.24)

ün
iI = u̇

n+1/2
iI − u̇

n−1/2
iI

tn+1/2 − tn−1/2
= 1


tn

(
u̇

n+1/2
iI − u̇

n−1/2
iI

)
(3.25)

where 
tn+1/2 = tn+1 − tn and 
tn = tn+1/2 − tn−1/2 = 1
2 (
tn−1/2 +


tn+1/2), as shown in Fig. 3.2. un+1
iI and un

iI denote the displacement vec-

tors at time tn+1 and tn, respectively, and u̇
n−1/2
iI denotes the velocity vector at

time tn−1/2.
Eqs. (3.24) and (3.25) can be rewritten as

un+1
iI = un

iI + 
tn+1/2u̇
n+1/2
iI , (3.26)

u̇
n+1/2
iI = u̇

n−1/2
iI + 
tnün

iI . (3.27)

The equation of motion at time tn is given by

mI ü
n
iI = f n

iI . (3.28)
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Solving Eq. (3.28) for acceleration ün
iI at time tn and then substituting it into

Eq. (3.27) leads to

u̇
n+1/2
iI = u̇

n−1/2
iI + 
tnf n

iI /mI . (3.29)

Solving velocity u̇
n+1/2
iI at time tn+1/2 from Eq. (3.29) and then substituting

it into Eq. (3.26) gives the displacement un+1
iI at time tn+1.

This version of central difference method is known as leapfrog integration
which updates the position at integer time steps, but updates the velocity at
integer-plus-a-half time steps. Positions and velocities are updated at interleaved
time points, staggered in such a way that they ‘leapfrog’ over each other. To
solve the velocity u̇n+1

iI at time tn+1, Eq. (3.29) can be reformulated into two
steps as follows:

u̇n
iI = u̇

n−1/2
iI + 1

2

tnf n

iI /mI , (3.30)

u̇
n+1/2
iI = u̇n

iI + 1

2

tnf n

iI /mI . (3.31)

Replacing n by n + 1 in Eq. (3.30) results in the velocity u̇n+1
iI at time tn+1,

namely

u̇n+1
iI = u̇

n+1/2
iI + 1

2

tn+1f n+1

iI /mI . (3.32)

The above scheme is called leapfrog Verlet, or velocity Verlet. The time
step size in any explicit time integration scheme is small due to the stability re-
quirement. Hence, the velocity u̇

n+1/2
iI at time tn+1/2 can be used approximately

to calculate the kinetic energy of the system at time tn+1.
In summary, the numerical implementation of the leapfrog integration

scheme has the following steps:

1. Calculate the nodal force f n
iI at time tn;

2. Calculate the nodal velocity ün
iI from the equation of motion at time tn with

the use of

ün
iI = f n

iI /mI ; (3.33)

3. Impose essential boundary conditions;

4. Update the nodal velocity u̇
n+1/2
iI at time tn+ 1

2 using Eq. (3.27);
5. Update the nodal position un+1

iI at time tn+1 using Eq. (3.26);
6. Let tn+1 = tn + 
tn+1/2, and n = n + 1; and
7. Output the solutions at current time step if required.

The central difference method with a diagonal mass matrix is highly efficient be-
cause it does not require the factorization of an ‘effective stiffness’ matrix, and
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requires only vector calculations. However, the numerical solutions obtained us-
ing the central difference method could exhibit spurious oscillations associated
with high frequency modes that cannot be represented by the chosen mesh. Noh
and Bathe presented an alternative explicit time integration scheme [58], which
automatically suppresses spurious high frequency responses without using any
unphysical parameters, at the expense of additional computational costs.

3.2.1.2 Stability Requirement

The central difference method is conditionally stable, whose time step 
t must
be less than a critical time step 
tcr, i.e., 
t � 
tcr. For an undamped linear
system, the critical time step is given by [59]


tcr = Tn

π
(3.34)

where Tn is the smallest natural period of the system. For a damped linear sys-
tem, the critical time step is given by [14,60]


tcr = Tn

π

(√
1 + ξ2 − ξ

)
(3.35)

where ξ is the fraction of critical damping. Note that the critical time steps given
in Eqs. (3.34) and (3.35) are obtained from a linear system such that they are
only valid for linear systems. For a nonlinear system, the time step can be chosen
as


t = α
tcr (3.36)

where α is a constant, and is usually taken to be 0.8 � α � 0.98, depending on
the nonlinearity of the system.

In the FEM, it has been proved that the smallest period of a mesh is always
greater than or equal to the smallest period of any element in the mesh [61,62].
Therefore, the critical time step of the central difference method can be chosen
as


tcr = min
e

T e
min

π
= min

e

le

c
(3.37)

where T e
min is the smallest period of element e, le is the characteristic length of

element e, and

c =
[

4G

3ρ
+ ∂p

∂ρ

∣∣∣∣
S

]1/2

(3.38)

is the adiabatic sound speed. Condition (3.37) implies that the time step has to
be limited such that a disturbance (stress wave) cannot travel across the smallest
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characteristic element length in the mesh within a single time step. This condi-
tion is usually known as the Courant–Friedrichs–Lewy or CFL condition [63].

The pressure p in material is a function of its density ρ and internal energy
E per unit initial volume, i.e., p = p(ρ,E). Hence, it follows that

∂p

∂ρ

∣∣∣∣
S

= ∂p

∂ρ

∣∣∣∣
E

+ ∂p

∂E

∣∣∣∣
ρ

∂E

∂ρ

∣∣∣∣
S

. (3.39)

Along an isentrope, the differential energy dE is the product of pressure p

and differential volume dV , namely, dE = −pdV . Thus, we can get

∂E

∂V

∣∣∣∣
S

= −p. (3.40)

Taking the first order derivative of the relation ρV = ρ0 results in

dV

dρ
= −V

ρ
= −V 2

ρ0
. (3.41)

Using Eqs. (3.40) and (3.41) yields

∂E

∂ρ

∣∣∣∣
S

= ∂E

∂V

∣∣∣∣
S

dV

dρ
= pV 2

ρ0
. (3.42)

Substituting Eqs. (3.39) and (3.42) into Eq. (3.38) gives the sound speed as

c =
[

4G

3ρ
+ ∂p

∂ρ

∣∣∣∣
E

+ pV 2

ρ0

∂p

∂E

∣∣∣∣
ρ

]1/2

. (3.43)

For linear elasticity, p = −K lnV so that

∂p

∂ρ

∣∣∣∣
S

= ∂p

∂V

∣∣∣∣
S

dV

dρ
= K

ρ
(3.44)

where

K = E

3(1 − 2ν)

is the bulk modulus with E and ν being Young’s modulus and Poisson’s ratio,
respectively. Therefore, the sound speed of linearly elastic material is obtained
by substituting Eq. (3.44) into Eq. (3.43) as

c =
√

E(1 − ν)

(1 + ν)(1 − 2ν)ρ
. (3.45)
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For other material models, the sound speed can be calculated from Eq. (3.43)
by invoking an EOS of the material. Please refer to Sect. 6.3 for detailed infor-
mation.

The computational grid in the MPM is fixed in space and particles move
relatively to the grid such that the particle velocity should be taken into con-
sideration in determining the critical time step [64], especially for hypervelocity
impact problems in which the particle velocity is comparable to the sound speed.
Consequently, if a uniform background grid is used in the MPM, Eq. (3.37)
should be rewritten as


tcr = dc

max
p

(cp + |up|) (3.46)

where dc is the grid cell size, and cp and up are the sound speed and velocity of
particle p, respectively.

3.2.2 Explicit MPM Scheme

In the MPM, all material properties are carried by particles, and no permanent
information is stored on the grid nodes. When solving the grid nodal momentum
equations at time tk , hence, the mass, momentum, and stress of each particle are
mapped to the corresponding grid nodes by using Eqs. (3.15), (3.23), (3.11), and
(3.12). After solving the grid nodal momentum equations with an explicit time
integrations scheme, the grid nodal acceleration and velocity values are mapped
back to the corresponding particles to update their velocities and positions.

The stress state of a particle can be updated with the use of a constitutive
model solver, as presented in Sect. 6.1, which first finds the incremental strain
and incremental vorticity of the particle, and then calculates its current stress
with the constitutive model. The stress could be updated at the beginning of
each time step, or at the end of each time step. The MPM scheme with these
two options can be referred to as the update-stress-first (USF) scheme and the
update-stress-last (USL) scheme, respectively [65,66]. To update stress, the rates
of deformation tensor and vorticity tensor are calculated based on the grid nodal
velocity field. Different MPM schemes employ different grid nodal velocity
fields to update the stress state as below.

1. In the USF scheme, the grid nodal velocity obtained from the grid nodal
momentum p

k−1/2
iI at the beginning of each time step [65], i.e., v

k−1/2
iI =

p
k−1/2
iI /mk

I = ∑np

p=1 mpv
k−1/2
ip Nk

Ip/mk
I , is used to update the stress state.

2. In the USL scheme, the grid nodal velocity obtained from the updated
momentum p

k+1/2
iI [5], i.e., v

k+1/2
iI = p

k+1/2
iI /mk

I , is used to update the stress
state.
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FIGURE 3.3 Flow chart of the MPM schemes as compared with the FEM.

3. In the MUSL (Modified Update-Stress-Last) scheme, the grid nodal ve-
locity obtained by mapping the updated particle momentum p

k+1/2
ip = mpv

k+1/2
ip

back to the grid nodes [67], i.e., v
k+1/2
iI = ∑np

p=1 mpv
k+1/2
ip Nk

Ip/mk
I , is used to

update the stress state. The MUSL is an improvement over the USL, which does
not update the stress state directly based on the updated grid nodal velocity, and
instead, updates based on the grid nodal velocity calculated from the updated
particle velocity.

The MUSL maps the particle momentum p
k+1/2
ip at the end of each time

step to the grid nodes to calculate their velocities, while the USF maps the par-
ticle momentum p

k+1/2
ip at the beginning of the next time step to the grid nodes

to calculate their velocities. Therefore, both the MUSL and USF schemes are
quite similar, and the difference between these two schemes is that the MUSL
employs Nk

Ip while the USF employs Nk+1
Ip to map the particle velocity to the

corresponding grid nodes. Numerical studies [65] show that for the modes re-
solved on the computational grid both USF and USL schemes result in identical
results with a negligible energy error or numerical dissipation. For the unre-
solved modes, however, the USL is dissipative while the USF is conservative.
As compared with the USF, the USL may be a better choice as the damping is
consistent with the accuracy of the solution, which damps out the unresolved
modes.

The flow chart of the MPM schemes is illustrated and compared with the
FEM in Fig. 3.3. In the MPM, the deformed grid is discarded at the end of La-
grangian phase and a new grid will be used in the next time step if necessary.
The solution on the new grid is reconstructed from the information carried by
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FIGURE 3.4 Schematic illustration of the MPM algorithm.

the particles. Note that the solution reconstruction process can be performed ei-
ther at the end of the previous time step t −
t , or at the beginning of the current
time step. In the MPM scheme presented here, the solution reconstruction is per-
formed at the beginning of the current time step using the particle information
obtained at time t − 
t .

The MPM schemes consist of the following steps:

1. Calculate the grid nodal mass and momentum by mapping the particle mass
and momentum to the corresponding grid nodes as shown in Fig. 3.4(a),
namely

mk
I =

np∑
p=1

mpNk
Ip, (3.47)

p
k−1/2
iI =

np∑
p=1

mpv
k−1/2
ip Nk

Ip. (3.48)

In Fig. 3.4(a), only one particle per cell is used for clarity of illustration.
2. Impose essential boundary conditions on the grid nodal momentum. At the

fixed boundary, set p
k−1/2
iI = 0.

3. For the USF only, calculate the particle strain increment 
ε
k−1/2
ijp and vor-

ticity increment 
Ω
k−1/2
ijp based on the grid nodal velocity v

k−1/2
iI which
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can be obtained from the grid nodal momentum p
k−1/2
iI , and then update the

particle density and stress, as follows:
a. Calculate the grid nodal velocity v

k−1/2
iI with

v
k−1/2
iI = p

k−1/2
iI

mk
I

; (3.49)

b. Calculate the particle strain increment 
ε
k−1/2
ijp and vorticity increment


Ω
k−1/2
ijp with


ε
k−1/2
ijp = 1

2
(Nk

Ip,j v
k−1/2
iI + Nk

Ip,iv
k−1/2
jI )
t, (3.50)


Ω
k−1/2
ijp = 1

2
(Nk

Ip,j v
k−1/2
iI − Nk

Ip,iv
k−1/2
jI )
t; (3.51)

c. Update the particle density with

ρk+1
p = ρk

p/(1 + 
ε
k−1/2
iip ); (3.52)

d. Update the particle stress state based on 
ε
k−1/2
ijp and 
Ω

k−1/2
ijp . Please

refer to Sect. 6.1 for detailed formulation.
4. Calculate the grid nodal internal force f

int,k
iI , external force f

ext,k
iI , and the

total grid nodal force f k
iI with the use of

f
int,k
iI = −

np∑
p=1

Nk
Ip,j σijp

mp

ρp

, (3.53)

f
ext,k
iI =

np∑
p=1

mpNk
Ipbk

ip +
np∑

p=1

Nk
Ipt̄kiph−1 mp

ρp

, (3.54)

f k
iI = f

int,k
iI + f

ext,k
iI . (3.55)

For the USF, let σijp = σk+1
ijp and ρp = ρk+1

p . Otherwise, let σijp = σk
ijp and

ρp = ρk
p . If the grid node I is fixed in the ith coordinate direction, let f k

iI = 0
to make the grid nodal acceleration zero in that direction.

5. Integrate the grid nodal momentum equation as shown in Fig. 3.4(b) by using

p
k+1/2
iI = p

k−1/2
iI + f k

iI
tk (3.56)

where 
tk = 1
2 (
tk−1/2 + 
tk+1/2). In the MPM, the deformed position of

the background grid does not need to be calculated explicitly so that the grid
is shown in Fig. 3.4(b) with dashed line.
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6. Update the particle velocity and position based on the grid nodal velocity
and acceleration as shown in Fig. 3.4(c) with

v
k+1/2
ip = v

k−1/2
ip +

8∑
I=1

f k
iIN

k
Ip

mk
I


tk, (3.57)

xk+1
ip = xk

ip +
8∑

I=1

p
k+1/2
iI Nk

Ip

mk
I


tk+1/2. (3.58)

7. For the MUSL only, recalculate the grid nodal momentum based on the up-
dated particle momentum p

k+1/2
ip with

p
k+1/2
iI =

np∑
p=1

mpv
k+1/2
ip Nk

Ip (3.59)

and impose essential boundary conditions.
8. For the MUSL or USL only, calculate the grid nodal velocity v

k+1/2
iI , particle

strain increment 
ε
k+1/2
ijp and vorticity increment 
Ω

k+1/2
ijp , and then update

the particle density and stress, as follows:
a. Calculate the grid nodal velocity v

k+1/2
iI with

v
k+1/2
iI = p

k+1/2
iI

mk
I

; (3.60)

b. Calculate the particle strain increment 
ε
k+1/2
ijp and vorticity increment


Ω
k+1/2
ijp with


ε
k+1/2
ijp = 1

2
(Nk

Ip,j v
k+1/2
iI + Nk

Ip,iv
k+1/2
jI )
tk+1/2, (3.61)


Ω
k+1/2
ijp = 1

2
(Nk

Ip,j v
k+1/2
iI − Nk

Ip,iv
k+1/2
jI )
tk+1/2; (3.62)

c. Update the particle density with

ρk+1
p = ρk

p/(1 + 
ε
k+1/2
iip ); (3.63)

d. Update the particle stress state based on 
ε
k+1/2
ijp and 
Ω

k+1/2
ijp . Please

refer to Sect. 6.1 for detailed formulation.
9. Store all material properties in the particles so that the deformed grid can be

discarded, if needed, to employ a new grid in the next time step, as shown in
Fig. 3.4(d).
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Eq. (3.57) shows that particles move according to the velocity field defined by
Eq. (3.20) using the grid nodal velocities. In other words, the position of a parti-
cle p is updated using the velocity v̂

k+1/2
ip = ∑8

I=1 v
k+1/2
iI Nk

Ip of the point that

coincides with the particle, rather than the velocity v
k+1/2
ip of the particle itself.

Because the velocity field defined by Eq. (3.20) is single-valued, unphysical
material interpenetration is not possible. Thus, the non-slip contact condition
is satisfied automatically in the MPM without using any special treatment such
as the master/slave nodes required for the FEM. For a single-particle problem
(np = 1), the velocity filed v̂

k+1/2
ip used to move the particle can be obtained

from Eqs. (3.56), (3.47), (3.48), and (3.58) as

v̂
k+1/2
ip =

8∑
I=1

p
k−1/2
iI + f k

iI
tk

mk
I

Nk
Ip = v

k+1/2
ip .

Thus, this single particle moves with its own velocity and is not affected by
the grid. In other words, the MPM can correctly describe the motion of a single
particle.

Next we will compare the three MPM schemes using a special problem.
Assume that the grid node I is only related to the particle p. According to
Eqs. (3.47) and (3.55), the mass and force of the grid node I are given by

mk
I = mpNk

Ip, (3.64)

f k
iI = −Nk

Ip,j σijp

mp

ρp

+ mpNk
Ipbk

ip. (3.65)

Substituting Eqs. (3.64) and (3.65) into Eqs. (3.60), (3.59), and (3.49), the
grid nodal velocities used to update the stress state in the USL, MUSL, and USF
are respectively obtained as follows:

(USL) v
k+1/2
iI = v

k−1/2
ip +

(
−Nk

Ip,j σijp

Nk
Ipρp

+ bk
ip

)

tk, (3.66)

(MUSL) v
k+1/2
iI = v

k−1/2
ip +

8∑
J=1

f k
iJ Nk

Jp

mk
J


tk, (3.67)

(USF) v
k−1/2
iI = v

k−1/2
ip . (3.68)

When the particle p moves close to the opposite side of the grid node I , we
have Nk

Ip → 0, but Nk
Ip,j �= 0. In this case, the second term on the right side of

Eq. (3.66) approaches infinity, which makes the USL unstable. However, the mk
J

and Nk
Jp in the second term on the right side of Eq. (3.67) are the infinitesimal

functions of the same order so that the MUSL remains stable. Therefore, when
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FIGURE 3.5 Impact between two separate elastic bars.

a grid node is only related to a particle, the USL is unstable while the MUSL
and USF are stable.

In some material models, such as the Moony–Rivlin model, the particle
deformation gradient tensor Fij = ∂xi/∂Xj is required to be updated. The de-
formation gradient tensor at time t + 
t can be evaluated by

F t+
t
ij = ∂xt+
t

i

∂Xj

= ∂xt+
t
i

∂xt
k

∂xt
k

∂Xj

. (3.69)

Substituting Eq. (3.4) into Eq. (3.69) gives the deformation gradient of par-
ticle p at time t + 
t , i.e.,

F t+
t
ijp = xt+
t

iI NIp,kF
t
kjp. (3.70)

3.2.3 Qualitative Demonstration

To further demonstrate the MPM, consider a one-dimensional example [68] in
which the salient feature of the contact/impact scheme in the MPM is qualita-
tively described. The impact between two separate elastic bars of unit area with
an initial velocity V0 is illustrated in Fig. 3.5. Left and right elastic bars are
discretized into three particles (solid dots), respectively.

Recall that each nodal value of any field variable in the MPM is influenced
only by those particles within the support domain of the node. Therefore, the
velocity gradient is nonzero only if the particles within the support domain of the
node have different velocities. While the left and right bars are freely translating
in the space with a constant velocity, the velocity gradient in each bar must
be zero based on the physics. This physical property is preserved in the MPM
because the velocity assigned to the boundary node is determined by the particle
in the support domain of that node. As stated before, the boundary nodal velocity
is equal to the boundary particle velocity, and the boundary particle therefore
experiences no velocity gradient, as long as the nodal force vector is zero. This
is the case for a bar moving in the space with a constant velocity, for which
the nodal momentum will not change with time. A zero velocity gradient will
persist until the support domain of the boundary node contains the particles with
different velocities. Consequently, the two bars will not interact with each other
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FIGURE 3.6 Stress distribution just after impact.

FIGURE 3.7 Stress distribution just before separation.

until the boundary particle of each bar is within the support domain of a single
node.

Just before the impact between two bars occurs as shown in Fig. 3.5, the
strain increment of particle 3̄ and 4̄ can be calculated, from the linear shape
functions as defined before, to be


e3̄ = 0 − v3

hc


t = −v3

hc


t < 0 (3.71)

and


e4̄ = v5 − 0

hc


t = v5

hc


t < 0, (3.72)

respectively, because of v3 > 0, v4 = 0, and v5 < 0 in the given coordinate
system (positive to the right). In Eqs. (3.71) and (3.72), hc represents the back-
ground cell size.

The corresponding stress increments are given by 
s3̄ = E
e3̄ and 
s4̄ =
E
e4̄, which are negative due to the negative increments in strain. The stress
distribution just after impact is shown in Fig. 3.6.

In the restitution phase, the reflected tensile wave cancels the compressive
wave. Just before separation, the stress distribution is depicted in Fig. 3.7.

Just after the impact and before the separation between the two bars of unit
area, the force mapped from particle 3̄ to node 3 is given by

f3 = − (−1) s3̄ = s3̄ < 0 (3.73)
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FIGURE 3.8 A single elastic bar under tensile loading at both ends.

FIGURE 3.9 Stress distribution after the magnitude of stress wave is doubled at the middle point
of the bar.

as can be found from Figs. 3.6 and 3.7. The force mapped from particle 4̄ to
node 5 is given by

f5 = − (1) s4̄ = −s4̄ > 0. (3.74)

At node 4, the condition of f4 = 0 holds because the forces mapped from par-
ticle 3̄ and 4̄ cancel each other. Hence, particles 3̄ and 4̄ will move away from
each other when the reflected tensile wave approaches the contact node. As a
result, two bars separate from each other.

To demonstrate the difference between impact and non-impact problems,
consider now a single elastic bar of unit area under tensile loading at both ends,
as shown in Fig. 3.8. The elastic bar is discretized into 6 particles (solid dots).

Just before two tensile waves meets in the middle point of the bar, the mag-
nitude of the reaction from particle 5̄ to node 5,

∣∣f5̄−5

∣∣, is larger than that from
particle 4̄ to node 5,

∣∣f4̄−5

∣∣, so that particle 4̄ moves toward node 5. Similarly,
particle 3̄ moves toward node 3. After the magnitude of stress wave is doubled
at the middle point of the bar, the stress distribution is shown in Fig. 3.9.

Now the magnitude of the reaction from particle 5̄ to node 5,
∣∣f5̄

∣∣, is less
than that from particle 4̄ to node 5,

∣∣f4̄

∣∣, so that particle 4̄ moves toward node 4.
Similarly, particle 3̄ moves toward node 4. Hence, both particles 3̄ and 4̄ would
move toward each other. In other words, the bar would not be separated at the
center.

As can be seen from the above qualitative analysis, the MPM can simulate
the contact/impact phenomena based on the physics involved, without invoking
master/slave nodes as required in the conventional mesh-based methods.
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3.2.4 Comparison Between MPM and FEM

Comparing Sect. 5.1.4 with Sect. 3.2.2 shows that the MPM and FEM are very
similar in each time step. The efficiency and accuracy of both methods are com-
pared below.

3.2.4.1 Basic Formulation

The major differences between the formulations of these two methods are as
follows:

1. The FEM employs Gauss quadrature to evaluate the integrals in the weak
formulation, while the MPM employs particle quadrature. Therefore, the con-
stitutive equations are evaluated at Gauss quadrature points in the FEM but at
particles in the MPM.

2. The computational mesh of a Lagrangian FEM is attached to the material
during the whole solution process, while a specific background grid of the MPM
is only attached to the material in each time step. At the end of each time step,
the deformed grid could be discarded to employ a new regular grid in the next
time step. As a result, no fixed mesh connectivity is required in the MPM so that
crack propagation could be simulated without changing the mesh connectivity
as needed in the FEM. Because all the material properties are carried by the par-
ticles, the solution on the grid at next time step must be reconstructed from the
particle information. Thus, the mass matrix in the MPM is no longer a constant
matrix as that in the FEM, and has to be recalculated in each time step.

Consequently, the MPM can be viewed as a special Lagrangian FEM with
particle quadrature and continuous mesh-update. Gauss quadrature can produce
accurate results for polynomial integrands, but the particle quadrature usually
can not. In addition, an explicit FEM usually employs the one-point Gauss
quadrature, but 2 × 2 × 2 particles are usually used in each cell in the MPM
for 3D problems such that the number of particles in the MPM is usually much
larger than the number of Gauss quadrature points in the FEM. Thus, the accu-
racy and efficiency of the MPM are lower than those of the FEM for small de-
formation problems. For large deformation problems, however, the accuracy of
the Lagrangian FEM deteriorates rapidly and the computational cost increases
dramatically due to mesh distortion and the need for remeshing. Furthermore,
the Lagrangian FEM is not suitable for hyper velocity impact problems in which
metals behave like fluids and become a debris cloud (see Table 3.1).

3.2.4.2 Computational Efficiency

Computational efficiency depends on the computational cost per time step and
the time step size. As shown in Fig. 3.3, compared with the FEM, the MPM
USL formulation performs two additional steps while the MUSL performs three
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TABLE 3.1 Comparison Between the MPM and FEM Formulations

Explicit material point method Explicit finite element method

Grid nodal mass and momentum:

mk
I

=
np∑

p=1
mpNk

Ip
,

p
k−1/2
iI

=
np∑

p=1
mpv

k−1/2
ip

Nk
Ip

Skipped because the mesh nodes carry
mass and momentum

Grid nodal force (particle quadrature):

f
int,k
iI

= −
np∑

p=1
Nk

Ip,j
σijp

mp
ρp

,

f
ext,k
iI

=
np∑

p=1
Nk

Ip
bk
ip

mp

Nodal force (one-point Gauss quadra-
ture):

f
int,k
iI

= −∑
e

Nk
Ie,j

σijeVe,

f ext
iI

= ∑
e

NIebieme

Grid nodal momentum:

p
k+1/2
iI

= p
k−1/2
iI

+ f k
iI


tk . The positions
of deformed grid nodes are not required
to be calculated.

Nodal velocity and position:

v
k+1/2
iI

= v
k−1/2
iI

+ 
tkf k
iI

/MI ,

xk+1
iI

= xk
iI

+ 
tk+1/2v
k+1/2
iI

Grid nodal velocity and position:

v
k+1/2
ip

= v
k−1/2
ip

+
8∑

I=1

f k
iI

Nk
Ip

mk
I


tk ,

xk+1
ip

= xk
ip

+
8∑

I=1

p
k+1/2
iI

Nk
Ip

mk
I


tk+1/2

Skipped because Gauss points are fixed in
an element such that it is unnecessary to
recalculate their coordinates

additional steps. At the beginning of each time step, the mass and momentum
of particles are mapped to grid nodes. At the end of each time step, the updated
grid nodal velocity and acceleration are mapped to the particles to update their
positions and velocities. In the FEM, the mass and momentum are carried by the
mesh nodes so that they are not recalculated at the beginning of each time step.
Furthermore, the Gauss points do not move relative to each element during the
whole solution process such that it is unnecessary to update their positions and
velocities.

In addition, the FEM has only one Gauss point in each element, while the
MPM usually employs 1 particle in 1D problems, 4 particles in 2D problems,
and 8 particles in 3D problems in each grid cell. Stress update and nodal internal
force calculation will loop over the Gauss points (FEM) or particles (MPM) so
that the computational cost of the MPM is much higher than that in the FEM in
this part. As a result, the computational cost per time step in the MPM is higher
than that in the FEM.

Both the explicit MPM and explicit FEM employ the central difference
method, whose critical time step size depends on the characteristic element
length. In the MPM, the characteristic element length is the cell size which is



58 The Material Point Method

constant during the whole solution process. However, the characteristic element
length in the FEM decreases with the element deformation. Because the sound
speeds in both MPM and FEM are almost the same, the time step of the FEM
is smaller than that of the MPM so that the total number of steps required in
the FEM is larger than that in the MPM. For small deformation problems, the
characteristic element length in the FEM will not decrease significantly so that
the computational efficiency of the FEM is higher than that of the MPM. For
large deformation problems, however, the characteristic element length in the
FEM decreases rapidly, which results in a significant decrease in the time step
size and significant increase in the total number of required time steps. Thus,
the computational efficiency of the FEM is lower than that of the MPM for
large deformation problems. For example, in the slope failure simulation given
in Sect. 4.7, due to the severe element distortion near the failure surface, the
time step size in the FEM simulation decreases from its initial value of 261 µs
to 38 µs so that the total computer time used is 5632 s that is about 10 times of
that required in the MPM simulation.

3.2.4.3 Computational Accuracy

When the background grid cell size in the MPM is comparable to the element
size in the FEM, the difference in accuracy between these two methods mainly
depends on the quadrature scheme used and the technique to deal with large
deformations. Both the MPM and FEM employ polynomial-based shape func-
tions. Hence, the Gauss quadrature used in the FEM can integrate accurately
the weak form, but the particle quadrature used in the MPM cannot. As a re-
sult, the accuracy of the weak form integration in the MPM is lower than that
in the FEM. Furthermore, the original MPM also suffers from a cell crossing
instability, although several improvements have been proposed to eliminate the
instability with additional computational expenses, as discussed later. For large
deformation problems, however, the Jacobian of an element in the FEM will de-
crease to zero, even become negative due to element distortion, which leads to
a significant error, even abnormal termination of the simulation. To continue an
FEM simulation, an erosion technique is usually used, which simply deletes the
distorted or failed elements from the system. However, erosion is not physical,
which not only makes mass, momentum, and energy nonconservative, but also
unable to simulate hypervelocity impact problems. For example, Fig. 3.10 illus-
trates the FEM results of a hypervelocity impact simulation using LS-DYNA.
Whether the erosion technique is used or not, the FEM simulation cannot ob-
tain the debris cloud. Although remeshing can alleviate the element distortion,
remapping material properties of history-dependent materials will result in a
significant error. Furthermore, designing an efficient remeshing technique for
complicated 3D problems remains a challenging task for the FEM. Therefore,
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FIGURE 3.10 High velocity impact simulation using LS-DYNA: (a) without erosion, and (b) with
erosion.

the accuracy of the MPM is lower than that of the FEM for small deformation
problems, but could be much higher than that of the FEM for large deformation
problems.

To sum up, the computational efficiency and accuracy of the MPM are lower
than those of the FEM in small deformation cases, but could become much
higher than those of the FEM in large deformation cases. Hence, an optimized
combination of the FEM with MPM could greatly enhance both efficiency and
accuracy in large-scale computer modeling and simulation, as illustrated in
Chapter 8 for practical applications.

3.3 CONTACT METHOD

In the MPM, all particles move in a single-valued velocity field defined by the
grid nodal velocity so that unphysical material interpenetration is not possible
and the non-slip contact condition is satisfied automatically. In other words, the
non-slip contact constraint is inherent in the MPM without requiring any addi-
tional treatment. In many engineering problems, however, bodies often contact
and slide against each other such that a contact method with a physics-based
criterion is required for the MPM. A simple contact algorithm was proposed by
York et al. [69] to allow the release of the no-slip contact constraint in the orig-
inal MPM. If two bodies are coming into contact with each other, the original
MPM is used to impose the impenetrability condition. If the bodies are moving
away from one another, they move with their own velocity fields to allow separa-
tion. To avoid interpenetration and allow separation in the gear contact process,
Hu and Chen [70] presented a contact/sliding/separation algorithm in a multi-
grid environment. The normal velocity of each particle at the contact surface
is calculated in the common background grid, whereas the tangential velocity is
found based on the respective individual grid. Although the aforementioned con-
tact algorithms are efficient to handle separation, the friction between contact
bodies is not considered. Bardenhagen et al. [71,72] proposed a contact/fric-
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FIGURE 3.11 Two bodies in contact.

tion/separation algorithm in multi-velocity fields. The impenetrability condition
and Coulomb friction between bodies are incorporated into the MPM when the
contact occurs. The contact force between bodies is obtained from the relative
nodal velocity at the contact surface. This approach has been demonstrated with
the use of a sphere rolling on an inclined plane and the granular shearing simula-
tion. The contact force in Bardenhagen’s contact method is not along a common
normal, which results in errors in momentum conservation [71,72], especially
for large deformation problems. Huang et al. [73] proposed three methods for
impact and penetration simulations to determine the surface normal vectors that
satisfy the collinearity condition at the contact surface. Different methods are
compared below.

3.3.1 Boundary Conditions at Contact Surface

Consider the contact between two bodies A and B , denoted by ΩA and ΩB

in the current configuration. The boundaries of these two bodies are denoted
by ΓA and ΓB , while their contact surface is denoted by ΓC(= ΓA ∩ ΓB), as
shown in Fig. 3.11. The boundary of each body is composed of displacement
boundary, traction boundary and contact surface, namely, Γ A = Γ A

t ∪Γ A
u ∪Γc,

Γ B = Γ B
t ∪Γ B

u ∪Γc, Γ A
t ∩Γ A

u = 0, Γ A
t ∩Γc = 0, Γ A

u ∩Γc = 0, Γ B
t ∩Γ B

u = 0,
Γ B

t ∩ Γc = 0, and Γ B
u ∩ Γc = 0.

It is usually convenient to express the contact surface equation in the local
coordinate system of the contact surface. Take body A as the master body whose
potential contact surface is called master surface, and take body B as the slave
body whose potential contact surface is called slave surface. The local coordi-
nate system at any point on the boundary of a body is established by taking the
boundary’s tangential unit vectors eA

1 , eA
2 and normal unit vector nA = eA

1 × eA
2

as the base vectors. At a contact point, the normal vectors of body A and body
B are in the opposite direction, i.e., nB = −nA. The velocity at a contact point
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of each body can then be expressed in the local coordinate system as

vA = vA
NnA + vA

α eA
α = vA

NnA + vA
T , (3.75)

vB = vB
NnA + vB

α eA
α = −vB

NnB + vB
T (3.76)

where the repeated index α represents the summation over its values (2 in 3D
problems while 1 in 2D problems), vA

N = vA · nA and vB
N = vB · nA denote the

normal velocity of body A and body B at the contact point, respectively, and
vA

T = vA
α eA

α and vB
T = vB

α eA
α denote their tangential velocities.

3.3.1.1 Impenetrability Condition

The impenetrability condition for a pair of bodies can be expressed as

ΩA ∩ ΩB = 0. (3.77)

Eq. (3.77) states that two bodies cannot occupy the same position at the same
time. It is usually unable to express the impenetrability condition as an algebraic
or differential equation in terms of displacement in large deformation problems.
Therefore, it is convenient to express the impenetrability condition at any point
on the contact surface Γc in the rate form as follows:

γN = vA
N − vB

N = (vA − vB) · nA = vA · nA + vB · nB � 0. (3.78)

Eq. (3.78) states that two contacted bodies will either remain in contact
(γN = 0) or separate from each other (γN < 0). The relative tangential veloc-
ity between the two bodies is given by

γ T = vA
T − vB

T = vA
α eA

α − vB
α eA

α . (3.79)

3.3.1.2 Traction Condition

According to the Newton’s third law of motion, the sum of the tractions across
the contact surface must be zero, i.e.,

tA + tB = 0, (3.80)

which can be decomposed into normal and tangential components as

tAN + tBN = 0, (3.81)

tA
T + tB

T = 0 (3.82)

where tAN = tA ·nA and tBN = tB ·nA are the normal tractions of body A and body
B , and tAT = tA − tANnA and tB

T = tB − tBNnB are the corresponding tangential
tractions.
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FIGURE 3.12 Two bodies in contact.

If two bodies are not stuck together at a contact point, the normal traction
cannot be tensile, i.e.,

tN = tAN = −tBN � 0. (3.83)

The tangential traction must be limited by the maximum static friction as

‖tT (x, t)‖ � μ|tN (x, t)|

where μ is the coefficient of static friction.

3.3.2 Contact Detection

Consider two bodies r and s discretized by particles, as shown in Fig. 3.12. If
the momenta of both bodies are mapped to the same grid node I , i.e., pr

iI �= 0
and ps

iI �= 0, the two bodies are identified to be in contact at the grid node I .
When the normal velocities at the contact grid node I of the two bodies satisfy

(vr
iI − vs

iI )n
r
iI > 0, (3.84)

the two bodies are approaching to each other, and may penetrate into each other.
In Eq. (3.84), nr

iI is the unit normal of body r at the contact grid nod I , and the
repeated index i represents summation.

Bardenhagen employed a center-of-mass velocity of the grid node I [71,72]

vcm
iI = mr

I v
r
iI + ms

I v
s
iI

mr
I + ms

I

(3.85)

to detect the contact state of the two bodies at the grid node I . In Eq. (3.85),

mb
I =

nb
p∑

p=1

mpNIp (3.86)
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is the mass at grid node I of body b, nb
p is the total number of particles in

body b. When the two bodies are not in contact, only one body contributes to
the momentum of grid node I so that the center-of-mass velocity of grid node I

only depends on one body, namely

(vb
iI − vcm

iI )nb
iI = 0 (b = r, s). (3.87)

If the two bodies are in contact and may penetrate into each other at the
grid node I , the condition (3.84) can be rewritten in terms of the center-of-mass
velocity by using Eq. (3.85) as follows:

(vb
iI − vcm

iI )nb
iI > 0. (3.88)

If the two bodies contacted at the grid node I will separate from each other,
it follows that

(vb
iI − vcm

iI )nb
iI < 0. (3.89)

The contact state of the two bodies at the grid node I can be identified by
using Eqs. (3.87)–(3.89). If two bodies are in contact at a grid node and may
penetrate into each other, a contact force must be applied at the grid node to
resist the penetration.

The unit normal n̂b
iI to the surface of body b at grid node I can be calculated

from the mass gradient as

n̂b
iI =

∑nb
p

p=1 mpNIp,i∣∣∣∣∑nb
p

p=1 mpNIp,i

∣∣∣∣ , b = r, s. (3.90)

The unit normal obtained from Eq. (3.90) does not satisfy the collinearity
condition n̂r

iI = −n̂s
iI , which leads to non-conservation of momentum, and even

penetration.
A collinear unit normal can be obtained by averaging the two unit nor-

mals [73] given by Eq. (3.90), i.e.,

nr
iI = −ns

iI = n̂r
iI − n̂s

iI

|n̂r
iI − n̂s

iI |
. (3.91)

If body r is stiffer than body s, or if the surface of body r is flat/convex
but the surface of body s is concave, choose the unit normal of body r as the
collinear unit normal, i.e.,

nr
iI = −ns

iI = n̂r
iI . (3.92)
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3.3.3 Contact Force

A contact algorithm can be implemented to find the contact force in a trial-
correction fashion. The momentum equation of each body is first integrated
independently to obtain the trial solution as if both bodies were not in contact.
If the trial solution satisfies the impenetrability condition, take the trial solution
as the final true solution. If not, the contact force is applied at the contact grid
nodes to prevent penetration.

Integrating the momentum equation of each body independently gives the
trial grid nodal momentum

p̄
b,k+1/2
iI = p

b,k−1/2
iI + 
tkf

b,k
iI (3.93)

and trial grid nodal velocity

v̄
b,k+1/2
iI = v

b,k−1/2
iI + 
tk

f
b,k
iI

m
b,k
I

(3.94)

of each body b at grid node I .
If the trial grid nodal velocity v̄

b,k+1/2
iI does not satisfy the condition

(v̄
r,k+1/2
iI − v̄

s,k+1/2
iI )n

r,k
iI > 0, (3.95)

or

(v̄
b,k+1/2
iI − v̄

cm,k+1/2
iI )n

b,k
iI > 0, (3.96)

the two bodies are not in contact such that the trial solution is the true solution
and let v

b,k+1/2
iI = v̄

b,k+1/2
iI . If the condition (3.95) or (3.96) is satisfied, the two

bodies will penetrate into each other so that a contact force should be applied at
the grid node to prevent penetration. In Eq. (3.96),

v̄
cm,k+1/2
iI = p̄

r,k+1/2
iI + p̄

s,k+1/2
iI

m
r,k
I + m

s,k
I

(3.97)

is the trial center-of-mass velocity of grid node I . Eq. (3.95) can be rewritten in
the momentum form by multiplying m

r,k
I m

s,k
I as

(m
s,k
I p̄

r,k+1/2
iI − m

r,k
I p̄

s,k+1/2
iI )n

r,k
iI > 0. (3.98)

Eq. (3.96) can also be given in the momentum form as(
p̄

b,k+1/2
iI − m

b,k
I v̄

cm,k+1/2
iI

)
n

b,k
iI > 0. (3.99)
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When the trial solution violates the impenetrability condition at grid node I ,
a contact force f

b,c,k
iI is applied to correct the trial solution, with the use of the

above momentum form, as follows:

p
b,k+1/2
iI = p̄

b,k+1/2
iI + 
tkf

b,c,k
iI , (3.100)

v
b,k+1/2
iI = v̄

b,k+1/2
iI + 
tk

f
b,c,k
iI

m
b,k
I

. (3.101)

For a sticking contact, the corrected grid nodal velocity v
b,k+1/2
iI must satisfy

the velocity continuity condition

v
r,k+1/2
iI − v

s,k+1/2
iI = 0. (3.102)

Substituting Eq. (3.101) into (3.102) yields the contact force for the sticking
contact as

f
r,c,k
iI = −f

s,c,k
iI = m

r,k
I m

s,k
I

(m
r,k
I + m

s,k
I )
tk

(v̄
s,k+1/2
iI − v̄

r,k+1/2
iI ). (3.103)

Eq. (3.103) can be further rewritten in the momentum form as

f
r,c,k
iI = 1

(m
r,k
I + m

s,k
I )
tk

(m
r,k
I p̄

s,k+1/2
iI − m

s,k
I p̄

r,k+1/2
iI ). (3.104)

Eq. (3.103) can be simplified, by using Eq. (3.97), to

f
b,c,k
iI = m

b,k
I


tk
(v̄

cm,k+1/2
iI − v̄

b,k+1/2
iI ). (3.105)

The normal and tangential contact forces for the sticking contact can be
found to be

f
b,nor,k
iI = f

b,c,k
jI n

b,k
jI n

b,k
iI , (3.106)

f
b,tan,k
iI = f

b,c,k
iI − f

b,nor,k
iI . (3.107)

The magnitude of the tangential contact force ‖f b,tan,k
iI ‖ is limited by the

maximum static friction force μ‖f b,nor,k
iI ‖. Hence, the contact force can be fi-

nally expressed as

f
b,c,k
iI = f

b,nor,k
iI + min(‖f b,tan,k

iI ‖,μ‖f b,nor,k
iI ‖) f

b,tan,k
iI

‖f b,tan,k
iI ‖ . (3.108)

The condition (3.98) may result in a spurious contact. For example, when
the space between two bodies approaching each other is less than 2 times the
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FIGURE 3.13 Distance between two bodies.

cell size (as shown in Fig. 3.11), condition (3.98) is satisfied at grid node I ,
and identifies gird node I as a contacted grid node, but the two bodies are not
actually in contact at this time. To avoid the spurious contact, Ma et al. proposed
an improved contact detection condition [74] by calculating the real distance
between two bodies. As shown in Fig. 3.13, let Xr

I and Xs
I denote the position

vector emanating from grid node I to its closest particle in body r and body s,
respectively. The distance between the two bodies can be calculated as the sum
of the projections of these two position vectors onto the normal vectors of the
two bodies at the grid node I , namely

Drs
I = −Xr

I · nr
I − Xs

I · ns
I . (3.109)

If Drs
I � 0, two bodies overlap each other, and penetration occurs. Thus, the

contact detection condition can be modified as⎧⎨⎩ (v̄
r,n+1/2
iI − v̄

s,n+1/2
iI )n

r,n
iI > 0,

Drs
I � λdc

(3.110)

where dc is the cell size. In Eq. (3.110), λdc is used to take the particle size into
account, and λ can be set to 0.5 if 2 particles are used initially in each direction
of a cell.

In the above contact methods, the momentum equation of each body is
solved in its own background grid, which requires significant storage [70,71].
Ma et al. proposed a local multi-mesh technique [74], in which the multi-mesh
is only employed at contact nodes, as shown in Fig. 3.14. The local multi-mesh
technique reduces the storage requirement and computational cost significantly.
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FIGURE 3.14 Local multi-mesh.

3.3.4 Numerical Algorithm for Contact Method

The numerical algorithm of the explicit MPM, as presented in Sect. 3.2.2, can
be revised to include the contact method as follows:

1. Loop over all bodies to reconstruct the grid nodal mass and momentum of
each body b by mapping their particle mass and momentum to the corre-
sponding grid nodes, namely,

m
b,k
I =

nb
p∑

p=1

mpNk
Ip,

p
b,k−1/2
iI =

nb
p∑

p=1

mpv
b,k−1/2
ip Nk

Ip.

2. Impose essential boundary conditions on the grid nodal momentum
p

b,k−1/2
iI of each body b. At the fixed boundary nodes, set p

b,k−1/2
iI = 0.

3. For the USF only, calculate the particle strain increment 
ε
b,k−1/2
ijp and vor-

ticity increment 
Ω
b,k−1/2
ijp of each body b based on its grid nodal velocity

v
b,k−1/2
iI that can be obtained from the grid nodal momentum p

b,k−1/2
iI , and

then update the particle density ρ
b,k+1
p and stress σ

b,k+1
ijp .

4. Calculate the gird nodal internal force f
b,int,k
iI , external force f

b,ext,k
iI , and

total force f
b,k
iI = f

b,int,k
iI + f

b,ext,k
iI of each body.

5. Integrate the momentum equation of each body independently as if two
bodies were not in contact, namely, calculate the grid nodal trial momentum
p̄

b,k+1/2
iI using Eq. (3.93).

6. Contact detecting and contact force calculation:
a. Calculate the unit normal n

b,k
iI to each body surface at grid nodes us-

ing Eq. (3.90), (3.91), or (3.92). If condition (3.98) or (3.99) is not
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satisfied, the two bodies have not penetrated into each other at the
grid node I so that the trial solution is the final true solution and let
p

b,k+1/2
iI = p̄

b,k+1/2
iI , and v

b,k+1/2
iI = v̄

b,k+1/2
iI . Otherwise, the two bod-

ies have penetrated into each other at the grid node I .
b. For the penetrated grid node, calculate the normal contact force f

b,nor,k
iI

and tangential contact force f
b,tan,k
iI using Eqs. (3.106) and (3.107).

If ‖f b,tan,k
iI ‖ < μ‖f b,nor,k

iI ‖, the contact is a sticking one so that the

contact force f
b,c,k
iI is calculated using Eq. (3.105). Otherwise, the con-

tact is a slipping one such that the contact force f
b,c,k
iI is found using

Eq. (3.108).
c. The corrected grid nodal momentum p

b,k+1/2
iI of each body which sat-

isfies the contact surface condition is finally obtained using Eq. (3.100).
7. Update the position and velocity of each body by mapping the grid nodal

velocity and acceleration of each body back to the particles as follows:

x
b,k+1
ip = x

b,k
ip + 
tk+1/2

8∑
I=1

p
b,k+1/2
iI

mb
I

Nk
Ip, (3.111)

v
b,k+1/2
ip = v

b,k−1/2
ip + 
tk

8∑
I=1

f
b,k
iI + f

b,c,k
iI

mb
I

Nk
Ip. (3.112)

8. For the MUSL only, recalculate the grid nodal momentum of each body
based on its updated particle momenta, and impose essential boundary con-
ditions.

9. For the MUSL and USL only, calculate the grid nodal velocity, particle
strain increment and vorticity increment, and then update particle density
and stress.

10. All material properties are stored with the particles so that the deformed
grid could be discarded, if needed, to employ a new grid in the next time
step.

Compared with the numerical algorithm of the explicit MPM without contact
treatment as presented in Sect. 3.2.2, the revised algorithm only employs one
additional step, i.e., step 6, which calculates the contact force and then corrects
the trial solution.

3.4 GENERALIZED INTERPOLATION MPM AND OTHER
IMPROVEMENTS

The original MPM discretizes a material domain into a set of particles, with
the use of linear grid nodal shape functions for computational efficiency, which
results in a discontinuous gradient of shape functions. In addition, the shape
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functions are local in the sense that they are defined within their own cells.
As a result, a particle on the cell boundary would not be covered by the local
shape functions defined within the respective cells around the particle. This issue
would produce noise in the numerical solution, called cell crossing noise, which
results in unsatisfactory and even unphysical results.

To alleviate the cell crossing noise, Bardenhagen et al. developed the Gen-
eralized Interpolation Material Point (GIMP) method [75] using a Petrov–
Galerkin discretization scheme and discretizing a continuum as a collection of
particles defined by particle characteristic functions that are nonzero (nonlocal)
over a representative volume. A particle characteristic function χp(x) defines
the spatial volume occupied by the particle. In the initial configuration, the par-
ticle characteristic functions should be a partition of unity, i.e.,∑

p

χp(x) = 1. (3.113)

The current volume of particle p is given by

Vp =
∫

Ωp

⋂
Ω

χp(x)dV (3.114)

where Ω is the current domain occupied by the continuum, and Ωp is the current
support of the characteristic function of particle p, which can also be considered
as the current domain occupied by the particle.

Any material property f (x) can be approximated by its particle value fp as

f (x) =
∑
p

fpχp(x). (3.115)

Eq. (3.115) shows that the particle characteristic functions smooth out the
particle properties over the entire computational domain, and determine the
smoothness of the spatial variation. The density ρ, stress σij , and acceleration
üi can all be approximated using Eq. (3.115). The weak form (2.70) can then be
expressed using the approximation (3.115) as∑

p

∫
Ωp

⋂
Ω

ṗip

Vp

χpδuidV +
∑
p

∫
Ωp

⋂
Ω

σijpχpδui,j dV

−
∑
p

∫
Ωp

⋂
Ω

ρpbipχpδuidV −
∫

Γt

t̄iδuidA = 0. (3.116)

The GIMP method employs the Petrov–Galerkin method to solve
Eq. (3.116). The particle characteristic functions χp(x) are used in the trial
functions (see Eq. (3.115)), and the grid nodal shape functions NI (x) are used
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in the test functions. Thus, the virtual displacement δui in Eq. (3.116) can be
expressed as

δui =
∑
I

δuiINI (x) (3.117)

where the grid nodal shape functions are also a partition of unity, i.e.,∑
I

NI (x) = 1. (3.118)

Substituting Eq. (3.117) into Eq. (3.116) and invoking the arbitrariness of
δuiI and δuiI |Γu

= 0 yields the grid nodal momentum equations of the GIMP
similar to Eq. (3.8) as follows:

ṗiI = f int
iI + f ext

iI , xI /∈ Γu (3.119)

where

piI =
∑
p

SIppip, (3.120)

f int
iI = −

∑
p

σijpSIp,jVp, (3.121)

f ext
iI =

∑
p

mpSIpbip +
∫

Γt

NI (x)t̄idΓ, (3.122)

and

SIp = 1

Vp

∫
Ωp

⋂
Ω

χp(x)NI (x)dΩ, (3.123)

SIp,j = 1

Vp

∫
Ωp

⋂
Ω

χp(x)NI,j (x)dΩ. (3.124)

Eqs. (3.123) and (3.124) show that the GIMP shape function SIp (also re-
ferred to as weighting function) and its gradients SIp,j are implicitly functions
of grid nodal position xI , particle position xp , and current particle volume Ωp .
Compared with the shape function NI of the computational grid, the shape func-
tion SI of the GIMP is smooth with a nonlocal support. It can be proved, using
Eqs. (3.118) and (3.114), that the shape function SIp of the GIMP is also a
partition of unity, i.e., ∑

I

SIp = 1 ∀xiI , xip. (3.125)
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The grid nodal mass mI and momentum piI are then given by

mI =
∑
p

mpSIp, (3.126)

piI =
∑
p

pipSIp. (3.127)

In the GIMP, the mass and momentum are also conserved, i.e.,∑
I

mI =
∑
I

∑
p

mpSIp =
∑
p

mp, (3.128)

∑
I

piI =
∑
I

∑
p

pipSIp =
∑
p

pip. (3.129)

The original MPM formulation can be recovered from the GIMP by choos-
ing the Dirac delta function as the particle characteristic function χp(x), i.e.,

χp(x) = δ(x − xp)Vp (3.130)

because of SIp = NI (xp) and SIp,j = NI,j (xp).
Choosing different particle characteristic functions and grid nodal shape

functions results in different weighting functions. The grid nodal shape func-
tion is usually chosen to be a linear function for computational efficiency. In 1D
problems, it follows that

NI (x) =

⎧⎪⎪⎨⎪⎪⎩
0 |x − xI | � L,

1 + (x − xI )/L −L < x − xI � 0,

1 − (x − xI )/L 0 < x − xI < L

(3.131)

where L is the grid cell spacing size.

3.4.1 Contiguous Particle GIMP

The simplest characteristic function in 1D cases is

χp(x) = H(x − (xp − lp)) − H(x − (xp + lp)) (3.132)

where 2lp is the current particle size, and

H(x) =
{

0 x < 0,

1 x > 0

is the step function. The particle characteristic function (3.132) defines “con-
tiguous particles”, i.e., contiguous regions of non-overlapping support Ωp [75].



72 The Material Point Method

The corresponding GIMP is denoted as the contiguous particle GIMP
(cpGIMP) [75,76], in which the initial particle size is determined by dividing
the cell spacing L by the number of particles per cell.

Eq. (3.132) can also be written as

χp(x) =
{

1 x ∈ Ωp,

0 x /∈ Ωp

(3.133)

so that Eqs. (3.123) and (3.124) can be simplified to

SIp = 1

2lp

∫ xp+lp

xp−lp

NI (x)dx, (3.134)

SIp,j = 1

2lp

∫ xp+lp

xp−lp

NI,j (x)dx. (3.135)

Substituting Eq. (3.131) into Eqs. (3.134) and (3.135) results in the cpGIMP
shape function with C1 continuity as follows:

SIp =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 |xp − xI | � L + lp,

(L+lp+(xp−xI ))2

4Llp
−L − lp < xp − xI � −L + lp,

1 + xp−xI

L
−L + lp < xp − xI � −lp,

1 − (xp−xI )2+l2p
2Llp

−lp < xp − xI � lp,

1 − xp−xI

L
lp < xp − xI � L − lp,

(L+lp−(xp−xI ))2

4Llp
L − lp < xp − xI � L + lp.

(3.136)

The derivative of the cpGIMP shape function then takes the form of

∇SIp =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 |xp − xI | � L + lp,

L+lp+(xp−xI )

2Llp
−L − lp < xp − xI � −L + lp,

1
L

−L + lp < xp − xI � −lp,

− xp−xI

Llp
−lp < xp − xI � lp,

− 1
L

lp < xp − xI � L − lp,

−L+lp−(xp−xI )

2Llp
L − lp < xp − xI � L + lp.

(3.137)

3.4.2 Uniform GIMP

As shown in Eqs. (3.123) and (3.124), the GIMP requires integration over the
current support of the particle characteristic functions that deform and rotate
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FIGURE 3.15 uGIMP shape function in 1D.

relative to the computational grid. In other words, the full version of the GIMP
requires tracking the support of the particle characteristic function, or tracking
the particle shape, which is very difficult for multi-dimensional problems. For
1D cases, the current length lnp of particle p at time tn can be obtained from its

initial length l0
p and deformation gradient Fn

p as

lnp = Fn
p l0

p (3.138)

where Fn
p is the deformation gradient of particle p at time tn.

To avoid the difficulty of tracking the particle shape for multi-dimensional
problems, several approximations have been proposed. For example, particles
can be assumed rectangular or cuboid particles initially and remain rectangu-
lar or cuboid during deformations, i.e., neglecting the shear deformation and
rigid-body rotation of a particle. Thus, their current size in each direction can be
obtained from [76]

lnip = Fn
iipl0

ip (3.139)

where Fn
iip is the ith diagonal element of the deformation gradient tensor F of

particle p at time tn.
Assuming that two particles initially occupy each cell and the size of the

particles is fixed, the current length of each particle is 2lp = L/2, i.e., lp = L/4.
Letting ξ = |(xp − xI )/L|, Eq. (3.136) can be simplified to [48]

SIp(ξ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

7−16ξ2

8 ξ � 0.25,

1 − ξ 0.25 < ξ � 0.75,

(5−4ξ)2

16 0.75 < ξ � 1.25,

0 ξ > 1.25.

(3.140)

The GIMP shape function given by Eq. (3.140) is shown in Fig. 3.15. The
three-dimensional shape function can be chosen as the product of three one-
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FIGURE 3.16 Initial and updated particle domains [77].

dimensional shape functions (3.140), namely,

SIp(x) = SIp(ξ)SIp(η)SIp(ζ ) (3.141)

where η = |(yp − yI )/L| and ζ = |(zp − zI )/L|. This version of the GIMP is
called the uniform GIMP (uGIMP) that assumes that all particles are cuboid
particles of fixed size.

The uGIMP assumes that the sizes of particles are fixed during material de-
formations. The particle characteristic functions, whose supports may overlap or
leave gaps for large deformations, are no longer a partition of unity. Therefore,
the uGIMP is unable to completely eliminate the cell crossing noise.

3.4.3 Convected Particle Domain Interpolation

Sadeghirad et al. proposed a convected particle domain interpolation (CPDI)
method [77] which employs initially parallelogram-shaped particles and as-
sumes the deformation gradient to be constant over the particle domain. The
convected particle domain is a reshaped parallelogram in the deformed configu-
ration, as shown in Fig. 3.16. The vectors defining the parallelogram domain in
the current configuration can be obtained from

rn
1 = F n

pr0
1,

rn
2 = F n

pr0
2, (3.142)

rn
3 = F n

pr0
3

where (r0
1, r

0
2, r

0
3) and (rn

1, r
n
2, rn

3) define the parallelogram particle in the initial
and current configuration, respectively, as shown in Fig. 3.16.
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FIGURE 3.17 The enhanced CPDI method [78].

To reduce the computational expense of dividing the particle domains along
the cell boundaries in calculating the integrals in Eqs. (3.123) and (3.137),
Sadeghirad et al. proposed alternative grid shape functions by interpolating the
standard grid shape functions at the four corners of each particle domain as

N
app
I (x) =

4∑
α=1

Qp
α(x)NI (x

p
α) on Ωp (3.143)

where Q
p
α is the standard FE 4-node shape function related to the αth corner

of the domain corresponding to particle p, and x
p
α is the position vector of this

corner.
The parallelogram domain defined by Eq. (3.142) is a first-order accurate

approximation of the actual particle domain Ωp . Sadeghirad et al. further en-
hanced the CPDI method to more accurately track the particle domains as
quadrilaterals in 2D (hexahedrons in 3D) [78], as shown in Fig. 3.17. The field
values are saved at the particle centroid xp . The corner positions of particle p

are updated at the end of each time step by

xp(n+1)
α = xp(n)

α +
∑
I

NI (x
p(n)
α )vn+1

I 
t. (3.144)

The enhanced CPDI method is a second-order accurate approximation of
the actual particle domain Ωp , which not only removes the overlaps or gaps be-
tween particle domains, but also provides the flexibility in choosing the particle
domain shape in the initial configuration.

3.4.4 Dual Domain Material Point Method

Instead of modifying the shape functions from the original MPM, Zhang et al.
proposed to define the gradient of the shape function as a weighted average of
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FIGURE 3.18 Gradients of the shape functions in 1D [79].

the gradient calculated in the original MPM and the gradient from the FLIP
node-based calculation [79]. The modified gradient is continuous as particles
move across cell boundaries such that the cell crossing noise is eliminated.
Zhang et al. named this method as the dual domain material point (DDMP)
method [79] because the support of the modified gradient is greater than that
of the shape function itself. Unlike the GIMP, the DDMP does not make use of
particle characteristic functions so that the difficulty of tracking the support of a
characteristic function is avoided for large deformation problems. The modified
gradient of the DDMP is given by [79]

∇SI (x) = α(x)∇SI (x) + (1 − α(x))∇̃SI (x) (3.145)

where α(x) is a bounded function, ∇SI (x) is the gradient of the shape function
calculated using the original MPM, and

∇̃SI (x) =
nn∑

J=1

SJ (x)

VJ

∫
Ω

SJ (x)∇SI (x)dΩ (3.146)

is the gradient from the node-based calculation as used in FLIP [57], with nn

being the number of nodes in the computational grid. Fig. 3.18 compares the
gradients of the shape functions in 1D as used in the MPM, FLIP, GIMP, and
DDMP.

3.4.5 Spline Grid Shape Function

The particle quadrature used in the original MPM is equivalent to a midpoint
quadrature with an uneven spacing during deformation. The piecewise linear
grid shape functions are usually used such that the integrals in the calculation
of internal forces are discontinuous across cell boundaries. Integrating discon-
tinuous functions with the midpoint rule is valid only when the particle domain
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FIGURE 3.19 The vertex of particle p does not coincide with the discontinuity [80]. 
x is the
particle length, h is the cell width, and ∇NI is the gradient of shape function associated with grid
node I .

vertices coincide with these discontinuities. However, the particle domain ver-
tices usually do not coincide with these discontinuities all the time as particles
advect through the background grid, which will lead to quadrature errors when
integrating across the discontinuities [80], as shown in Fig. 3.19.

Steffen et al. [80] demonstrated that the integration error in finding the inter-
nal force for a uniformly stressed body with the use of piecewise linear shape
functions is O(
x/h). They showed that simply using smoother basis functions
could drastically reduce the integration error. For example, using the quadratic
B-spline

N(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2h2 x2 + 3

2h
x + 9

8 , − 3
2h � x � − 1

2h,

− 1
h2 x2 + 3

4 , − 1
2h � x � 1

2h,

1
2h2 x2 − 3

2h
x + 9

8 , 1
2h � x � 3

2h,

0, otherwise

(3.147)

reduces the integration error to O((
x/h)2), whereas using the cubic B-spline

N(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6h3 x3 + 1

h2 x2 + 2
h
x + 4

3 , −2h � x � −h,

− 1
2h3 x3 − 1

h2 x2 + 4
3 , −h � x � 0,

1
2h3 x3 − 1

h2 x2 + 4
3 , 0 � x � h,

− 1
6h3 x3 + 1

h2 x2 − 2
h
x + 4

3 , h � x � 2h,

0, otherwise

(3.148)

reduces the integration error to O((
x/h)3). Multi-dimensional B-spline shape
functions can be obtained by taking the product of these 1D shape functions.

3.5 ADAPTIVE MATERIAL POINT METHOD

3.5.1 Particle Adaptive Split

In the MPM, the interactions between particles are carried out via the compu-
tational grid. There will be no interaction between two particles when they are
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FIGURE 3.20 Numerical fracture [81].

separated by a grid cell, as shown in Fig. 3.20, which may lead to numerical
fracture. Therefore, in the cases with extremely large deformations such as the
expansion of explosion product and the extreme stretch of the material in shaped
charge, the original MPM may be unable to yield the reasonable solution with-
out using a particle rearrangement or adding scheme.

Ma et al. proposed an adaptive particle splitting scheme [81] to eliminate the
numerical fracture. A particle is split into two particles when its accumulative
strain in one direction exceeds a specified value. The current accumulative strain
of a particle in the ith direction is given by

εi =
∑

k


εk
i =

∑
k

ε̇k
ii
t (3.149)

where 
εk
i is the strain increment in the ith direction at time step k. The current

equivalent length of the particle in the ith direction can be obtained as

Li = L0(1 + εi) (3.150)

where L0 = 3
√

mp/ρ0 is the initial equivalent length of the particle. When the
current equivalent length of the particle exceeds a given value in any direction,
i.e.,

Li > αdc, (3.151)

the particle is divided into two particles in that direction, where dc is the grid
cell spacing and α < 1 is a user-specified constant. The spacing between the two
new particles is chosen as 0.5αdc, as shown in Fig. 3.21.

When a particle is split into two particles, its mass, volume, and internal
energy are halved to each new particle, while other variables such as stress,
strain, and temperature are copied to the new particles directly. Accumulated
strain εi of the new particles is determined as follows:

L′
i =

{
0.5Li in split direction,

Li in other direction
(3.152)
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FIGURE 3.21 Particle adaptive splitting [81].

where L′
i denotes the equivalent length of the new particles. Note that the mass

of the new particles is a half of the original mass mp . Substituting the equivalent
length defined in Eq. (3.150) into Eq. (3.152), the adjusted accumulated strain
can be found to be

ε′
i =

{
0.63εi − 0.37 in split direction,

1.26ε2 + 0.26 in the other two directions.
(3.153)

3.5.2 Adaptive Computational Grid

The MPM integrates the momentum equations on the computational grid so
that the grid has a significant effect on the accuracy and efficiency of the MPM
calculation. A regular grid with uniform cells is commonly used in the MPM,
which is inefficient for solving the problems involving discontinuities of differ-
ent degrees, such as evolution of localization and crack propagation. Tan et al.
developed a hierarchically adaptive MPM for dynamic energy release rate cal-
culations, which automatically refines the mesh around the crack tip to meet the
local resolution requirement as judged by tracking the gradients in the solution
process [82]. Based on the Structured Adaptive Mesh Refinement Application
Infrastructure (SAMRAI), Ma et al. presented a parallel GIMP computational
method [83] which uses the nested computational grid levels (with successive
spatial and temporal refinements) to improve the computational accuracy and to
reduce the overall computational cost in simulating the problems with multiple
length scales. Ma et al. [84] also proposed a spatial refinement scheme of the
structured grid for the GIMP in the simulations with highly localized stress gra-
dients by modifying the grid shape function for the transitional node. Several
representative methods are discussed below.

3.5.2.1 Dynamic Grid

The MPM usually employs a static computational grid, which must cover all the
particles during the simulation. In most problems, however, particles only oc-
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FIGURE 3.22 MPM models for simulating oblique penetration.

FIGURE 3.23 Time history of the percentage of used cells.

cupy a part of the grid. For example, in the penetration simulation as shown in
Fig. 3.22, only about 13% of cells are occupied by the particles, and the remain-
ing 87% of cells are not occupied by any particle, as shown in Fig. 3.23. Hence,
the static grid wastes a huge amount of computer storage and computational
time.

To minimize the computer storage and computational time required by the
grid, Ma et al. proposed the dynamic grid technique [74]. At the beginning of a
simulation, two arrays of pointers to node and cell objects are created without
instantiating these objects. During the simulation, a node object or a cell object
is instantiated only when there are particles around the node or in the cell, as
shown in Fig. 3.24. The objects which have not been instantiated will not con-
sume any memory and will not take part in the computation. Thus, the dynamic
grid method will decrease the memory allocated and improve the efficiency sig-
nificantly.

3.5.2.2 Moving Grid

In the problems with a high particle velocity, the initial computational grid may
be unable to cover all the particles during the whole simulation. To overcome
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FIGURE 3.24 Dynamic grid technique: (a) static grid, (b) dynamic grid.

FIGURE 3.25 Moving grid technique: (a) initial grid, (b) original moving grid technique, and
(c) improved moving grid technique.

this difficulty, Ma et al. proposed a moving grid technique [74], which adjusts
the computational grid at each time step based on the current positions of par-
ticles to make the grid just cover all the particles. This technique can not only
reduce the computational cost, but also eliminate the numerical fracture to some
extent. When the particle spacing increases, the material domain also enlarges
which triggers the expansion of the grid. The grid expansion enlarges the influ-
ence domains of particles to alleviate the numerical fracture.

The moving grid technique does not change the grid topology, but changes
the cell size, which may deteriorate the solution accuracy that depends on the
cell size. Yang et al. improved the moving grid technique [85] by keeping the
cell size fixed, changing the grid topology, and deleting automatically the void
cells. For example, consider that a sphere expands in the horizontal direction,
as shown in Fig. 3.25(a). The original moving grid technique expands the grid
by enlarging the cells in the horizontal direction to cover all the particles, as
shown in Fig. 3.25(b), while the improved moving grid technique expands the
grid by appending more cells to the grid and deleting the void cells, as shown in
Fig. 3.25(c).
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FIGURE 3.26 Penetration simulation with multiple grids.

3.5.2.3 Multiple Grids

The multiple-grid technique [85] employs an individual grid for different bodies
so that each body moves in its own grid. The grids for the bodies without interac-
tion with other bodies can be inactivated to reduce the computational cost. When
bodies interact with each other, they move in a common grid. This technique is
very efficient for penetration to multi-targets, as shown in Fig. 3.26, in which the
dashed lines denote the boundary of an inactivated grid while the solid lines de-
note the boundary of an activated grid. Before the projectile contacts the target,
both the projectile and target move in their own grids such that only the grid of
projectile is activated, as shown in Fig. 3.26(a). After the projectile contacts the
first target, the projectile and the first target move in a common grid so that only
the common grid is activated, as shown in Fig. 3.26(b). After penetration into
the first target is complete, three bodies move in their own grids again, and only
the grid for the projectile is activated, as shown in Fig. 3.26(c). As compared
with the original MPM grid, the multiple grid technique saves 50% of the CPU
time and 60% of computer storage for the example as shown in Fig. 3.26.

3.5.2.4 Multi-level Grid

To improve the accuracy and efficiency of simulating localized failure evolution,
Yang et al. proposed a multi-level grid [85,86] to gradually refine the computa-
tional grid. The grid can be gradually refined from level 0 (the original MPM
grid) to level n in a localized region. The cell spacing of level n is chosen as a
half of that of the level n − 1 so that hn = h0/2n with h0 being the cell size of
level 0 that corresponds to the coarsest level. Fig. 3.27 illustrates an example of
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FIGURE 3.27 Three-level grid in 2D. The hollow dots denote the hanging nodes [85].

the 3-level grid in 2D. This technique results in additional nodes called hanging
nodes in lower level cells at the interface between cells of different levels. In
this two-dimensional case, the highest level cells have 4 nodes, but other level
cells may have 4 to 8 nodes. For example, in Fig. 3.27, the 0-level cell 1 has 6
nodes, the 1-level cell 3 has 5 nodes, and the 2-level cell 4 only has 4 nodes.

In the above multi-level grid, 4-node cells are connected to 5- to 8-node cells
so that the grid nodal shape functions must be modified to ensure the continuity
across the interface between different-level cells. For example, the approxima-
tion function of cell 1 must conform to the approximation function of cell 2
along the a–b side, and conform to the approximation function of cell 3 along
the b–c side. Therefore, the approximation function of cell 1 must be a piece-
wise linear function along the a–b–c side.

Take a 5-node cell shown in Fig. 3.28(a) as an example, in which the hang-
ing node b is located at the middle of the side a–c. The cell is divided into
two subcells by the dashed line passing through node b, and the shape function
in each subdomain must be linear. Since any shape function must satisfy the
requirement of

NI (xJ ) = δIJ , (3.154)

the shape function of node b can be chosen as

Nb(ξ, η) = 1

2
(1 + ξ)(1 − |η|)

which is linear along the a–b–c side. Let NL
I (I = a, c, d, e) denote the 4-node

cell shape function of node I , which is given by

NL
I (ξ, η) = 1

4
(1 + ξI ξ)(1 + ηIη)
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FIGURE 3.28 A 5-node cell with one hanging node. (a) The cell is divided into two subcells by
the dashed line passing through node b, (b) shape function of node e, (c) shape function of node b,
and (d) shape function of node c [85,86].

where ξI = ±1, ηI = ±1 are the natural coordinates of node I . The 4-node cell
shape functions NL

d (ξ, η) and NL
e (ξ, η) already satisfy the requirement (3.154)

such that they can be used to construct the corresponding 5-node cell shape
functions, i.e.,

NI (ξ, η) = NL
I (ξ, η), I = d, e.

However, the 4-node shape functions equal 1/2 at node b so that the above
functions must be modified before they can be taken as the corresponding
5-node shape functions, namely,

Na(ξ, η) = NL
a (ξ, η) − 1

2
Nb(ξ, η), (3.155)

Nc(ξ, η) = NL
c (ξ, η) − 1

2
Nb(ξ, η). (3.156)

Figs. 3.28(b)–(d) plot the 5-node shape functions of nodes e, b, and c, re-
spectively.

Note that the particle size should also conform to the cell size such that
refined particles should be used in refined cells. For example, the equivalent
length of particles in level 0 cells as shown in Fig. 3.29(a) should be 2 times
of that in level 1 cells. When a particle in level 0 cells moves into a level 1
cell, it should be split into 4 particles in 2D and 8 particles in 3D, as shown in
Fig. 3.29(b). Please refer to Sect. 3.5.1 for the particle splitting scheme.
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FIGURE 3.29 Two-level grid.

FIGURE 3.30 8- to 26-node linear isoparametric cells.

In three-dimensional cases, a multi-level grid may have 8- to 26-node cells,
as shown in Fig. 3.30. In a 3D cell, node 1 to node 8 are mandatory, but other
nodes are optional. The shape function of each node is listed in Table 3.2 [87].

3.5.2.5 Adaptive Grid

The above-mentioned multi-level grid technique needs users to identify the
refined zone and generate the multi-level grid before starting a simulation.
Yang et al. further developed an adaptive grid technique [85] based on the multi-
level grid. At each time step, the cells with a sharp gradient of solution are
refined automatically. For example, the cell 2 of level 0 is divided into 4 cells of
level 1 when its solution gradient reaches a prescribed value. The adaptive grid
technique can divide a cell into several levels, and would result in hanging nodes
in all the cells except for the level 0 cells (see Fig. 3.31). The shape functions
for cells with hanging nodes are given in Sect. 3.5.2.4.

The strain gradient or energy norm can be used to identify the cells which
need to be refined. The energy norm criterion calculates the strain energy norm
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TABLE 3.2 Shape Functions of a 3D Cell with Hanging Nodes

Node N(ξ,η, ζ )

26 1
2 (1 − |ξ |)(1 − |η|)(1 − ζ )

25 1
2 (1 − |ξ |)(1 − |η|)(1 + ζ )

24 1
2 (1 − |ξ |)(1 − η)(1 − |ζ |)

23 1
2 (1 − |ξ |)(1 + η)(1 − |ζ |)

22 1
2 (1 − ξ)(1 − |η|)(1 − |ζ |)

21 1
2 (1 + ξ)(1 − |η|)(1 − |ζ |)

20 1
4 (1 + ξ)(1 − η)(1 − |ζ |) − 1

2 (N21 + N24)

19 1
4 (1 − ξ)(1 − η)(1 − |ζ |) − 1

2 (N22 + N24)

18 1
4 (1 − ξ)(1 + η)(1 − |ζ |) − 1

2 (N22 + N23)

17 1
4 (1 + ξ)(1 + η)(1 − |ζ |) − 1

2 (N21 + N23)

16 1
4 (1 + ξ)(1 − |η|)(1 − ζ ) − 1

2 (N21 + N26)

15 1
4 (1 − |ξ |)(1 − η)(1 − ζ ) − 1

2 (N24 + N26)

14 1
4 (1 − ξ)(1 − |η|)(1 − ζ ) − 1

2 (N22 + N26)

13 1
4 (1 − |ξ |)(1 + η)(1 − ζ ) − 1

2 (N23 + N26)

12 1
4 (1 + ξ)(1 − |η|)(1 + ζ ) − 1

2 (N21 + N25)

11 1
4 (1 − |ξ |)(1 − η)(1 + ζ ) − 1

2 (N24 + N25)

10 1
4 (1 − ξ)(1 − |η|)(1 + ζ ) − 1

2 (N22 + N25)

9 1
4 (1 − |ξ |)(1 + η)(1 + ζ ) − 1

2 (N23 + N25)

8 1
8 (1 + ξ)(1 − η)(1 − ζ ) − 1

2 (N15 + N16 + N20) − 1
4 (N21 + N24 + N26)

7 1
8 (1 − ξ)(1 − η)(1 − ζ ) − 1

2 (N14 + N15 + N19) − 1
4 (N22 + N24 + N26)

6 1
8 (1 − ξ)(1 + η)(1 − ζ ) − 1

2 (N13 + N14 + N18) − 1
4 (N22 + N23 + N26)

5 1
8 (1 + ξ)(1 + η)(1 − ζ ) − 1

2 (N13 + N16 + N17) − 1
4 (N21 + N23 + N26)

4 1
8 (1 + ξ)(1 − η)(1 + ζ ) − 1

2 (N11 + N12 + N20) − 1
4 (N21 + N24 + N25)

3 1
8 (1 − ξ)(1 − η)(1 + ζ ) − 1

2 (N10 + N11 + N19) − 1
4 (N22 + N24 + N25)

2 1
8 (1 − ξ)(1 + η)(1 + ζ ) − 1

2 (N9 + N10 + N18) − 1
4 (N22 + N23 + N25)

1 1
8 (1 + ξ)(1 + η)(1 + ζ ) − 1

2 (N9 + N12 + N17) − 1
4 (N21 + N23 + N25)

FIGURE 3.31 Two-dimensional adaptive grid.
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of each cell at each time step. When the ratio of strain energy norm of a cell
to strain energy norm of the system reaches a prescribed threshold, the cell is
divided. The current strain energy norm of the system is given by

‖U‖ =
(

1

2

∫
Ω

σ T D−1σdΩ

) 1
2

. (3.157)

The current strain energy norm of cell i is defined by

‖Ei‖ =
(

1

2

∫
Ωi

σ T D−1σdΩ

) 1
2

. (3.158)

Thus, the ratio of energy norm of cell i to that of the system can be obtained
as

ηi = n‖Ei‖
‖U‖ (3.159)

where n is the number of cells that are occupied by any particles. When ηi �
TOL (where TOL is a prescribed threshold), cell i is divided into 4 in 2D or 8
subcells in 3D. All the particles in the cell will also be split to match the subcells.

3.6 NON-REFLECTING BOUNDARY

In the cases such as wave propagation through geologic media, the solution do-
main is a semi-infinite one, but numerical solutions are usually needed only in
a finite domain. Isolating a finite domain from the semi-infinite domain results
in an artificial boundary that does not exist in the original semi-infinite domain.
To eliminate the wave reflection from the artificial boundary, some kind of non-
reflecting boundary conditions must be applied on the artificial boundary. With
the use of viscous damping forces along the artificial boundary, Lysemer and
Kuhlemeyer proposed an approach [88] that can effectively absorb the radiant
energy. The normal and tangential viscous damping tractions are given by

σn = n · σ · n = −ρcdv · n = −ρcdvn, (3.160)

τ = (σ · n − σnn) = −ρcs(v − vnn) = −ρcsvτ (3.161)

where n is the unit normal of the artificial boundary, cd is the velocity of di-
latational wave, and cs is the velocity of shear wave. For an isotropic elastic
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FIGURE 3.32 Converting tractions into equivalent specific forces.

material, it follows that

cd =
√

λ + 2G

ρ
, (3.162)

cs =
√

G

ρ
(3.163)

where λ and G are the Lame constants. This approach is not only relatively
easy to be implemented, but also quite reasonable in treating both dilatational
and shear waves in many applications. As a result, it has been widely used, e.g.,
in LS-DYNA [14] and ABAQUS [89].

Shen et al. [90] introduced the viscous damping traction (3.160) and (3.161)
into the MPM by converting the viscous damping traction applied on the arti-
ficial boundary into the equivalent specific force applied on the boundary cells
according to the Saint-Venant’s principle, as shown in Fig. 3.32, i.e.,

ρ · 
x · 
y · 
z · b = σ · n · 
y · 
z. (3.164)

The equivalent specific force can then be obtained from Eq. (3.164) as

b = σ · n
ρ · 
x

. (3.165)

The equivalent specific force (3.165) will be added into Eq. (3.54).

3.7 INCOMPRESSIBLE MATERIAL POINT METHOD

The MPM has also been applied in fluid mechanics to solve the compressible
gas dynamics [81,91–96] and weakly compressible flow [37,97,98]. When in-
vestigating the dynamic behavior of sloshing liquids in a moving container, Li
et al. [97] proposed a weakly compressible material point method (WCMPM)
by employing a nearly incompressible EOS p = c2ρ in the MPM to compute
the particle pressure. The artificial sound speed c is normally taken as 10 times
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higher than the maximum fluid velocity in order to reduce the density fluctuation
down to 1% [99]. As a result, the critical time step size of the explicit time in-
tegration is very small and the computational cost is considerably high. A small
variation in density ρ will lead to a significant change in pressure p such that
the pressure field obtained by the WCMPM exhibits significant oscillations.

To overcome the shortcomings of the WCMPM in solving the free surface
flow problems, Zhang et al. proposed an incompressible material point method
(iMPM) [100] based on an operator splitting scheme. The momentum equation
is split into two sequentially solved subequations connected via the initial con-
ditions.

3.7.1 Momentum Equation of Fluid

In fluid mechanics, the pressure and deviatoric stress are updated independently.
Decomposing the stress σ into the sum of deviatoric stress s and hydrostatic
pressure p, i.e., σ = −p1 + s, Eq. (2.56) can be written as

ρv̇ = −∇p + ∇ · s + ρb (3.166)

where 1 is the second-order identity tensor.
For fully incompressible fluid, the velocity field must satisfy the divergence-

free condition

∇ · v = 0. (3.167)

3.7.2 Operator Splitting

Using the operator splitting method, the momentum equation (3.166) is split
into the following two sequentially solved subequations connected via the initial
conditions:

ρv̇∗ = ∇ · s + ρb with t ∈ [tn, tn+1] and v∗(tn) = vn, (3.168)

ρv̇ = −∇p with t ∈ [tn, tn+1] and v(tn) = v∗(n+1). (3.169)

Eq. (3.168) is almost identical to Eq. (2.56) so that it can be solved by using
the explicit MPM as presented in Sect. 3.2.2. Thus, the intermediate grid nodal
velocity v

∗(n+1)
iI can be obtained as

v
∗(n+1)
iI = vn

iI + 
t

mI

(f
ext,n
iI + f

int,s,n
iI ) (3.170)
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where the external grid nodal force f
ext,n
iI is given by Eq. (3.54), and

f
int,s,n
iI = −

np∑
p=1

Nn
Ip,j sijp

mp

ρp

(3.171)

is the internal grid nodal force contributed by the deviatoric stress only.
Note that the critical time step size depends only on the speed of shear

wave when integrating Eq. (3.168) explicitly. The speed of compressive wave
in a fluid is usually several orders of magnitude higher than that of the shear
wave. Thus, the time step size in the iMPM can be much larger than that in the
WCMPM.

Solving the second subequation (3.169) results in the final solution

vn+1 = v∗(n+1) − 
t

ρ
∇pn+1, vn+1

∣∣∣
Γu

= v̄ (3.172)

which must satisfy the divergence-free condition (3.167).

3.7.3 Pressure Poisson Equations

Substituting Eq. (3.172) into the divergence-free condition (3.167) results in the
pressure Poisson equation as

∇ · v∗ = 
t

ρ
∇2pn+1. (3.173)

In the iMPM, the velocity is interpolated from the grid nodal velocities,
while the pressure is approximated as a constant in each cell. The pressure Pois-
son equation (3.173) is solved approximately by collocating at cell centers.

The divergence of the intermediate velocity field v∗ at cell center (i, j , k)
can be approximated by using Eq. (3.5) as

∇ · v∗(xi,j,k) =
∑
I

NI,i(xi,j,k)u
∗
iI . (3.174)

The second-order derivative of pressure p with respect to x can be approxi-
mated at the cell center (i, j, k) by using the central difference method as(

d2p

dx2

)
i,j,k

= pi+1,j,k + pi−1,j,k − 2pi,j,k


x2
(3.175)

where 
x is the length of side x in the cell. If cubic cells are used, i.e., 
x =

y = 
z = h, the Laplacian ∇2p can be approximated at the cell center (i, j, k)
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by using the seven-point stencil finite difference method as follows:(
∇2p

)
i,j,k

= pi+1,j,k + pi−1,j,k + pi,j+1,k + pi,j−1,k + pi,j,k+1 + pi,j,k−1 − 6pi,j,k

h2
.

(3.176)

Substituting Eqs. (3.176) and (3.174) into Eq. (3.173) leads to a large system
of linear equations as

Ap = b (3.177)

where A is the coefficient matrix, p is a vector consisting of pressure at all
cell centers, and b is a vector consisting of the negative divergences of the in-
termediate velocity at each cell center. This symmetric positive semi-definite
linear systems can be solved efficiently by the preconditioned conjugate gradi-
ent (PCG) solver.

3.7.4 Pressure Boundary Conditions

When solving the pressure Poisson equation (3.173), two kinds of boundary
conditions need to be imposed. The pressure is prescribed on the free surface,
while the zero normal pressure gradient is imposed on the solid boundary to
guarantee the normal velocity to be continuous on the interface between the
solid and fluid.

The prescribed pressure boundary condition can be imposed on the free sur-
face using the ghost fluid method [101–103]. Consider the two-dimensional
Poisson equation as an example. If the free surface is located between the cen-
ters of fluid cell (i, j ) and air cell (i + 1, j ), a ghost pressure pGx

i+1,j is defined
at the center of cell (i + 1, j ) so that

(
∂2p

∂x2

)
i,j

= pGx
i+1,j + pf

i−1,j − 2pf
i,j


x2
(3.178)

where

pGx
i+1,j = pfs + (θ − 1)pf

i,j

θ

is the ghost pressure of cell (i, j ) in the x-direction, pfs is the surface pressure,
and θ = |(xfs − xi)/
x|. The surface pressure pfs is equal to the air pressure
pair or pair + σ fs

κ if the surface tension is taken into consideration. Substituting



92 The Material Point Method

pGx
i+1,j into Eq. (3.178) gives

(
∂2p

∂x2

)
i,j

=
1
θ
pfs + pf

i−1,j − (1 + 1
θ
)pf

i,j


x2
. (3.179)

The material surface is not explicitly tracked in the MPM so that it is difficult
to accurately impose the pressure boundary conditions on the free surface. In the
iMPM, a level set function which represents the signed distance to free surface
is used to track the free surface and apply the pressure boundary conditions
(please refer to Zhang et al. [100] for details).

3.7.5 Velocity Update

After obtaining the pressure pn+1 by solving Eq. (3.177), the final velocity vn+1

can be updated using Eq. (3.172). Note that the pressure gradient ∇p is required
to update the velocity vn+1 using Eq. (3.172). Because the velocity vn+1 is
updated at grid nodes, the pressure gradient ∇p should also be evaluated at grid
nodes. If all cells connected to a grid node are fluid cells, ∇p can be evaluated
at the grid node (i + 1

2 , j + 1
2 ) as(

∂p

∂x

)
i+ 1

2 ,j+ 1
2

= 1

2

[(
∂p

∂x

)
i+ 1

2 ,j

+
(

∂p

∂x

)
i+ 1

2 ,j+1

]
,

(
∂p

∂y

)
i+ 1

2 ,j+ 1
2

= 1

2

[(
∂p

∂y

)
i,j+ 1

2

+
(

∂p

∂y

)
i+1,j+ 1

2

] (3.180)

where (
∂p

∂x

)
i+ 1

2 ,j

= pi+1,j − pi,j


x
,(

∂p

∂x

)
i+ 1

2 ,j+1
= pi+1,j+1 − pi,j+1


x
,(

∂p

∂y

)
i,j+ 1

2

= pi,j+1 − pi,j


y
,(

∂p

∂y

)
i+1,j+ 1

2

= pi+1,j+1 − pi+1,j


y

are the pressure gradient components evaluated at face centers. Note that
(∂p/∂x)

i+ 1
2 ,j+ 1

2
is the average of ∂p/∂x at face centers (i + 1/2, j + 1) and

(i + 1/2, j ), and (∂p/∂y)i+ 1
2 ,j+ 1

2
is the average of ∂p/∂y at face centers

(i, j + 1/2) and (i + 1, j + 1/2).



The Material Point Method Chapter | 3 93

If a grid node is next to the free surface, the pressure pi+1,j+1 in Eq. (3.180)
should be replaced with a ghost pressure to impose the pressure boundary con-
dition on the free surface. That is to say, (∂p/∂x)i+1/2,j+1 is calculated from
the pressure pi,j+1 and ghost pressure pGx

i+1,j+1, and (∂p/∂y)i+1,j+1/2 is calcu-

lated from the pressure pi+1,j and ghost pressure p
Gy

i+1,j+1. The ghost pressure

pGx
i+1,j+1 is extrapolated from pi,j+1 and the free surface pressure pfs

j+1 in the

x-direction, while p
Gy

i+1,j+1 is extrapolated from pi+1,j and the free surface

pressure pfs
i+1 in the y-direction. Please refer to Zhang et al. [100] for details.

Because the Poisson equations are discretized at cell centers, the divergence
of velocity is also calculated at cell centers. The velocity modes illustrated in
Fig. 5.2 are divergence-free at cell centers so that they do not contribute to the
Poisson equations. In other words, these spurious velocity modes are not re-
sisted, and will lead to spurious oscillation in the velocity field. These modes
are the same as the hourglass modes in the hexahedron element with a single-
point Gauss Quadrature in the FEM, and can be suppressed in the same way as
that used in the FEM [100].

Compared with the WCMPM, the iMPM is much more efficient, accurate,
and stable in simulating the free surface flow problems. Fig. 3.33 compares a se-
quence of snapshots of a dam breaking simulation obtained by the WCMPM and
iMPM [100]. Although the free surface profiles obtained by both methods are
very similar until the second plunging wave impacts on the right wall, the pres-
sure distributions in the fluid domain are quite different. At the beginning, the
hydrostatic pressure obtained by both methods is linearly distributed along the
vertical direction after flap is removed. However, due to the weakly compress-
ible EOS and crossing-cell noise, the pressure obtained by the WCMPM soon
exhibits high-frequency oscillations when water flow develops along the deck.
Furthermore, there is a lot of unphysical spray and splash in the WCMPM re-
sults at T = 6.969. Conversely, the pressure distribution obtained by the iMPM
is smooth during the whole process, and the free surface profiles are reason-
able.

3.8 IMPLICIT MATERIAL POINT METHOD

An explicit time integration method does not solve a system of simultaneous
equations, which results in a very efficient step-by-step solution scheme for
large-scale computer simulations. However, the explicit scheme is conditionally
stable, whose time step size must be very small, due to the stability requirement,
in order to resolve all the wave components in transient analysis. On the other
hand, an implicit method is unconditionally stable, whose time step size can be
102–104 times of that of the explicit method. Therefore, for many problems in
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FIGURE 3.33 Dam break configurations obtained by (a) WCMPM and (b) iMPM.

which only the low-frequency motion is of interest, an implicit method may be
employed to considerably reduce the computational cost. Research efforts have
been made to develop the implicit MPM [104–106] so that only the essential
features and numerical implementation are discussed in this section.
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3.8.1 Implicit Time Integration

Newmark method is a commonly used implicit integration scheme, in which the
velocity and displacement at time tn+1 are solved with the use of

u̇n+1
iI = u̇n

iI + 
t[(1 − γ )ün
iI + γ ün+1

iI ], 0 � γ � 1, (3.181)

un+1
iI = un

iI + 
tu̇n
iI + 
t2

2
[(1 − 2β)ün

iI + 2βün+1
iI ], 0 � 2β � 1 (3.182)

where 
t = tn+1 − tn. Based on Eq. (3.182), the acceleration at time tn+1 can
be obtained as

ün+1
iI = 1

β
t2

(
un+1

iI − ũn
iI

)
(3.183)

where

ũn
iI = un

iI + 
tu̇n
iI + 
t2

2
(1 − 2β)ün

iI . (3.184)

Substituting Eq. (3.183) into the nodal equations of motion (3.8) at time
tn+1 gives a system of simultaneous equations in terms of the grid nodal dis-
placements un+1

iI at time tn+1, namely,

r(an+1, tn+1) = 1

β
t2
M

(
an+1 − ãn

)
− f (an+1, tn+1) = 0 (3.185)

where the vector an+1 = [ un+1
11 un+1

21 un+1
31 . . . un+1

1ng
un+1

2ng
un+1

3ng
]T

contains all the displacement components at all the nodes related to the spatial
discretization, and has 3ng components in 3D cases. M is the consistent mass
matrix, and f (an+1, tn+1) = f ext(an+1, tn+1) − f int(an+1, tn+1). By neglect-
ing the inertial term, Eq. (3.185) is reduced to the static equilibrium equation as
follows:

r(an+1) = f (an+1) = 0. (3.186)

3.8.2 Solution of a System of Nonlinear Equations

The system of simultaneous equations (3.185) is nonlinear, in general, and can
be solved using Newton’s method (also known as Newton–Raphson method).
Let subscript (k) denote the iteration step, an+1

(k) denote the grid nodal displace-

ment vector in the kth iteration step, and a(k) ≡ an+1
(k) . At the beginning of

the iteration loop, the first guess a(0) for a root of the function r(an+1, tn+1)

is required, which can usually be chosen as the solution at time step tn, i.e.,
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a(0) ≡ an. In the dynamic simulation with Newmark method, the estimation ãn

given in Eq. (3.184) can be taken as the first guess a(0).
The solution of the kth iteration, an+1

(k) , might not satisfy the nonlinear equa-
tion (3.185), i.e.,

r(a(k), t
n+1) = 1

β
t2
M

(
a(k) − ãn

) − f (a(k), t
n+1) �= 0. (3.187)

To obtain a better solution a(k+1) of Eq. (3.185), which approaches
r(a(k+1), t

n+1) = 0, let

an+1 = a(k+1) = a(k) + 
a(k). (3.188)

Substituting Eq. (3.188) into Eq. (3.185) and expanding it in a Taylor series
around the current value a(k) of an+1 yields

r(a(k+1), t
n+1) = r(a(k), t

n+1) + ∂r(a(k), t
n+1)

∂a

a(k) + O(
a2

(k)) = 0.

(3.189)

Ignoring higher-order terms in Eq. (3.189) produces a system of linear equa-
tions in 
a(k) as follows:

Keff
a(k) = −r(a(k), t
n+1) (3.190)

where the Jacobian

Keff = ∂r(a(k), t
n+1)

∂a
= 1

β
t2
M + K int − Kext (3.191)

is called the effective tangent stiffness matrix,

K int = ∂f int

∂a
(3.192)

is the Jacobian of grid nodal internal forces, also known as the tangent stiffness
matrix, and

Kext = ∂f ext

∂a
(3.193)

is the Jacobian of grid nodal external forces.
Eq. (3.190) is often called a linear model of the nonlinear equations (3.185).

The above process of obtaining a linear model is called linearization.
Three types of convergence criteria are usually used to control the itera-

tions [107], namely,
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1. The criterion based on the magnitude of the residual r , i.e.,

‖r‖L2
=

(
ndof∑
i=1

r2
i

) 1
2

� ε max

(∥∥f ext
∥∥

L2
,

∥∥∥f int
∥∥∥

L2
,‖Mä‖L2

)
(3.194)

where ndof is the number of degrees of freedom.
2. The criterion based on the magnitude of the displacement increments


a(k), i.e.,

‖
a‖L2
=

(
ndof∑
i=1


a2
i

) 1
2

� ε ‖a‖L2
. (3.195)

3. The energy error criterion, i.e.,

∣∣
aTr
∣∣ � ε max

(
W ext,W int,W kin

)
. (3.196)

3.8.3 The Jacobian of Grid Nodal Internal Force

K int can be directly obtained by taking the time derivative of the internal force
vector in the current configuration. Another way to obtain the tangent stiffness
matrix is to take the time derivative in the original configuration and then trans-
form K int into the current configuration, which could be much easier. Hence, the
second way is chosen here to find the time derivative. The internal force vector
f int

iI described in the original configuration is given by

f int
iI =

∑
p

V 0
p

∂NIp

∂Xk

FilpSklp (3.197)

so that the material derivative of internal force can be obtained by

ḟ int
iI =

∑
p

V 0
p

∂NIp

∂Xk

(
ḞilpSklp + FilpṠklp

)
(3.198)

where F p and Sp signify the deformation gradient and PK2 stress tensors of
material point p. Eq. (3.198) can be divided into two parts, material rate and
geometric rate, as follows:

ḟ int
iI = ḟ mat

iI + ḟ
geo
iI (3.199)
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where

ḟ mat
iI =

∑
p

V 0
p

∂NIp

∂Xk

FilpṠklp, (3.200)

ḟ
geo
iI =

∑
p

V 0
p

∂NIp

∂Xk

ḞilpSklp. (3.201)

In order to simplify the deviation of the tangent stiffness matrix, rewrite the
material rate of nodal internal force in Voigt format, i.e.,

ḟ
mat =

∑
p

V 0
pBT

0 {Ṡ} (3.202)

where {Ṡ} represents the PK2 stress rate in Voigt format. The rate-form of a
constitutive model takes the form of

{Ṡ} =
[
CSE

]
{Ė} (3.203)

in which
[
CSE

]
is the constitutive tangent stiffness matrix related to the PK2

stress rate, and {Ė} = B0ȧ is the Green strain rate. Substituting Eq. (3.203) into
Eq. (3.202) yields

ḟ
mat = Kmatȧ (3.204)

where

Kmat =
∑
p

V 0
pBT

0

[
CSE

]
B0 (3.205)

is the material tangent stiffness matrix. Eq. (3.205) can be rewritten in the cur-
rent configuration as

Kmat =
∑
p

V 0
pBT

[
CσT

]
B (3.206)

where
[
CσT

]
is the constitutive tangent stiffness matrix related to the Truesdell

stress rate. The Truesdell and Jaumann moduli are related by the 4th order tensor
relationship as follows:

CσT = CσJ − C∗ (3.207)

with

C∗
ijkl = 1

2

(
δikσjl + δilσjk + δjkσil + δjlσik

) − σij δkl . (3.208)
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The geometric tangent stiffness matrix can be derived as follows:

ḟ
geo
iI =

∑
p

V 0
p

∂NIp

∂Xk

ḞilpSklp

=
∑
p

V 0
p

∂NIp

∂Xk

Sklp

∂NJp

∂Xl

u̇iJ

=
∑
p

V 0
p

∂NIp

∂Xk

Sklp

∂NJp

∂Xl

δir u̇rJ . (3.209)

Eq. (3.209) can be reorganized in the matrix form, namely,

ḟ
geo
I = K

geo
IJ ȧJ (3.210)

where

K
geo
IJ = I

(∑
p

V 0
p

∂NIp

∂Xk

Sklp

∂NJp

∂Xl

)
= IHIJ , (3.211)

and

HIJ =
∑
p

V 0
p

∂NIp

∂Xk

Sklp

∂NJp

∂Xl

(3.212)

is a scalar, and I is an identity matrix. The geometric tangent stiffness matrix
can be rewritten in the current configuration as

K
geo
IJ = I

(∑
p

Vp

∂NIp

∂xk

σklp

∂NJp

∂xl

)
. (3.213)

Notice that

ḟ
int = df int

dt
= ∂f int

∂a

da

dt
= ∂f int

∂a
· ȧ, (3.214)

so

∂f int

∂a
= K int + Kgeo. (3.215)

3.8.4 Solution of a Linearized System of Equations

The linearized system of Eqs. (3.190) can be solved using a direct solver that
requires calculating and factoring the Jacobian matrix Keff. To avoid the cal-
culation and factorization of Jacobian, Eqs. (3.190) can also be solved in a
matrix-free fashion by using a Krylov method [108], such as the conjugate gra-
dient (CG) method and generalized minimum residual (GMRES) method. In
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a Krylov method, only the product of the Jacobian Keff = ∂r(a(k), t
n+1)/∂a

and the conjugate vector or Krylov vector p, Keff · p, needs to be evaluated,
and the Jacobian matrix Keff does not need to be formed or stored. Because the
Jacobian matrix ∂r(a(k), t

n+1)/∂a is the gradient of residual r(a(k), t
n+1), the

matrix–vector product Keff ·p is the directional derivative of r(a(k), t
n+1) in the

direction of the vector a, which can be found using a difference approximation
as

∂r(a(k), t
n+1)

∂a
· p ≈ r(a(k) + hp, tn+1) − r(a(k), t

n+1)

h
(3.216)

where h is a perturbation parameter that affects the solution convergence con-
siderably. A very large h could yield an inaccurate approximation to the local
gradient, but a very small h may lead to severe local numerical noise.

To improve its overall efficiency, the Krylov method usually requires a pre-
conditioner to reduce the condition number of the problem. There are many
types of preconditioner [108], such as Jacobi (or diagonal) preconditioner,
sparse approximate inverse preconditioner (SPAI), incomplete Cholesky fac-
torization or incomplete LU factorization, successive over-relaxation (SOR) or
symmetric successive over-relaxation (SSOR), and multigrid preconditioning.

Cummins et al. proposed an implicit MPM implementation for quasi-static
granular problems [104]. They employed the implicit theta method in which the
momentum equation (3.8) was discretized by

Mȧn+1 = Mȧn + 
t[θf (an+1, tn+1) + (1 − θ)f (an, tn)], 1

2
� θ � 1

(3.217)

which was solved using the Jacobian-free Newton–Krylov method [109]. To
improve the efficiency of the Krylov iterative method, the multigrid precondi-
tioning [110] was used, but the results were somewhat disappointing because
little improvement could be observed for the preconditioners with more than
two levels [104].

Guilkey et al. proposed an implicit MPM implementation [105] using the
Newmark method with Newton’s type. The linearized system of equations was
solved using a direct solver instead of an iterative solver. Compared with the im-
plementation presented by Cummins et al., the procedure proposed by Guilkey
et al. can employ much larger time steps due to the fact that their procedure
employs a consistent tangent stiffness matrix that provides the best convergence
behavior possible with Newton’s methods [105].

Sulsky et al. also presented an implicit MPM implementation [106] in a
matrix-free fashion. The momentum equation (3.8) was also discretized by the
implicit theta method as Eq. (3.217), which was solved using the Newton’s
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method combined with either the conjugate gradient method or the generalized
minimum residual method. This implicit scheme for the MPM was extended to
the GIMP method by Nair et al. [111].

For material nonlinear problems involving failure evolution, the implicit
methods might not yield reasonable solutions when bifurcation occurs due to
the use of a large time step. Hence, the explicit methods are more effective in
simulating multiphase interactions under extreme loading conditions.
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MPM3D is a 3D explicit and parallel MPM code developed since 2004 in the
Computational Dynamics Laboratory led by Professor Xiong Zhang at Tsinghua
University in China. The MPM3D can be used to simulate the transient re-
sponses of structures to extreme loadings such as impact and blast. For the sake
of easy update and maintenance, the development of the MPM3D was shifted
from FORTRAN to C++ in 2007. The simplified FORTRAN 90 version of the
MPM3D, MPM3D-F90, has been made available as the companion open source
code for the Chinese book about the MPM [6] since 2013, and can be down-
loaded from our website, http://mpm3d.comdyn.cn.

The C++ version of the MPM3D is still under development, which has
implemented the USL, USF, and MUSL schemes of the MPM, GIMP, con-
tact algorithm, adaptive scheme (with both the particle [81] and grid [74,
112,113]), explicit FEM (with bar element, hexahedron element, membrane
element, shell element and beam element), hybrid finite element material
point (HFEMP) method [39], coupled finite element material point (CFEMP)
method [37], and adaptive finite element material point (AFEMP) method [41].
The material model library consists of elasticity, elasto-perfect plasticity, elasto-
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plasticity with isotropic hardening and/or pressure-dependence, Johnson–Cook
plasticity, high explosive, Newtonian fluid, Holmquist–Johnson–Cook concrete,
RHT concrete, Taylor–Chen–Kuszmau concrete, Holmquist–Johnson ceramic,
Deshpande–Fleck model and Mooney–Rivlin hyperelasticity, together with sev-
eral equations of state (EOS) such as polynomial, JWL, Grüneisen, and P–α,
as discussed in Chapter 6. To predict the evolution of failure, several types of
failure models have also been implemented based on the maximum equivalent
plastic strain, maximum hydrostatic pressure, maximum principal stress/shear
stress, maximum principal strain/shear strain, and instantaneous geometric
strain. The MPM3D has been parallelized using both OpenMP and MPI so
that it can be run on both SMP (symmetric multi-processing) and MPP (mas-
sively parallel processing) architectures. The graphical user interface (GUI) of
the MPM3D was developed using the cross-platform application and UI de-
velopment framework Qt [114], the visualization toolkit VTK [115], and the
cross-platform, open-source build system CMake [116]. The MPM3D can be
run on Windows, Linux, or Mac OS X. The open-source, multi-platform data
analysis and visualization code, ParaView [7], is used as its post processor.

This chapter uses the MPM3D-F90 as an example to describe the com-
puter implementation of the MPM. The MPM3D-F90 has implemented the
USF, USL, and MUSL versions of the MPM with the variable-step central
difference method, as well as the GIMP and contact algorithm. The material
model library consists of elasticity, perfect plasticity, linear isotropic-hardening
plasticity, Johnson–Cook plasticity with failure and its simplified version, null
material, high explosive, and Drucker–Prager model. The linear polynomial
EOS, Mie–Grüneisen EOS and JWL EOS are also implemented to describe the
relations among state variables of fluid, solid, and high explosive. The essen-
tial or natural boundary conditions can be applied on the six faces of the 3D
background grid, whereas the external force and initial velocity are applied on
the particles. The simulation results can be exported to TecPlot [117] and Par-
aView [7] for data analysis and visualization.

4.1 EXECUTION OF THE MPM3D-F90

The MPM3D-F90 can be executed from the command line (i.e., the Terminal in
Linux or Mac OS X or the Command Prompt in Windows) by typing

mpm3d−f90 JobName

where “mpm3d-f90” is the base name of the MPM3D-F90 executable file, “Job-
Name” is the base name of the input data file whose extension must be “mpm”,
namely, MPM3D-F90 will read the input data from the file “JobName.mpm”.
Under Linux or Mac OS X, the executable file “mpm3d-f90” can be generated
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by GNU FORTRAN compiler using the makefile provided in the subdirectory
“make/gnu”. Under Windows, the executable file “mpm3d-f90.exe” can be gen-
erated by Intel Visual Fortran compiler using the solution file mpm3d-f90.sln
provided in the subdirectory “make/ivf”.

The MPM3D-F90 creates the following output files:
1. JobName.out – Log file, which records the basic output message during

the execution of the MPM3D-F90;
2. JobName_anim.dat – TecPlot [117] data format file storing the simulation

results, which can be used by TecPlot for data analysis and visualization;
3. JobName_anim_nn.vtu – A series of ParaView VTK Unstructured Grid

files that stores simulation results for given time steps, where nn is an integer
number;

4. JobName_anim.pvd – ParaView data format file storing pointers to the
series of ParaView VTK Unstructured Grid files;

5. JobName_curv.dat – Data file storing the time history of user specified
variables, which can be used by Tecplot or Origin to plot the time history of
these variables;

6. ContforcPlot.dat – Data file storing the time history of the total contact
forces when the contact algorithm is activated;

7. EnergyPlot.dat – Data file storing the time history of the total energy,
kinetic energy and internal energy; and

8. MomentumPlot.dat – Data file storing the time history of the total mo-
mentum.

4.2 INPUT DATA FILE FORMAT OF THE MPM3D-F90

4.2.1 Unit

The MPM3D-F90 does not have a built-in unit system so that it is the user’s
responsibility to ensure that the units chosen are self-consistent, i.e., the derived
units can be expressed in terms of the fundamental units without conversion
factors. The SI system “m–kg–s” and the system “mm–g–ms” are two examples
of a self-consistent unit system. In a self-consistent system, the derived units are
related to the fundamental units by

1 force unit = 1 mass unit * 1 acceleration unit,
1 acceleration unit = 1 length unit/(1 time unit)2,
1 density unit = 1 mass unit/(1 length unit)3.

4.2.2 Keywords

The input data file of the MPM3D-F90 is in a free format. In contrast to the
fixed format data, the free format data are not arranged in columns/fields, but
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separated by SPACE, COMMA, or TAB. Thus, it is much easier for users to
prepare a free format data file than a fixed format data file.

In the MPM3D-F90 input data file, each line contains maximum 256 char-
acters and at most 15 data items each of which is composed of not more than
20 characters. Comments begin with the exclamation mark (!) which can start
anywhere in a line and continue until the end of the line.

The MPM3D-F90 input data file is organized by a series of keywords. There
are seven categories of keywords, namely, global information, material model,
computational grid, domain discretization, loading, solution setup, and post pro-
cessing. The MPM3D-F90 only recognizes the first 4 characters of and ignores
the remaining of a keyword. For example, the keyword “particle” will be recog-
nized as “part” by the MPM3D-F90. The keywords are case-insensitive.

In what follows, an underlined word represents a keyword whose parameters
are represented by italic words. The data type of a parameter is described by
a character placed in a pair of parentheses after the parameter, where ‘s’ means
a string, ‘i’ means an integer number, and ‘r’ means a real number.

The keywords marked with an asterisk are mandatory keywords, which must
appear in an input data file. The remaining keywords are optional.

4.2.3 Global Information

There are six keywords in this category, five of which are located at the begin-
ning of the input data file, and the remaining one is located at the end of the
file.

1. mpm3* title(s) – Give the title of the problem, which is used to describe
the problem to be solved.

2. nbco* ComponentNumber(i) – Set the total number of components, which
equals to 2 if contact is on, and 1 if contact is off. In the current version, the
contact between more than two components is not supported.

3. nbbo* BodyNumber(i) – Set the total number of bodies.
4. nbmp* ParticleNumber(i) – Set the total number of particles.
5. nmat* MaterialNumber(i) – Set the total number of material sets.
6. endi* – End of the input data file. This keyword must be the last keyword

in an input data file.

4.2.4 Material Model

There are 3 keywords in this category. They are used to specify the artificial bulk
viscosity, constitutive model, and equation of state, respectively.

1. bulk Q1(r) Q2(r)
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Specify the artificial bulk viscosity (refer to Sect. 2.8.2) for solving shock
physics problems. Q1(r) and Q2(r) are the coefficients of quadratic term and
linear term, respectively.

2. mate
mid(i) mtype(s) . . .
mid(i) mtype(s) . . .
. . .
Specify the constitutive models that will be used in the simulation. The total

number of material models defined here must be equal to the number specified
by the keyword nmat. This keyword requires material ID mid, material type
mtype, and other parameters which depend on the material type mtype. The ma-
terial type mtype can be one of the following types: elas, pla1, pla2, john, sjc,
sjcf, hiex, null, jcf, and dpm. The formats for different material models are listed
as follows:

(a) elas ρ(r) E(r) ν(r) – Elasticity for which the parameters are density,
Young’s modulus and Poisson’s ratio, respectively.

(b) pla1 ρ(r) E(r) ν(r) σy(r) – Perfect plasticity for which the parameters
are density, Young’s modulus, Poisson’s ratio, and yield strength, respectively.

(c) pla2 ρ(r) E(r) ν(r) σy(r) Et (r) – Linear isotropic-hardening plasticity
for which the parameters are density, Young’s modulus, Poisson’s ratio, initial
yield strength, and hardening modulus, respectively.

(d) john ρ(r) E(r) A(r) B(r) n(r) C(r) m(r) roomt(r) meltt(r) Cv(r) epso(r) –
Johnson–Cook plasticity for which ρ and E are density and Young’s modulus,
and the parameters A, B , n, C, and m are the material constants used in the
model (refer to Sect. 6.2.4.4). The parameter roomt is the room temperate, meltt
is the melting temperate, Cv is the specific heat at constant volume, epso is the
effective plastic strain-rate of the quasi-static test used to determine the yield
and hardening parameters A, B , and n.

(e) sjc ρ(r) E(r) A(r) B(r) n(r) C(r) epso(r) – Simplified Johnson–Cook
plasticity which ignores the temperate effect. This model must be used with an
EOS that can be set up by using the keyword seos.

(f) sjcf ρ(r) E(r) A(r) B(r) n(r) C(r) epso(r) epf (r) – Simplified Johnson–
Cook plasticity with failure which ignores the temperate effect. The parameter
epf is the plastic strain at failure. This model must be used with an EOS that can
be set up by using the keyword seos.

(g) jcf ρ(r) E(r) A(r) B(r) n(r) C(r) m(r) roomt(r) meltt(r) Cv(r) epso(r)
epf (r) – Johnson–Cook plasticity with failure, which must be used with an EOS
that can be set up by using the keyword seos.

(h) hiex ρ(r) D(r) – High explosive material for which ρ and D are the
density and detonation speed, respectively.
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(i) null ρ(r) c(r) – Null material for which ρ and c are the density and sound
speed, respectively. This model is used to simulate a fluid whose pressure is
updated by using an EOS specified by using the keyword seos.

(j) dpm ρ(r) E(r) ν(r) qφ(r) kφ(r) qψ(r) σ t (r) – Drucker–Prager model (re-
fer to Sect. 6.2.5 for a detailed explanation of its parameters).

3. seos mid(i) etype(i) ...
Specify the EOS to be used with the material set mid. The type of EOS

is specified by etype, namely, etype = 1 for polynomial EOS, etype = 2 for
Mie–Grüneisen EOS, and etype = 3 for JWL EOS. The format of keyword seos
is described as follows:

seos mid(i) 1 C0(r) C1(r) C2(r) C3(r) C4(r) C5(r) C6(r) E0(r) – Polynomial
EOS (refer to Sect. 6.3.3 for a detailed explanation of its parameters).

seos mid(i) 2 c0(r) λ(r) γ0(r) E0(r) – Mie–Grüneisen EOS (refer to
Sect. 6.3.5 for a detailed explanation of its parameters).

seos mid(i) 3 A(r) B(r) R1(r) R2(r) ω(r) E0(r) – JWL EOS (refer to
Sect. 6.3.4 for a detailed explanation of its parameters).

deto x(r) y(r) z(r) – Specify the detonation point. The default detonation
point is the origin of the domain. This keyword must be used together with JWL
EOS.

4.2.5 Background Grid

In the MPM3D-F90, a 3D uniform regular grid is used as the background grid,
which can be defined by the grid spacing, and the minimum and maximum coor-
dinates in the x, y, and z directions. The essential or natural boundary conditions
are imposed on the six grid boundary planes.

The background grid can be either specified by keyword grid or by keywords
spx, spy and spz:

1. grid X1(r) X2(r) Y1(r) Y2(r) Z1(r) Z2(r) – Specify the minimum and maxi-
mum coordinates of the grid in the x, y, and z directions. These six coordinates
can also be specified by keywords spx, spy, and spz.

2. spx X1(r) X2(r) – Specify the minimum and maximum x coordinates of
the grid.

3. spy Y1(r) Y2(r) – Specify the minimum and maximum y coordinates of
the grid.

4. spz Z1(r) Z2(r) – Specify the minimum and maximum z coordinates of the
grid.

5. dcel dcell(r) – Specify the grid spacing.
6. fixe c1(i) c2(i) c1(i) c2(i) c1(i) c2(i) – Specify the boundary condition

types on the six boundary planes; 0 represents a free boundary, 1 represents a
fixed boundary, and 2 represents a symmetric boundary which is fixed along
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the direction perpendicular to the boundary plane, and free in the other two
directions.

4.2.6 Solution Scheme

The keywords in this category specify the solution related parameters.
1. dtsc TimeStepScale(r) – Specify the time step safety factor, whose default

value is 0.9. The time step size used in an explicit time integration is the critical
time step multiplied by the safety factor.

2. gimp – Use the upGIMP shape function rather than the standard trilinear
shape function in 3D cases.

3. jaum switch(s) – Turn on/off the Jaumann stress rate in stress update.
4. usl switch(s) – Turn on/off the USL algorithm.
5. musl switch(s) – Turn on/off the MUSL algorithm.
6. usf switch(s) – Turn on/off the USF algorithm.
7. cont – Turn on the contact algorithm, which must be followed by a sub-

keyword to specify the contact algorithm type, the friction coefficient and unit
normal of the contact surface. The current version of the MPM3D-F90 only
supports two components in contact, and only provides one sub-keyword as fol-
lows:

lagr FrictionCoefficient(r) NormalVectorMethod(i)
where the sub-keyword lagr denotes the Lagrangian multiplier based contact al-
gorithm, FrictionCoefficient specifies the coefficient of friction, and NormalVec-
torMethod specifies the unit normal determination method. If NormalVec-
torMethod equals to 0, the unit normal of the contact surface is determined
by the average of the unit normals of both components. If NormalVectorMethod
equals to 1 or 2, the unit normal of component 1 or 2 is chosen as the unit normal
of the contact surface.

8. endt EndTime(r) – Specify the termination time of the simulation.

4.2.7 Results Output

Keywords in this category are used to specify how to output simulation results:
1. outt OutputTimeInterval(r) – Specify the time interval for outputting sim-

ulation results in Techplot or ParaView format.
2. rptt ReportTimeInterval(r) – Specify the time interval for simulation status

report, which is equal to OutputTimeInterval by default.
3. tecp – Output simulation results in Tecplot data file format, which can be

used by Tecplot for postprocessing.
4. para – Output simulation results in ParaView VTK Unstructured Grid files

(vtu and pvd files), which can be used by ParaView for postprocessing.
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TABLE 4.1 The Value of Parameter var

seqv Mises stress velx Velocity component vx

epef Effective plastic strain vely Velocity component vy

pres Pressure velz Velocity component vz

engk Kinetic energy fail Failure

engi Internal energy damg Damage

mat Material set number cels Temperature

5. pt2d x1(r) x2(r) y1(r) y2(r) z1(r) z2(r) – Specify a region in space, and only
those particles initially located in the region will be outputted into the Tecplot
data file. This keyword is used with keyword tecp to reduce the amount of data
to be outputted to Tecplot for a large-scale problem. This keyword does not
affect the data outputted to ParaView.

6. outr var(s) – Specify the variable name whose value will be outputted
into the Tecplot data file “JobName_anim.dat”. The value of var is explained in
Table 4.1. This keyword is used with keyword tecp to reduce the amount of data
outputted to Tecplot. All variables will be outputted to ParaView.

7. curv var(s) [pid(i)] – Specify the variable name of a particle, whose time
history will be outputted into the file “JobName_curv.dat”. The value of var is
listed in Table 4.1, and the default particle ID pid is 1.

8. curx var(s) x(r) y(r) z(r) – Specify the variable name of the particle closest
to the point (x, y, z), whose time history will be outputted into the file “Job-
Name_curv.dat”. The value of var is listed in Table 4.1.

4.2.8 Bodies

Keywords in this category are used to define bodies in the material domain. The
current version of the MPM3D-F90 provides three types of bodies, which are
defined directly by particles, blocks, or spheres.

1. Defined directly by particles
A body can be directly defined by particles as
part point num(i) comID
pid(i) matid(i) pmass(r) x(r) y(r) z(r)
The first row specifies the total number of particles in this body (num) and

its component ID (comID). After the first row, num rows follows with each row
defining a particle, including the particle ID pid, material set number matid,
particle mass pmass, and its coordinates (x, y, z).

2. Blocks
A body can be defined by a block as
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part block comID
matid(i) pmass(r) dp(r) ox(r) oy(r) oz(r) nx(i) ny(i) nz(i)
The first row specifies the component ID (comID) of the body. In the second

row, (ox, oy, oz) is the coordinate of the lower left corner of the block which is
discretized into nx, ny, and nz particles in the x, y, and z directions with particle
spacing of dp.

3. Spheres
A body can be defined by a sphere as
part sphe comID
matid(i) pmass(r) dp(r) ox(r) oy(r) oz(r) nx(i)
The first row specifies the component ID (comID) of the body. In the second

row, (ox, oy, oz) is the coordinate of the center of the sphere which is discretized
into nx particles along the radial direction.

4.2.9 Load

Load can be applied on an individual particle or a component.
1. Apply external forces or prescribe accelerations as follows:
load
ltype(s) bid/nid(i) fx(r) fy(r) fz(r)
ltype is the load type, which can be “body”, “node”, or “grav”. If ltype is

“body” or “node”, the force is applied on the component bid or on the particle
nid. fx, fy, and fz are the x-, y-, and z-components of the force. If ltype is “grav”,
fx, fy, and fz are the x-, y-, and z-components of the gravitational acceleration.

The keyword load can be followed by multiple ltype lines, and ended with a
sub-keyword “endl”.

2. Prescribe initial velocity as follows:
velo
vtype(s) bid/nid(i) vx(r) vy(r) vz(r)
vtype can be “body” or “node”, which represents prescribing an initial ve-

locity of the component bid or particle nid. vx, vy, and vz are the x-, y-, and
z-components of the initial velocity.

The keyword velo can be followed by multiple vtype lines, and ended with a
sub-keyword “endv”.

4.2.10 An Example of Input Data File

As an example, the detonation process of TNT explosive within a copper hol-
low block is simulated. Due to the geometrical symmetry, only 1/8 of the model
is discretized in space. The TNT explosive is modeled with the high explosive
material model and JWL EOS, while the copper is modeled with the simpli-
fied Johnson–Cook material model and Mie–Grüneisen EOS. The Jaumann rate



112 The Material Point Method

is used for stress update, and the MUSL version is employed. The simulation
termination time is 0.006 ms.

The input data file is TNT3D.mpm located in the subdirectory Data, whose
content is listed as follows:

mpm3d *** test detonation simulation
! Unit: mm g N ms MPa
nbco 1 ! Number of components
nbbo 4 ! Number of bodies
nbmp 27000 ! Total number of particles
nmat 2 ! Total number material sets

deto 0.0 0.0 0.0 ! Define detonation point

material ! Define material sets
! High explosive
! num Mp mtype density D

1 2.0375d-4 hiex 1.63d-3 6930
! Simplified Johnson-Cook material
! num Mp mtype density E Poission Yield0 B n C

2 1.11d-3 sjc 8.9d-3 117.0d3 0.31d0 90 392 0.5 0.0 1e-3

! EOS for material set 1
seos 1 3 3.712e5 3.21e4 4.15 0.95 0.3
! EOS for material set 2
seos 2 2 3.3d3 1.49 1.96

spx 0.0 25.0 ! Define background grid
spy 0.0 25.0
spz 0.0 25.0
dcell 1.0 ! Grid spacing
fixed 2 0 2 0 2 0 ! Boundary condition codes

dtscale 0.2 ! Time step scale factor
endt 0.006 ! Termination time
musl on ! Turn on MUSL version of MPM
jaum on ! Use Jaumann rate in stress update

outtime 3.0d-4 ! Time interval for result output
rpttime 5.0d-5 ! Time interval for simulation status report
pt2d 0 5 0 10 0 10 ! Define a region to output selected

! particle
outr pres ! Output pressure of all particles

Particle block 1 ! Define blocks and their discretization
! parameters

! matID compID dp ox oy oz nx ny nz
1 1 0.5 0.0 0.0 0.0 20 20 20

Particle block 1
2 2 0.5 10.0 0.0 0.0 10 30 20

Particle block 1
2 2 0.5 0.0 10.0 0.0 20 10 20
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Particle block 1
2 2 0.5 0.0 0.0 10.0 30 30 10

endi

4.3 SOURCE FILES OF THE MPM3D-F90

The files of the MPM3D-F90 are organized into the following directories:

• src – Containing all the source codes, including

• MPM3D.f90, main program of the MPM3D-F90;
• DataIn.f90, defining data input procedures (encapsulated as DataIn mod-

ule);
• DataOut.f90, defining data output procedures (encapsulated as DataOut

module);
• Particle.f90, defining particle-related variables and global variables (en-

capsulated as ParticleData module);
• Grid.f90, defining a background grid and related operators (encapsulated

as GridData module);
• update_step.f90, defining the MPM calculation steps;
• Material.f90, defining material parameters (encapsulated as MaterialData

module);
• Constitution.f90, defining material models (encapsulated as MaterialMo-

del module); and
• FFI.f90, defining free format input procedures (encapsulated as FFI mod-

ule).

• make – Containing make file/solution file for different compilers as follows:

• gnu, make file for GNU Fortran compiler; and
• ivf, solution file for Intel Visual Fortran compiler.

• Data – Containing input data files for the following numerical examples:

• Deto1k.mpm, 1D slab TNT detonation;
• Taylor.mpm, Taylor bar impact;
• PeneOgive.mpm, penetration of an ogival projectile;
• Slopefail.mpm, failure of a soil slope;
• LeadHypervelocityImpact.mpm, hypervelocity impact of a lead sphere

on a lead plate; and
• TNT3D.mpm, detonation process of TNT explosive within a copper hol-

low block.

4.4 FREE FORMAT INPUT

The module FFI (Free Format Input) provided in the MPM3D-F90 is used to
read free format data from disk files. The FFI allows each line to contain maxi-
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mum 256 characters and at most 15 data items, each of which is composed of no
more than 20 characters. Comments begin with the exclamation mark (!) which
can start anywhere in a line and continue until the end of the line.

The module FFI defines the following global variables:

• integer:: iord = 11 – Unit number for input data file;
• integer:: iomsg = 13 – Unit number for simulation status report file;
• integer:: iow1 = 14 – Unit number for simulation results output in TechPlot

data format;
• integer:: iow2 = 15 – Unit number for time history output;
• integer:: iow03 = 101, iow04 = 102 – Unit numbers for the energy and

momentum output;
• integer:: iow05 = 103 – Unit number for contact forces output;
• charater(100) FileInp, FileOut – File names of input data file and simulation

status file;
• integer:: line_nb, nb_word, nb_read – The current line number in the input

data file, the number of words left in the line and the number of words read
in the line;

• character(256) sss – The string storing the current line which is composed of
at most 256 characters; and

• character(20) cmd_line(15) – Data items read from the current line. Each
line allows maximum 15 data items and each date item is composed of at
most 20 characters.

In addition to the global variables, the FFI also provides the following functions
to read data from input files:

• FFIOpen() – Open the input data file, and initialize the global variables;
• GetString(mystring) – Read a string to mystring from the input data file;
• GetInt() – Read and return an integer number from the input data file;
• GetReal() – Read and return a real number from the input data file;
• KeyWord(kw, nbkw) – Read a keyword from the input data file, and check

if the keyword exists in the keyword list kw(nbkw). If so, return its index to
the list; Otherwise, return −1;

• ReadLine() – Read the current line from the input data file into the array sss,
and parse the valid data items into array cmd_line. The function returns the
total number of data items contained in the line;

• pcomb(a, b, n) – Compare the first n characters of the strings a and b case-
insensitively. Return “true” if they are the same. Otherwise, return “false”;

• isNumber(num) – Check if the data item num is a valid number. Return
“true” if it is. Otherwise, return “false”; and

• ErrorMsg() – If an error occurs when reading the input data file, it shows a
message explaining the error and the line number in which the error appears.
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4.5 MPM DATA ENCAPSULATION

The MPM requires both particle and grid data. The MPM3D-F90 encapsulates
the particle and grid data in modules ParticleData and GridData, respectively.

4.5.1 Particle Data

The module ParticleData, defined in the source code file Particle.f90, provides
two derived data types, Body and Particle. The derived data type Body, which is
used to define a body, is defined as below.

type Body
integer:: mat ! material set number (1 ~ nb_mat)
integer:: comID ! component set number (1 ~ nb_mat)
real(8):: Gravp(3) ! gravity
integer:: par_begin ! no. of the first particle in

! particle list
integer:: par_end ! no. of the last particle in

! particle list
end type Body

The member variable “mat” defines the material set number of the body,
“comId” defines its component set number, and “Gravp” defines its gravity. The
numbers of the first particle and the last particle of the body in the particle list
are defined by “par_begin” and “par_end”, respectively. In the MPM3D-F90, a
component is composed of one or several bodies. The particles of each body are
numbered consecutively in the particle list.

The derived data type Particle, which is used to define a particle, is defined
as below.

type Particle
real(8):: XX(3) ! particle position at time step t+1
real(8):: Xp(3) ! particle position at time step t
real(8):: VXp(3) ! particle velocity
real(8):: FXp(3) ! particle load

real(8):: VOL ! current volume
real(8):: sig_y ! yield stress
real(8):: SM, Seqv ! mean stress and Mises stress
real(8):: SDxx, SDyy, SDzz, SDxy, SDyz, SDxz ! deviatoric

! stress
real(8):: epeff ! effective plastic strain
real(8):: celsius_t ! celsius temperature

logical:: SkipThis ! skip this particle in postprocessing
logical:: failure ! failure
integer:: icell ! cell number
real(8):: DMG ! damage
real(8):: LT ! lighting time for explosive simulation
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real(8):: ie ! internal energy
real(8):: mass ! particle mass
real(8):: cp ! sound speed

end type Particle

In addition to these derived data types, the module ParticleData also defines
many global variables such as the following:

• integer:: nb_particle – Total number of particles used to discretize the mate-
rial domain;

• integer:: nb_body – Total number of bodies in the material domain;
• integer:: nb_component – Total number of components in the material do-

main (In the MPM3D-F90, the contact algorithm is implemented between
two components, instead of between two bodies. Each component can con-
sist of many bodies, but all the bodies in a component move with the same
velocity field.);

• type(Particle), target, allocatable:: particle_list(:) – Particle list to store all
the particles in the material domain;

• type(Body), target, allocatable:: body_list(:) – Body list to store all the bod-
ies in the material domain;

• logical:: MUSL – If true, the MUSL MPM scheme is used;
• logical:: USL – If true, the USL MPM scheme is used;
• logical:: USF – If true, the USF MPM scheme is used;
• logical:: GIMP – If true, the GIMP is used;
• logical:: contact – If true, the contact algorithm is activated;
• integer:: istep – Current time step number;
• real(8):: DT – Current time step size;
• real(8):: CurrentTime – Current time;
• real(8):: EndTime – End-time of simulation;
• real(8):: DTScale – Time step size scale (� 1);
• real(8):: EngInternal – Total internal energy of all bodies;
• real(8):: EngKinetic – Total kinetic energy of all bodies;
• real(8):: Momentum – Total momentum of all bodies;
• real(8):: Mombody1 – Momentum of the first body in a contact pair; and
• real(8):: Mombody2 – Momentum of the second body in a contact pair.

The module ParticleData also defines an InitParticle procedure, which initializes
the variables carried by the particles.

4.5.2 Grid Data

The module GridData, defined in the source code file Grid.f90, encapsulates all
the variables and operators associated with the background grid. In the current
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version of the MPM3D-F90, only 8-node hexahedron cells are implemented for
3D cases. To unify the implementation of the grid with or without the contact al-
gorithm being activated, GridData provides derived types GridNode, GridNode-
Property and ContactGridNodeProperty. The derived data type GridNode de-
fines a background grid node, including its position (Xg) and boundary condi-
tion type (Fix_x, Fix_y and Fix_z). The type GridNode is defined as below.

type GridNode
real(8):: Xg(3) ! grid node coordinate
logical:: Fix_x, Fix_y, Fix_z ! BC

end type GridNode

The derived type GridNodeProperty defines the variables carried by a grid
node, including its mass (Mg), momentum (PXg), and force (FXg). The type
GridNodeProperty is defined as below.

type GridNodeProperty
real(8):: Mg ! mass on grid node
real(8):: PXg(3) ! momentum on grid node
real(8):: FXg(3) ! internal/external force on gride node

end type GridNodeProperty

The derived type ContactGridNodeProperty defines the extra variables car-
ried by a grid node which is in contact with other components, including the unit
normal and unit tangent vectors. The type ContactGridNodeProperty is defined
as blow.

type ContactGridNodeProperty
! the normal direction of contact grid node
real(8):: ndir(3)
! the tangential unit vectors of contact grid node
real(8):: sdir(3)

end type ContactGridNodeProperty

The module GridData also defines the following global variables:

• type(GridNode), target, allocatable:: node_list(:) – List of grid nodal objects,
each of which defines a grid node;

• type(GridNodeProperty), target, allocatable:: grid_list(:,:) – List of grid
nodal property sets, each of which defines the properties of a grid node;

• type(ContactGridNodeProperty), target, allocatable:: CP_list(:,:) – List of
contacted grid nodal properties, each of which defines the extra properties
of a grid node which is in contact with other components;

• real(8):: SpanX(2)=0.0, SpanY(2)=0.0, SpanZ(2)=0.0 – Define the back-
ground grid region with the x coordinates of the leftmost and rightmost faces,
y coordinates of the front and back faces, and z coordinates of the bottom
and top faces of the region;
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• real(8):: Dcell – The grid cell length (In the MPM3D-F90, each cell is a cube
with length Dcell);

• real(8):: CutOff – The cutoff mass of grid nodes. If the mass of a grid node is
less than the CutOff, the node will be skipped during the MPM calculation to
avoid a singular acceleration (causing the cell-crossing error in the original
MPM);

• integer:: nb_gridnode – Total number of grid nodes;
• integer:: FixS(6)=0 – Boundary types of the six faces of the background grid:

0 – free, 1 – fixed, 2 – symmetric (fixed along the direction perpendicular to
the face, but free along the directions parallel to the face);

• integer:: NumCell – Total number of grid cells;
• integer:: NumCellx – Total number of grid cells in the x direction;
• integer:: NumCelly – Total number of grid cells in the y direction;
• integer:: NumCellz – Total number of grid cells in the z direction;
• integer:: NumCellxy – Total number of grid cells in the xy plane;
• integer:: NGx – Total number of grid nodes in the x direction;
• integer:: NGy – Total number of grid nodes in the y direction;
• integer:: NGz – Total number of grid nodes in the z direction;
• integer:: NGxy – Total number of grid nodes in the xy plane, which is equal

to NGx*NGy;
• integer, allocatable:: CellsNode(:,:): – Grid node numbers of all correspond-

ing cells;
• integer:: nb_InflNode – Total number of influenced nodes of a particle, which

equals to 8 when using the MPM, but equals to 8–27 when using the GIMP
(An influenced node of a particle is defined as the grid node whose shape
function covers the particle.);

• integer:: InflNode(27) – The nodal numbers of the influenced nodes of a
particle;

• real(8):: rpg(27,3) – The relative coordinates between a particle and its influ-
enced nodes;

• real(8):: iJacobi – Inverse of the Jacobi determinant, which is used in the
calculation of the grid nodal shape functions and their derivatives;

• real(8):: iJacobi4 – 1/(4*Dcell);
• real(8): iDcell – 1/(Dcell);
• real(8), allocatable:: SHP(:), DNDX(:), DNDY(:), DNDZ(:) – The shape

functions associated with the influenced nodes of a particle, and their x-,
y-, and z-derivatives;

• integer, parameter:: SNX, SNY, SNZ – The natural coordinates (ξI =
±1, ηI = ±1, ζI = ±1) of the 8 vertices of a cell;

• real(8):: fricfa = 0.0 – The coefficient of friction;
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• integer:: normbody – The flag to identify how to calculate the unit normal
vector of a contact surface;

• integer:: contact_type – Type of the contact algorithm: 0 – Non-slip contact
algorithm, and 1 – Lagrangian type contact algorithm; and

• real(8):: tot_cont_for(3) – The total contact force between two bodies at a
contact node.

In addition, the module GridData also defines the following operators:

• InWhichDcell(xx) – Calculate and return the cell number in which the par-
ticle with the coordinate xx is located (In each time step, all particles are
attached to a background grid so that it is necessary to know in which cell
each particle is located.);

• SetGridData() – Create and initialize the background grid based on the data
obtained from the input data file;

• SetContact_GridNodeData() – Create and initialize the contacted grid nodal
property list;

• NShape(node1, p, ider) – Evaluate the shape functions SHP(8) and/or their
derivatives DNDX(8), DNDY(8), and DNDZ(8) at a particle p (The param-
eter node1 denotes the number of the first grid node of the cell in which the
particle p is located, ider = 0 means that only the shape functions will be
calculated, ider = 1 means that only the derivatives of the shape functions
will be calculated, and ider = 2 means that both the shape functions and their
derivatives will be calculated.);

• NShape_GIMP (p) – Evaluate the uGIMP shape functions SHP(27) and their
derivatives DNDX(27), DNDY(27), and DNDZ(27) at a particle p; and

• FindInflNode (p, icell) – Find the 27 influenced nodes of a particle p for the
uGIMP, and calculate the relative coordinates between the particle p and its
influenced nodes (icell is the cell number in which the particle p is located.).

4.5.3 Data Input

The module DataIn, defined in the source code file DataIn.f90, encapsulates all
the operators used to input data, and to discretize and initialize the material do-
main. It uses the modules ParticleData, GridData, DataOut (refer to Sect. 4.5.4)
and MaterialData (refer to Sect. 6.5.1), and defines the global integer variables
parCounter, bodyCounter, and comCounter to count particles, bodies, and com-
ponents, respectively.

The main operators defined in the module DataIn are described as follows:

• InputPara – Read data by calling the procedure GetData(), and initialize the
background grid and other variables;

• GetData – Read and Parse keywords and their parameters from the input
data file using the module FFI, and then respond to these keywords (A new
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user-defined keyword can be implemented by adding a code segment into
this operator.);

• SetMaterial – Read material data. When implementing a new material model,
a code segment should be added into this operator to read its parameters;

• SetParticle – Read and discretize the material domain into particles (The
material domain can be composed of particles, blocks, and spheres. When
implementing a new geometric body, a code segment should be added into
this operator to read the body and then discretize it into particles.);

• SetLoad – Read and initialize the external forces of all particles;
• SetVelocity – Read and initializes the initial velocities of all particles;
• SetOnOff – Read and return the on–off switch from the input data file;
• SetResOption – Read and set the flag to indicate which physical variable will

be sent to the output file for postprocessing;
• SetEos – Read the type of EOS and its parameters;
• SetCurX – Find the ID of the particle whose relative coordinate to the point

read from the input data file is less than 0.25*DCell, and then let the MPM3D
send the physical variable of the particle to the output file for postprocessing;

• ErrorPt – Display the error message when reading more particles from the
input data file than expected;

• Initial – Initialize required variables after reading all the data from the input
data file;

• SetDT – Determine the time step;
• statinfor – Output statistical data, such as the total mass, total internal energy,

and total kinetic energy, to the message file; and
• Setcontact – Read the contact data from the input data file (When imple-

menting the new contact algorithm, a code segment should be added into
this operator.).

4.5.4 Data Output

The module DataOut, defined in the source code file DataOut.f90, encapsulates
all the operators used to output the solution results for postprocessing. It uses the
modules ParticleData, GridData, and ContactGridDta, and defines the following
global variables:

• integer:: nCvs – Total number of the data points in the time history data file,
which can be read by TecPlot and Origin to plot time history curves;

• integer:: nAnm – Total number of the data sets in the output file, which can
be read by TecPlot to plot contours, nephograms and animations;

• integer, parameter:: nVariables – Total number of the physical variables
which can be written into the output file. nVariables is currently equal to
14;
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• character(4), parameter:: OutputName(nVariables) – Variable list which can
be outputted for postprocessing;

• logical:: WriteTecPlot – Flag to identify whether to output results to the
TecoPlot data file;

• real(8):: OutTime=0.0 – Time interval for outputting simulation results;
• real(8):: ReportTime=0.0 – Time interval for reporting the simulation status

during the simulation process;
• integer:: nCurves=2 – Number of the variables whose time history curves

will be outputted;
• integer::nAnimate=1 – Number of the variables whose results will be out-

putted for postprocessing;
• integer, parameter:: MaxCurves=15 – Maximum number of the variables

whose time history curves will be outputted;
• integer, parameter:: MaxAnim=10 – Maximum number of the variables

whose results will be outputted for postprocessing;
• integer CurveOption(MaxCurves) – Variable ID in the variable list Output-

Name whose time history curves will be outputted;
• integer AnimOption(MaxAnim) – Variable ID in the variable list Output-

Name whose results will be outputted for postprocessing;
• integer:: CurvePoint(MaxCurves) – Particle ID whose time history curves

will be outputted;
• real:: plot2d(6)=0 – Define a region in space, and only the results of those

particles initially located in the region will be outputted to TecPlot for post-
processing; and

• logical:: plot2dTrue=.false. – Flag to identify whether a region has been de-
fined by plot2d.

Furthermore, the module DataOut also provides the procedures OutCurve, Out-
Anim, and OutAnimPV to output the time history of a variable of a particle, to
output the simulation results of the particles selected by plot2d to TecoPlot data
file, and to output the simulation results of all the particles to ParaView vtu files,
respectively.

4.6 MAIN SUBROUTINES

The MPM3D-F90 provides a set of keywords, as specified in Sect. 4.2. Users
can use these keywords in the input data file to control the execution of the
MPM3D-F90, such as choosing time integration schemes, material models, and
data output methods. Users can easily add new keywords to implement their
new schemes in the MPM3D-F90 without affecting the existing code.

The main program of the MPM3D-F90 is listed in this section. For the sake
of clarity, the code segments used to display the program execution status have
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been deleted from the list. The complete code of the main program can be found
in the source code file MPM3D.f90.

program MPM3D
use ParticleData
use FFI, only: iomsg, iow1, iow2
use DataIn
use DataOut
implicit none

call InputPara() ! Input data
call calcEnergy() ! Calculate kinetic energy

! Solving
do while(CurrentTime .le. EndTime)

call cpu_time( t_begin )

istep = istep+1
CurrentTime = CurrentTime + DT
EngInternal = 0.0

! Step 1: Initialize background grid nodal mass and Momentum
call GridMomentumInitial() ! Eq.(3.47) and Eq.(3.48)

! Step 2: Apply boundary conditions
call ApplyBoundaryConditions()

! Step 3: Update particles stress (Only For USF)
if(USF) then

call ParticleStressUpdate() ! Eq.(3.50-3.51)
end if

! Step 4: Calculate the grid nodal force
call GridMomentumUpdate() ! Eq.(3.53-3.55)

! Step 5: Integrate momentum equations on background grids
call IntegrateMomentum() ! Eq.(3.56)

! Step 6: Detect contact grid node, calculate contact force
! and adjust nodal momentum
if(Contact_type == 1) then

call Lagr_NodContact()
end if

! Step 7: Update particles position and velocity
call ParticlePositionUpdate() ! Eq.(3.57) and Eq.(3.58)

! Step 8: Recalculate the grid node momentum for MUSL
if(MUSL) then

call GridMomentumMUSL() ! Eq.(3.59)
call ApplyBoundaryConditions()

end if
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FIGURE 4.1 Flow chart of the MPM3D-F90.

! Step 9: Update particles stress for both USF and MUSL
if(.NOT. USF) then

call ParticleStressUpdate() ! Eq.(3.61-3.63)
end if

call calcEnergy() ! Calculate kinetic energy

call OutCurve() ! out put curve and animation data

end program MPM3D

The MPM3D-F90 has implemented the MUSL, USL, and USF versions of
the MPM with the contact algorithm, whose detailed formations can be found
in Sect. 3.2.2 (if contact is off) or Sect. 3.3 (if contact is on). The flow-chart of
these versions of the MPM is shown in Fig. 4.1.
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As shown in Fig. 4.1, the MPM calculation can be completed in nine steps,
and each step has been implemented as a separate subroutine in the source code
file update_step.f90, as specified below.

Step 1. Discard the grid which was deformed in the previous step, if needed,
and employ a new regular grid. Loop over all bodies, and map the mass and
momentum of all particles to the grid to initialize the grid nodal mass and mo-
mentum. This step is implemented in subroutine GridMomentumInitial, whose
source code is listed as follows:

subroutine GridMomentumInitial()
!-----------------------------------------------------------------
!- Purpose -
!- 1. Map the variables of a particle to the grid node -
!-----------------------------------------------------------------

use ParticleData
use GridData
use MaterialData
implicit none

integer:: b, p, n, c, parBegin, parEnd ! loop counter
integer:: icell, inode, ix, iy, iz, mat_, comID = 1
real(8):: sxx, syy, szz, sxy, syz, sxz
real(8):: fx(3), f_int(3), f_ext(3), mp_, vol_
real(8):: shm, SHPn, DNDXn, DNDYn, DNDZn

type(Particle), POINTER :: pt
type(GridNodeProperty), POINTER :: gd

! Calculate the grid nodal masses, momentum only
! Reset Grid data
grid_list%Mg = 0.0d0 ! Grid nodal mass

grid_list%PXg(1) = 0.0d0; ! Nodal momentum
grid_list%PXg(2) = 0.0d0;
grid_list%PXg(3) = 0.0d0;

do b = 1, nb_body ! Loop over all bodies
parBegin = body_list(b)%par_begin
parEnd = body_list(b)%par_End

if(contact) comID = body_list(b)%comID ! Get comID from body

do p = parBegin, parEnd ! Loop over all particles (1)
pt => particle_list(p)

pt%icell = InWhichCell(pt%Xp)
icell = pt%icell
! Particle p is out of the computational region
if (icell < 0) cycle
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vol_ = pt%VOL
mp_ = pt%Mass

! Calculate the shape functions and their derivatives
InflNode(1:8)=CellsNode(icell,:)
if (GIMP) then

call FindInflNode(p,icell)
call NShape_GIMP(p)

else
call NShape(CellsNode(icell,1),p,0)

end if

! Loop over the grid nodes of the hexahedron
! in which the particle is located
do n = 1, nb_InflNode

! out of the computational grid
if (InflNode(n) .gt. nb_gridnode .or. &

InflNode(n) .le. 0) cycle

gd => grid_list(comID, InflNode(n))

SHPn = SHP(n)
shm = SHPn*mp_

gd%Mg = gd%Mg + shm ! the nodal mass
gd%PXg = gd%PXg + pt%VXp*shm ! the nodal momentum

end do !n

end do !p
end do !b

end subroutine GridMomentumInitial

Step 2. Impose essential boundary conditions. For a fixed boundary, set
p

k−1/2
iI = 0. This step is implemented in subroutine ApplyBoundaryConditions,

whose source code is listed as follows:

subroutine ApplyBoundaryConditions()
!-----------------------------------------------------------------
!- Purpose -
!- 1. Apply boundary condition -
!-----------------------------------------------------------------
use GridData
use ParticleData, only: nb_component
implicit none

integer:: n, c ! loop counter
type(GridNodeProperty), POINTER :: gd
type(GridNode), POINTER :: node

do c = 1, nb_component
do n = 1, nb_gridnode

gd => grid_list(c, n)
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node => node_list(n)
! Apply boundary conditions on computational grid
if (node%Fix_x) then ! Grid node n is fixed in x

! direction
gd%PXg(1) = 0.0
gd%FXg(1) = 0.0

end if

if (node%Fix_y) then ! Grid node n is fixed in y
! direction

gd%PXg(2) = 0.0
gd%FXg(2) = 0.0

end if

if (node%Fix_z) then ! Grid node n is fixed in z
! direction

gd%PXg(3) = 0.0
gd%FXg(3) = 0.0

end if
end do ! n

end do ! c

end subroutine ApplyBoundaryConditions

Step 3. For the USF, calculate the particle strain increment �ε
b,k−1/2
ijp and

vorticity increment �Ω
b,k−1/2
ijp , and then update the particle density ρk+1

p and

stress σk+1
ijp . This step is implemented in subroutine ParticleStressUpdate, whose

source code is listed as follows:

subroutine ParticleStressUpdate()
!-----------------------------------------------------------------
!- Purpose -
!- 1. Calculate the strain rate and spin tensor -
!- 2. Update stresses by appropriate constitution law -
!-----------------------------------------------------------------
use ParticleData
use GridData
use MaterialModel, only: Constitution
use MaterialData
implicit none

integer:: b, p, n, parBegin, parEnd ! loop counter
integer:: icell, inode, ix, iy, iz, comID = 1
real(8):: xx(3), vx(3), ax(3), vgx(3)
real(8):: de(6), vort(3)
real(8):: mp_, shm, SHPn, DNDXn, DNDYn, DNDZn

type(Particle), POINTER :: pt
type(GridNodeProperty), POINTER :: gd

! Calculate the increment strain and vorticity
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! de(i) comply the Voigt rule (d11, d22, d33, 2*d23, 2*d13,
! 2*d12)
do b = 1, nb_body

parBegin = body_list(b)%par_begin
parEnd = body_list(b)%par_End

if(contact) comID = body_list(b)%comID ! Get comID from body

do p = parBegin, parEnd ! Loop over all particles (4)
pt => particle_list(p)

de = 0d0 ! Incremental strain
vort = 0d0 ! Incremental vorticity

icell = pt%icell ! use old position
! Particle p is out of the computational region
if (icell < 0) cycle

! Calculate the shape functions and their derivatives
InflNode(1:8)=CellsNode(icell,:)
if (GIMP) then

call FindInflNode(p,icell)
call NShape_GIMP(p)

else
call NShape(CellsNode(icell,1),p,1)

end if

! Loop over all grid nodes of the hexahedron
! in which particle p is located
do n = 1, nb_InflNode

if (InflNode(n) .gt. nb_gridnode .or. InflNode(n) .le.
0) & cycle ! out of the computational grid

gd => grid_list(comID, InflNode(n))
! If the nodal mass is not too small
if (grid_list(comID, InflNode(n))%Mg > CutOff) then

vgx = gd%PXg / gd%Mg ! Grid nodal velocity

DNDXn = DNDX(n); DNDYn = DNDY(n); DNDZn = DNDZ(n)
de(1) = de(1) + DNDXn*vgx(1) ! D11 * DT
de(2) = de(2) + DNDYn*vgx(2) ! D22 * DT
de(3) = de(3) + DNDZn*vgx(3) ! D33 * DT
! 2*D23 * DT
de(4) = de(4) + (DNDYn*vgx(3) + DNDZn*vgx(2))
! 2*D13 * DT
de(5) = de(5) + (DNDZn*vgx(1) + DNDXn*vgx(3))
! 2*D12 * DT
de(6) = de(6) + (DNDXn*vgx(2) + DNDYn*vgx(1))

! W32 * DT
vort(1) = vort(1) + (DNDYn*vgx(3) - DNDZn*vgx(2))
! W13 * DT
vort(2) = vort(2) + (DNDZn*vgx(1) - DNDXn*vgx(3))
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! W21 * DT
vort(3) = vort(3) + (DNDXn*vgx(2) - DNDYn*vgx(1))

end if
end do ! n

de = de * DT
vort = vort * DT / 2d0

! Update stress by constitution law
call Constitution(de, vort, b, p)

if(.NOT.USF) pt%Xp = pt%XX ! the next particle position

end do !p
end do !b

end subroutine ParticleStressUpdate

Step 4. Calculate the grid nodal forces f
b,int,k
iI , f b,ext,k

iI , and f
b,k
iI = f

b,int,k
iI +

f
b,ext,k
iI . For contact problems, calculate the unit outward normal n

b,k
iI of each

body at the contacted grid node. This step is implemented in subroutine Grid-
MomentumUpdate, whose source code is listed as follows:

subroutine GridMomentumUpdate()
!-----------------------------------------------------------------
!- Purpose -
!- 1. Calculate the background grid nodal force -
!-----------------------------------------------------------------
use ParticleData
use GridData
use MaterialData
implicit none

integer:: b, p, n, c, parBegin, parEnd ! loop counter
integer:: icell, inode, ix, iy, iz, mat_, comID = 1
real(8):: sxx, syy, szz, sxy, syz, sxz
real(8):: fx(3), f_int(3), f_ext(3), mp_, vol_
real(8):: shm, SHPn, DNDXn, DNDYn, DNDZn

type(Particle), POINTER :: pt
type(GridNodeProperty), POINTER :: gd
type(ContactGridNodeProperty), POINTER :: CP

! Calculate the grid nodal forces only

! Reset nodal forces
grid_list%FXg(1) = 0.0d0; ! Nodal forces
grid_list%FXg(2) = 0.0d0;
grid_list%FXg(3) = 0.0d0;

if(contact) then
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CP_list%ndir(1) = 0.0d0
CP_list%ndir(2) = 0.0d0
CP_list%ndir(3) = 0.0d0

end if

do b = 1, nb_body ! Loop over all bodies
parBegin = body_list(b)%par_begin
parEnd = body_list(b)%par_End

if(contact) comID = body_list(b)%comID ! Get comID from body
do p = parBegin, parEnd ! Loop over all particles

pt => particle_list(p)

icell = pt%icell ! using old position

! Particle p is out of the computational region
if (icell < 0) cycle

sxx = pt%SM + pt%SDxx ! Stresses
syy = pt%SM + pt%SDyy
szz = pt%SM + pt%SDzz
sxy = pt%SDxy
syz = pt%SDyz
sxz = pt%SDxz
! External forces
fx = pt%FXp + pt%Mass * (body_list(b)%Gravp)

vol_ = pt%VOL
mp_ = pt%Mass

! Calculate the shape functions and their derivatives
InflNode(1:8)=CellsNode(icell,:)
if (GIMP) then

call FindInflNode(p,icell)
call NShape_GIMP(p)

else
call NShape(CellsNode(icell,1),p,2)

end if

! Loop over the grid nodes of the hexahedron
! in which the particle is located
do n = 1, nb_InflNode

if (InflNode(n) .gt. nb_gridnode .or. InflNode(n) .le.
0) & cycle ! out of the computational grid

gd => grid_list(comID, InflNode(n))

SHPn = SHP(n)
DNDXn = DNDX(n)
DNDYn = DNDY(n)
DNDZn = DNDZ(n)
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f_int(1) = - (sxx*DNDXn + sxy*DNDYn + sxz*DNDZn)*vol_
f_int(2) = - (sxy*DNDXn + syy*DNDYn + syz*DNDZn)*vol_
f_int(3) = - (sxz*DNDXn + syz*DNDYn + szz*DNDZn)*vol_

f_ext = fx*SHPn

gd%FXg = gd%FXg + f_int + f_ext !nodal force

if(contact) then
CP => CP_list(comID, InflNode(n))
CP%ndir(1) = CP%ndir(1) + DNDXn*mp_
CP%ndir(2) = CP%ndir(2) + DNDYn*mp_
CP%ndir(3) = CP%ndir(3) + DNDZn*mp_

end if

end do !n

end do !p
end do !b

end subroutine GridMomentumUpdate

Step 5. Integrate the grid nodal momentum equations. For contact problems,
the momentum equations of each body are integrated independently to calculate
the trail nodal momentum p̄

b,k+1/2
iI by Eq. (3.93) as if they were not in contact.

This step is implemented in subroutine IntegrateMomentum, whose source code
is listed as follows:

subroutine IntegrateMomentum()
!-----------------------------------------------------------------
!- Purpose -
!- 1. Integrate the momentum equations on the -
!= computational grid -
!- 2. Apply boundary conditions -
!-----------------------------------------------------------------
use ParticleData
use GridData
implicit none

integer:: c, n ! loop counter
type(GridNodeProperty), POINTER :: gd
type(GridNode), POINTER :: node

do c = 1, nb_component
do n = 1, nb_gridnode

gd => grid_list(c, n)
node => node_list(n)

! Integrate momentum equation
gd%PXg = gd%PXg + gd%FXg * DT

! Apply boundary conditions on computational grid
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if (node%Fix_x) then ! Grid node n is fixed in x
! direction

gd%PXg(1) = 0.0
gd%FXg(1) = 0.0

end if

if (node%Fix_y) then ! Grid node n is fixed in y
! direction

gd%PXg(2) = 0.0
gd%FXg(2) = 0.0

end if

if (node%Fix_z) then ! Grid node n is fixed in z
! direction

gd%PXg(3) = 0.0
gd%FXg(3) = 0.0

end if

end do !n
end do !c

end subroutine IntegrateMomentum

Step 6. For contact problems, search for contacted nodes using the criteria
Eq. (3.98). Calculate the contact forces and then correct the momentum and
nodal forces for all contacted nodes. This step is implemented in subroutine
Lagr_NodContact, whose source code is listed as follows:

subroutine Lagr_NodContact()
!-----------------------------------------------------------------
!- Purpose -
!- 1. Establish the nodal contact criteria, -
!- 2. Correct the normal vectors, and -
!- 3. Apply the contact force and adjust nodal velocities -
!-----------------------------------------------------------------
use ParticleData
use GridData
use MaterialData

implicit none

integer:: p, n, c ! loop counter
real(8):: nx, ny, nz, tt,tta,ttb,crit, crita, critb
real(8):: nomforce, val_fslip, val_fstick, val_ffric, nodtolmg
real(8):: fstick(3), fslip(3), cforce(3)
integer:: abody,bbody

type(GridNodeProperty), POINTER :: gd1
type(GridNodeProperty), POINTER :: gd2
type(ContactGridNodeProperty), POINTER :: CP1
type(ContactGridNodeProperty), POINTER :: CP2

tot_cont_for = 0.0 ! the total contact force between of bodies
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! calculate contact force and adjust the nodal force and
! momentum
do n = 1, nb_gridnode

CP1 => CP_list(1,n)
CP2 => CP_list(2,n)
gd1 => grid_list(1, n)
gd2 => grid_list(2, n)

! recalculate the nodal normal direction
! if normbody 0 then using average method;
! if 1,using abody; if 2,using bbody
if(normbody == 0)then

nx = CP1%ndir(1) - CP2%ndir(1)
ny = CP1%ndir(2) - CP2%ndir(2)
nz = CP1%ndir(3) - CP2%ndir(3)

end if

if(normbody == 1)then
nx = CP1%ndir(1)
ny = CP1%ndir(2)
nz = CP1%ndir(3)

end if

if(normbody == 2)then
nx = - CP2%ndir(1)
ny = - CP2%ndir(2)
nz = - CP2%ndir(3)

end if

! unitize normal vector
tt = sqrt(nx*nx + ny*ny + nz*nz)
if(tt > epsilon(tt)) then

nx = nx / tt
ny = ny / tt
nz = nz / tt

end if

CP1%ndir(1) = nx; ! Nodal direction for contact
CP1%ndir(2) = ny;
CP1%ndir(3) = nz;
CP2%ndir = -CP1%ndir

crit = 0.0
! contact criteria using the unit normal vectors
if ( gd1%Mg > CutOff .AND. gd2%Mg > CutOff) then

! Eq.(3.98)
crit = (gd1%Pxg(1)*gd2%Mg - gd2%Pxg(1)*gd1%Mg)*nx +&

(gd1%Pxg(2)*gd2%Mg - gd2%Pxg(2)*gd1%Mg)*ny +&
(gd1%Pxg(3)*gd2%Mg - gd2%Pxg(3)*gd1%Mg)*nz

end if
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if(crit > epsilon(crit)) then

tt = (gd1%Mg + gd2%Mg)*Dt

! calculate the normal contact force
nomforce =crit/tt ! Eq.(3.106)

! for friction contact
if(fricfa > epsilon(fricfa)) then

! calculate the contact force Eq.(3.104)
cforce = (gd1%Pxg*gd2%Mg - gd2%Pxg*gd1%Mg)/tt

! calculate the tangent contact force
fstick = cforce - nomforce*CP1%ndir
val_fstick = sqrt( fstick(1)*fstick(1) + &

fstick(2)*fstick(2) + fstick(3)*fstick(3) )
val_fslip = fricfa*abs(nomforce)
if(val_fslip < val_fstick) then

cforce = nomforce + val_fslip*(fstick /val_fstick)
end if

! for contact without friction
else

cforce = nomforce*CP1%ndir
end if

! add contact force to nodal force
gd1%Fxg = gd1%Fxg - cforce
gd2%Fxg = gd2%Fxg + cforce

! adjust the nodal component by contact force
gd1%Pxg = gd1%Pxg - cforce * Dt
gd2%Pxg = gd2%Pxg + cforce * Dt

tot_cont_for = tot_cont_for + cforce
end if

end do !n

end subroutine Lagr_NodContact

Step 7. Update the particle position and velocity by mapping the grid nodal
displacement and velocity increment to corresponding particles. This step is
implemented in subroutine ParticlePositionUpdate, whose source code is listed
as follows:

subroutine ParticlePositionUpdate()
!-----------------------------------------------------------------
!- Purpose -
!- 1. Update particle position and velocity -
!-----------------------------------------------------------------
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use ParticleData
use GridData
use MaterialModel, only: Constitution
use MaterialData
implicit none

integer:: b, p, n, parBegin, parEnd ! loop counter
integer:: icell, inode, ix, iy, iz, comID = 1
real(8):: xx(3), vx(3), ax(3), vgx(3)
real(8):: de(6), vort(3)
real(8):: mp_, shm, SHPn, DNDXn, DNDYn, DNDZn

type(Particle), POINTER :: pt
type(GridNodeProperty), POINTER :: gd

! Update particle position and velocity
do b = 1, nb_body

parBegin = body_list(b)%par_begin
parEnd = body_list(b)%par_End
! Get comID from body
if(contact) comID = body_list(b)%comID

do p = parBegin, parEnd ! Loop over all particles (2)
pt => particle_list(p)

icell = pt%icell
! Particle p is out of the computational region
if (icell < 0) cycle

xx = pt%Xp; ! Particle position at time step k

vx = 0d0
ax = 0d0

! Mapping from grid to particle

! Calculate the shape functions and their derivatives
InflNode(1:8)=CellsNode(icell,:)
if (GIMP) then

call FindInflNode(p,icell)
call NShape_GIMP(p)

else
call NShape(CellsNode(icell,1),p,2)

end if

! Loop over all grid nodes of the hexahedron
! in which particle p is located
do n = 1, nb_InflNode

if(InflNode(n) .gt. nb_gridnode .or. InflNode(n) .le.
0) & cycle ! out of the computational grid

gd => grid_list(comID, InflNode(n))
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if (gd%Mg > CutOff) then ! The nodal mass is not too
! small

SHPn = SHP(n)
vx = vx + SHPn * (gd%PXg / gd%Mg)
ax = ax + SHPn * gd%FXg / gd%Mg

end if

end do ! n

! Time integration
pt%XX = xx + vx * DT ! Update particle position
pt%VXp = pt%VXp + ax * DT ! Update particle velocity
if(USF) pt%Xp = pt%XX ! the next particle position

end do ! p
end do ! b

end subroutine ParticlePositionUpdate

Step 8. For the MUSL, recalculate the grid nodal momentum by mapping the
updated particle momentum back to the grid nodes and imposing the essential
boundary conditions. This step is implemented in subroutine GridMomentum-
MUSL, whose source code is listed as follows:

subroutine GridMomentumMUSL()
!-----------------------------------------------------------------
!- Purpose -
!- 1. Recalculate the grid node momentum by mapping -
!- the updated particle information -
!- 2. Apply boundary condition -
!-----------------------------------------------------------------
use ParticleData
use GridData
use MaterialModel, only: Constitution
use MaterialData
implicit none

integer:: b, c, p, n, parBegin, parEnd ! loop counter
integer:: icell, comID = 1
real(8):: de(6), vort(3)
real(8):: mp_, shm, SHPn

type(Particle), POINTER :: pt
type(GridNodeProperty), POINTER :: gd
type(GridNode), POINTER :: node

grid_list%PXg(1) = 0.0d0;
grid_list%PXg(2) = 0.0d0;
grid_list%PXg(3) = 0.0d0;

! Recalculate the grid node momentum
do b = 1, nb_body ! Loop over all bodies
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parBegin = body_list(b)%par_begin
parEnd = body_list(b)%par_End

if(contact) comID = body_list(b)%comid ! Get comID from body

do p = parBegin, parEnd ! Loop over all particles (3)
pt => particle_list(p)

icell = pt%icell
! Particle p is out of the computational region
if (icell < 0) cycle

mp_ = pt%mass

! Calculate the shape functions
InflNode(1:8)=CellsNode(icell,:)
if (GIMP) then

call FindInflNode(p,icell)
call NShape_GIMP(p)

else
call NShape(CellsNode(icell,1),p,0)

end if

! Loop over all grid nodes of the hexahedron
! in which particle p is located
do n = 1, nb_InflNode

if(InflNode(n) .gt. nb_gridnode .or. InflNode(n) .le.
0) & cycle ! out of the computational grid

gd => grid_list(comID, InflNode(n))

shm = SHP(n)*mp_
gd%PXg = gd%PXg + pt%VXp*shm

end do ! n
end do ! p

end do ! b

! Applying essential boundary conditions
do c = 1, nb_component

do n = 1, nb_gridnode
gd => grid_list(c, n)
node => node_list(n)
if (node%Fix_x) then

gd%PXg(1) = 0.0
gd%FXg(1) = 0.0

end if

if (node%Fix_y) then
gd%PXg(2) = 0.0
gd%FXg(2) = 0.0

end if
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if (node%Fix_z) then
gd%PXg(3) = 0.0
gd%FXg(3) = 0.0

end if

end do !n
end do ! c

end subroutine GridMomentumMUSL

Step 9. For the MUSL and USL, calculate the particle strain and vorticity
increments, and update the particle density and stress by using the subroutine
ParticleStressUpdate, as shown in Step 3.

4.7 NUMERICAL EXAMPLES

Several representative numerical examples of the MPM3D-F90 are presented in
this section, whose input data files can be found in the folder “Data”.

4.7.1 TNT Slab Detonation

A 0.1 m long TNT slab is detonated from its left end, and the detonation wave
travels to its right end at the detonation speed. The left end of the slab is fixed
and the right end is free. This problem is often taken as a benchmark to validate
the codes simulating high explosives.

The MPM3D-F90 is used to analyze the uniaxial wave propagation problem,
in which the particles are totally constrained in the y and z directions by impos-
ing the symmetric boundary conditions on the boundary planes perpendicular
to the y and z axes. The left boundary plane of the grid is also treated as the
symmetric boundary.

The slab is discretized into 4000 particles, with the initial particle spacing
of 0.025 mm. The grid spacing is 0.05 mm so that there are initially 2 particles
in each cell. The left end is set as the detonation point. The density and deto-
nation speed of the TNT are chosen to be 1.63 × 10−3 g/mm3 and 6930 m/s,
respectively. The JWL EOS is employed to update the pressure of the detona-
tion products of TNT, whose parameters are listed in Table 4.2. The end-time of
simulation is chosen as 0.015 ms, at which the detonation process is completed.
The input data file of this example is “Deto1k.mpm”.

The theoretical CJ pressure of this problem is 1.957 × 104 MPa, while the
experimental pressure is 2.1×104 MPa. The current version of the MPM3D-F90
is unable to plot a variable along a line in space so that the time history of
pressure of a few selected particles are plotted in Fig. 4.2. The peak pressure
obtained by the MPM3D-F90 is about 1.90 × 104 MPa, which is very close to
the theoretical CJ pressure.
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TABLE 4.2 Parameters of JWL Equation of State

PCJ (MPa) A (MPa) B (MPa) R1 R2 ω E0 (MJ/mm3)

2.1 × 104 3.712 × 105 3.21 × 103 4.15 0.95 0.3 6993

FIGURE 4.2 Time history of pressure of selected particles.

FIGURE 4.3 Taylor bar impact.

4.7.2 Taylor Bar Impact

Taylor bar impact experiments, in which a cylindrical metal bar normally im-
pacts a rigid wall, are often used to validate the constitutive models implemented
in computer codes. There are ample experimental data which can be referred to.

To quantitatively compare the final configurations of the bar as obtained by
simulation and experiment, Johnson and Holmquist [118] proposed an average
error as

�̄ = 1

3

( |�L|
L

+ |�D|
D

+ |�W |
W

)

where L, D, and W are the final length, the diameter at the bottom, and the
diameter at the section which is 0.2L0 away from the bottom, respectively, as
shown in Fig. 4.3. �L, �D, and �W are the errors in L, D, and W between
numerical and experimental results.
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TABLE 4.3 Material Parameters

ρ (kg/m3) E (GPa) ν A (MPa) B (MPa) n C

8930 117 0.35 157 425 1.0 0.0

TABLE 4.4 Comparison in Accuracy

L (mm) D (mm) W (mm) �̄

Experiment 16.2 13.5 10.1 –

MPM 16.3 13.0 9.6 0.031

FEM 16.3 13.2 10.1 0.009

TABLE 4.5 Comparison in Time Step

�tmax (µs) �tmin (µs) Number of time steps
MPM 0.133 0.133 604

FEM 0.024 0.012 5483

In this example, a copper bar of initial length L0 = 25.4 mm and diameter
D0 = 7.6 mm impacts a rigid wall at a velocity of 190 m/s. This problem is sim-
ulated by both the MPM and FEM. In the MPM simulation, the bar is discretized
into 21,172 particles uniformly with an initial particle spacing of 0.38 mm. In
the FEM simulation using LS-DYNA, the bar is discretized into 6528 elements
and 7315 nodes, with the maximum element length of 0.76 mm. Johnson–Cook
model is used to model the copper, whose parameters are listed in Table 4.3. The
end-time of simulation is chosen as 80 µs, when the kinetic energy has reached
zero. The input data file of this example is “Taylor.mpm”.

Table 4.4 compares the numerical results obtained by the MPM3D-F90 and
LS-DYNA with experimental results. Table 4.5 compares the maximum time
step �tmax, minimum time step �tmin, and total number of time steps used in
the MPM and FEM simulations. The time step safety factor is chosen as 0.8
in both the MPM and FEM simulations. Due to element distortion, the time
step used in the FEM is reduced by 50%. This example demonstrated that the
MPM is much more efficient than the FEM in solving large deformation prob-
lems.

4.7.3 Perforation of a Thick Plate

In this example, an ogive-nose high strength steel projectile impacts an alu-
minum target at a velocity of 400 m/s with an angle of 30◦ [119]. The projectile
has a length of 88.9 mm and a diameter of 12.9 mm with a 3.0 caliber-radius-
head. The target is an A6061-T651 plate of 26.3-mm thickness.
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TABLE 4.6 Material Parameters of the Target

ρ (g/cm3) E (GPa) ν A (MPa) B (MPa) n C m

2.7 69 0.3 262 52.1 0.41 0 0.859

c0 (m/s) S1 Γ0 Tmelt (K) Troom (K) ε
p
fail

5350 1.34 2.0 875 293 1.6

FIGURE 4.4 Configurations of the projectile and target obtained by (a) experiment and (b) MPM
simulation at the striking velocity of 400 m/s [120].

The projectile is modeled by a linear elastic constitutive model with den-
sity ρ = 7.85 g/cm3, Young’s modulus E = 200 GPa and Poisson’s ratio ν =
0.3. The target is modeled by the Johnson–Cook plasticity model and Mie–
Grüneisen EOS with the parameters listed in Table 4.6. For the target, when the
effective plastic strain of a particle reaches 1.6, the particle is labeled as a failure
particle such that it is unable to sustain any deviatoric stress.

Due to symmetry, only half of the material domain is discretized in the sim-
ulation. The projectile is discretized into 13,314 particles with an initial particle
spacing of 0.6 to 1.0 mm, while the target is discretized into 187,550 particles
with an initial particle spacing of 1.0 mm. The grid spacing is 2.0 mm. This
problem is solved with the USF version of the MPM, and the contact algorithm
is turned on with the friction coefficient being zero. The input file of this exam-
ple is “PeneOgive.mpm”.

Fig. 4.4 compares the configurations of the projectile and target obtained by
experiment and simulation at different times, which illustrates good agreement
between the numerical and experimental results. The residual velocity of the
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FIGURE 4.5 Soil slope under gravity.

TABLE 4.7 Material Parameters of Soil

E (MPa) ν ρ (g/cm3) φ◦ ψ◦ c (kPa)
70 0.3 2.1 20 0.0 1.0

σ t (kPa) qφ kφ (kPa) qψ

27.48 0.3545 0.974 0

projectile obtained by the MPM simulation is 212.7 m/s which is very close to
its experimental value of 217 m/s.

4.7.4 Failure of Soil Slope

The failure process of a soil slope as shown in Fig. 4.5 under gravity is sim-
ulated. The left side AF and right side DE are constrained in the horizontal
direction and free in the vertical direction, while the bottom side EF is fully
constrained. In this simulation, the transverse direction of the computational
model is constrained to yield a plane strain state [120].

The soil is modeled by the Drucker–Prager model with the parameters listed
in Table 4.7. The slope is discretized into 19,640 particles with an initial spacing
of 0.5 m. The grid spacing is chosen as 1 m. For comparison, this problem is also
simulated with the use of LS-DYNA with 19,640 elements and 30,273 nodes.
The input file of this example is “Slopfail.mpm”.

Fig. 4.6 compares the failure process obtained by the MPM3D-F90 and
LS-DYNA, in which the color represents effective plastic strain. The results ob-
tained by the MPM3D-F90 agree well with those obtained by LS-DYNA, but the
computational cost of the MPM3D-F90 is much lower than that of LS-DYNA
due to its element distortion, as shown in Table 4.8.

Table 4.8 compares the maximum time step size �tmax, minimum time step
size �tmin, and total number of time steps used in the MPM and FEM simula-
tions. The time step safety factor is chosen as 0.2. The time step size in the FEM
simulation is reduced from its initial value of 261 to 8.21 µs due to element
distortion. The same regular background grid is used in the whole simulation
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FIGURE 4.6 Slope failure process obtained by (a) MPM and (b) FEM.

TABLE 4.8 Comparison of Computational Cost

�tmax (µs) �tmin (µs) Number of time steps CPU time (min)
MPM 944 944 15,888 9

FEM 261 8.21 1,175,935 468

process with the MPM such that its time step size keeps constant during the
simulation. The CPU time used in the MPM simulation is only 1/52 of that used
in the FEM simulation.
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Both the FEM and MPM possess certain prominent advantages for different
problems so that it is desirable to combine the FEM with MPM to take respective
advantages of these two spatial discretization methods to advance SBES.

5.1 EXPLICIT FINITE ELEMENT METHOD

To illustrate the differences and similarities between the MPM and FEM, the
basic formulation of the FEM is presented in this section.

5.1.1 Finite Element Discretization

The basic idea of the FEM is to discretize a continuous domain into a finite set
of small elements of simple shapes which are interconnected at element nodes,
and to approximate the global unknown function defined in the whole domain
with a set of piecewisely defined approximation functions in the elements. Let
xiI (t) and XiI (t) denote the coordinates of the node I at time t in the current
configuration and reference configuration, respectively. The spatial coordinates
xi(X, t) of a particle X within an element at time t can be interpolated by the
nodal coordinates xiI (t) of the element as follows:

xi(X, t) = NI (X)xiI (t) (5.1)

where NI (X) is the value of the shape function associated with node I evaluated
at the site of particle X. In Eq. (5.1), the repeated nodal number index I rep-
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resents a summation over its values, namely, over all the nodes of the element.
The shape function NI (X) depends on the element type.

Similarly, the coordinates Xi(t) of a particle X within an element at time t

in the reference configuration can be interpolated by the nodal coordinates XiI

of the element as follows:

Xi(t) = NI (X)XiI . (5.2)

The displacement of a particle X within an element can then be approxi-
mated by the nodal displacement of the element, i.e.,

ui(X, t) = xi(X, t) − Xi = NI (X)uiI (t) (5.3)

in which

uiI (t) = xiI (x) − XiI (5.4)

is the displacement of node I .
Taking derivatives of Eq. (5.3) with respect to time t and coordinate xj ,

respectively, gives

üi (X, t) = NI (X)üiI (t), (5.5)

ui,j (X, t) = NI,j (X)uiI (t). (5.6)

Similarly, the virtual displacement of a particle can also be approximated as

δui(X, t) = NI (X)δuiI (t) (5.7)

where δuiI denotes the virtual displacement of node I . Substituting Eqs. (5.5)–
(5.7) into Eq. (2.65) results in

δuiI

(∫
Ω

ρNINJ üiJ dV +
∫

Ω

NI,jσij dV −
∫

Ω

NIρbidV −
∫

Γt

NI t idΓ

)
= 0.

(5.8)

Since the virtual displacements equal zero on the essential boundaries and
are arbitrary elsewhere, Eq. (5.8) can be reduced to

MIJ üiJ = f int
iI + f ext

iI ∀I /∈ Γu (5.9)

where

f int
iI = −

∫
Ω

NI,j σij dV (5.10)
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is the internal nodal force,

f ext
iI =

∫
Ω

NIρbidV +
∫

Γt

NI t idΓ (5.11)

is the external nodal force, and

MIJ =
∫

Ω

ρNINJ dV (5.12)

is the consistent mass matrix. Using Eqs. (2.13) and (2.41), the integral in
Eq. (5.12) can be transformed from the current configuration to the reference
configuration as follows:

MIJ =
∫

Ω0

ρ0NINJ dV0. (5.13)

Thus, the mass matrix is constant so that it only needs to be calculated once
in the reference configuration.

If the explicit time integration is used, a lumped mass matrix instead of the
consistent matrix is employed so that Eq. (5.9) is reduced to

MI üiI = f int
iI + f ext

iI ∀I /∈ Γu (5.14)

where MI is the I th diagonal element of the lumped mass matrix.

5.1.2 The FEM Formulation in Matrix Form

In computer programming, second- and fourth-order tensors are written in col-
umn and square matrices, respectively, by using the Voigt notation [107]. For
example, the Cauchy stress tensor σ and the deformation rate tensor D are writ-
ten in column matrices as

σ = [ σ11 σ22 σ33 σ23 σ13 σ12 ]T, (5.15)

D = [ D11 D22 D33 2D23 2D13 2D12 ]T (5.16)

where the factor 2 in the Voigt rule for strains and strain-like tensors is used to
make the energy expressions equivalent in both matrix and indicial notations,
namely,

ρẇint = Djiσji = DTσ . (5.17)

Similarly, the nodal vectors, such as uiI , can also be converted to a column
matrix a by setting ab = uiI with index b = (I − 1) ∗ nSD + i, where nSD is the
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number of space dimensions. For example, the velocities u̇iI of all nodes can be
converted to

ȧ = [ ȧT
1 ȧT

2 . . . ȧT
N

]T, ȧI = [ u̇1I u̇2I u̇3I ]T (5.18)

where the column matrix ȧ is the global nodal velocity, and the sub-column
matrix ȧI is the velocity of node I .

The deformation rate tensor

Dij = 1

2
(u̇i,j + u̇j,i ) = 1

2
(u̇iINI,j + u̇jINI,i) (5.19)

can be converted to its column matrix form as

D = BI ȧI = Bȧ (5.20)

where

BI =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂NI

∂x1
0 0 0

∂NI

∂x3

∂NI

∂x2

0
∂NI

∂x2
0

∂NI

∂x3
0

∂NI

∂x1

0 0
∂NI

∂x3

∂NI

∂x2

∂NI

∂x1
0

⎤
⎥⎥⎥⎥⎥⎥⎦

T

, (5.21)

B = [ B1 B2 . . . BN ]. (5.22)

The column matrix form of Eq. (5.10) is given by

f int
I =

∫
V

BT
I σdV, (5.23)

f int =
∫

V

BTσdV (5.24)

where the column matrix f int = [ (f int
1 )T (f int

2 )T . . . (f int
N )T ]T is

the global nodal internal force, and the sub-column matrix f int
I =

[ f int
1I f int

2I f int
3I

]T is the internal force of node I .
The column matrix form of Eq. (5.11) is given by

f ext
I =

∫
V

NT
I ρbdV +

∫
At

NT
I t̄dA, (5.25)

f ext =
∫

V

NTρbdV +
∫

At

NT t̄dA (5.26)
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FIGURE 5.1 8-node hexahedron solid element in (a) physical coordinates, and (b) natural coordi-
nates.

where

N I = NI I ,

N = [ N1 N2 . . . NN ],
t̄ = [ t̄1 t̄2 t̄3 ]T,

f ext
I = [ f ext

1I f ext
2I f ext

3I
]T,

f ext = [ (
f ext

1

)T (
f ext

2

)T
. . .

(
f ext

N

)T ]T.

The column matrix form of Eq. (5.9) thus takes the form of

Mä = f (5.27)

in which the column matrix

f = f ext + f int (5.28)

is the global nodal force, and the column matrix ä is the global nodal accelera-
tion.

5.1.3 Hexahedron Element

The shape function NI (X) depends on the element type. For example, the shape
function for an 8-node hexahedron element as shown in Fig. 5.1 is given by

NI (ξ, η, ζ ) = 1

8
(1 + ξI ξ)(1 + ηI η)(1 + ζI ζ )

= 1

8
(1 + ξI ξ + ηI η + ζI ζ + ξI ηI ξη

+ ηI ζI ηζ + ξI ζI ξζ + ξI ηI ζI ξηζ ) (5.29)
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TABLE 5.1 Nodal Natural Coordinates of a Hexahedron
Element

I 1 2 3 4 5 6 7 8

ξI −1 1 1 −1 −1 1 1 −1

ηI −1 −1 1 1 −1 −1 1 1

ζI −1 −1 −1 −1 1 1 1 1

where ξ , η, and ζ are the natural coordinates of a particle, and ξI , ηI , and ζI are
the natural coordinates of node I supporting the particle, which take values of
(±1,±1), as shown in Table 5.1.

5.1.3.1 One-Point Gauss Quadrature

In the FEM, the integrals in Eqs. (5.23) and (5.25) are evaluated by using
Gauss quadrature. The shape function (5.29) transforms a hexahedron in the
xyz-coordinate system into a cube in the ξηζ -coordinate system. As a result,
the volume integral over a hexahedron element Ωe can be converted into a vol-
ume integral over a cube according to Eq. (2.13) as follows:

∫
Ωe

g(x, y, z)dxdydz =
∫ 1

−1

∫ 1

−1

∫ 1

−1
g(ξ, η, ζ ) |J |dξdηdζ. (5.30)

Employing Gauss quadrature in Eq. (5.30) gives

∫
Ωe

g(x, y, z)dxdydz =
n∑

J=1

n∑
K=1

n∑
L=1

g(ξJ , ηK, ζL) |J (ξJ , ηK, ζL)|wJ wKwL

(5.31)

where n is the number of Gauss quadrature points in each dimension,
(ξJ , ηK, ζL) are the natural coordinates of the quadrature point (J,K,L), and
(wJ ,wK,wL) are the corresponding weights. In one-point Gauss quadrature,

n = 1, w1 = 2, ξ1 = η1 = ζ1 = 0

such that the volume integral over the hexahedron element Ωe is evaluated as∫
Ωe

g(x, y, z)dxdydz ≈ 8g(0,0,0) |J (0,0,0)| . (5.32)

Letting g = 1 in Eq. (5.32) gives the approximation of the volume of an
8-node hexahedron element as

Ve ≈ 8 |J (0,0,0)| . (5.33)
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Hence, the nodal internal force Eq. (5.10) and external force Eq. (5.11) can
be evaluated using the one-point Gauss quadrature as follows:

f int
iI = −

∑
e

NIe,j σijeVe, (5.34)

f ext
iI =

∑
e

NIebieme +
∑

e

NIet iAe. (5.35)

5.1.3.2 Strain Matrix

The velocity vi(X, t) of a particle X within an element can be interpolated by

vi(X, t) = vi(X(ξ, η, ζ ), t) = NI (ξ, η, ζ )viI (t). (5.36)

Eq. (5.36) can be written in matrix form as

v = Neve (5.37)

with

Ne =
⎡
⎢⎣ N1 0 0 N2 0 . . . 0 0

0 N1 0 0 N2 . . . N8 0
0 0 N1 0 0 . . . 0 N8

⎤
⎥⎦ ,

v = [ v1 v2 v3 ]T,

ve = [ v11 v21 v31 v12 v22 . . . v24 v24 ]T.

The rate of deformation matrix D = [D11 D22 D33 2D23 2D13 2D12 ]T

of any particle within an element is given by

D = Lv (5.38)

where the gradient operator matrix L takes the form of

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂x
0 0 0

∂

∂z

∂

∂y

0
∂

∂y
0

∂

∂z
0

∂

∂x

0 0
∂

∂z

∂

∂y

∂

∂x
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T

. (5.39)

Substituting the velocity interpolation Eq. (5.37) into Eq. (5.38) leads to the
rate of deformation matrix of a particle within the element e, i.e.,

D = Beve (5.40)
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where the strain-displacement matrix Be is given by

Be = LNe = [ B1 B2 . . . B8 ] (5.41)

with

BI =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂NI

∂x
0 0 0

∂NI

∂z

∂NI

∂y

0
∂NI

∂y
0

∂NI

∂z
0

∂NI

∂x

0 0
∂NI

∂z

∂NI

∂y

∂NI

∂x
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T

. (5.42)

The elements in the strain-displacement matrix are the derivatives of shape
function NI with respective to the spatial coordinates xi , but the shape function
NI is a function of natural coordinate ξ , η, and ζ . The use of the chain rule
yields

∂NI

∂ξ
= ∂NI

∂x

∂x

∂ξ
+ ∂NI

∂y

∂y

∂ξ
+ ∂NI

∂z

∂z

∂ξ
,

∂NI

∂η
= ∂NI

∂x

∂x

∂η
+ ∂NI

∂y

∂y

∂η
+ ∂NI

∂z

∂z

∂η
, (5.43)

∂NI

∂ζ
= ∂NI

∂x

∂x

∂ζ
+ ∂NI

∂y

∂y

∂ζ
+ ∂NI

∂z

∂z

∂ζ
,

or in matrix form,⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂NI

∂ξ

∂NI

∂η

∂NI

∂ζ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂x

∂ξ

∂y

∂ξ

∂z

∂ξ

∂x

∂η

∂y

∂η

∂z

∂η

∂x

∂ζ

∂y

∂ζ

∂z

∂ζ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

∂NI

∂x
∂NI

∂y

∂NI

∂z

⎤
⎥⎥⎥⎥⎥⎥⎦

= J

⎡
⎢⎢⎢⎢⎢⎢⎣

∂NI

∂x
∂NI

∂y

∂NI

∂z

⎤
⎥⎥⎥⎥⎥⎥⎦

(5.44)

where J is the Jacobian matrix. The inverse of Eq. (5.44) is given by

⎡
⎢⎢⎢⎢⎢⎢⎣

∂NI

∂x
∂NI

∂y

∂NI

∂z

⎤
⎥⎥⎥⎥⎥⎥⎦

= J−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂NI

∂ξ

∂NI

∂η

∂NI

∂ζ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (5.45)
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It can be verified that the elements in the strain-displacement matrix at ξ =
η = ζ = 0 satisfy the following relations:

∂N7

∂xi

= −∂N1

∂xi

,
∂N8

∂xi

= −∂N2

∂xi

,

∂N5

∂xi

= −∂N3

∂xi

,
∂N6

∂xi

= −∂N4

∂xi

(5.46)

where the subscripts i = 1,2,3 correspond to x, y, z. The derivatives of x, y,
and z with respect to ξ , η, and ζ can be obtained from Eqs. (5.1) and (5.29) as
follows:

∂xi

∂ξ
= ∂NI

∂ξ
xiI = 1

8

8∑
I=1

ξI (1 + ηηI )(1 + ζ ζI )xiI ,

∂xi

∂η
= ∂NI

∂η
xiI = 1

8

8∑
I=1

ηI (1 + ξξI )(1 + ζ ζI )xiI , (5.47)

∂xi

∂ζ
= ∂NI

∂ζ
xiI = 1

8

8∑
I=1

ζI (1 + ξξI )(1 + ηηI )xiI .

For the one-point Gauss quadrature, the quadrature point is ξ1 = η1 = ζ1 = 0
so that it follows that

∂xi

∂ξ
= 1

8

8∑
I=1

ξI xiI = 1

8
[−xi1 + xi2 + xi3 − xi4 − xi5 + xi6 + xi7 − xi8],

∂xi

∂η
= 1

8

8∑
I=1

ηI xiI = 1

8
[−xi1 − xi2 + xi3 + xi4 − xi5 − xi6 + xi7 + xi8],

∂xi

∂ζ
= 1

8

8∑
I=1

ζI xiI = 1

8
[−xi1 − xi2 − xi3 − xi4 + xi5 + xi6 + xi7 + xi8].

(5.48)

Compared with the 2×2×2-point Gauss quadrature, the computational cost
required to compute the strain-displacement matrix B is reduced by more than
25 times, and the number of multiplications is reduced by a factor of 16 in the
calculation of strain and element nodal force. Furthermore, the cost for stress
update is reduced by a factor of 8.

5.1.3.3 Hourglass Modes

Employing the one-point Gauss quadrature saves computational cost signifi-
cantly, but it may cause spurious zero-energy modes, also called hourglass
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FIGURE 5.2 Hourglass modes in an 8-node hexahedron element. A total of 12 hourglass modes
exist.

modes, which deteriorates the numerical solution, and even leads to the solution
divergency. Hence, special measures must be taken to suppress the hourglass
mode.

The shape function Eq. (5.29) of the 8-node hexahedron element can also be
written in matrix form as

N = 1

8
(ΣT + ΛT

1 ξ + ΛT
2 η + ΛT

3 ζ + Γ T
1 ξη + Γ T

2 ηζ + Γ T
3 ξζ + Γ T

4 ξηζ ) (5.49)

with

N = [ N1 N2 N3 N4 N5 N6 N7 N8 ]

and

Σ = [ 1 1 1 1 1 1 1 1 ]T,

Λ1 = [ −1 1 1 −1 −1 1 1 −1 ]T,

Λ2 = [ −1 −1 1 1 −1 −1 1 1 ]T,

Λ3 = [ −1 −1 −1 −1 1 1 1 1 ]T,

Γ 1 = [ 1 −1 1 −1 1 −1 1 −1 ]T,

Γ 2 = [ 1 1 −1 −1 −1 −1 1 1 ]T,

Γ 3 = [ 1 −1 −1 1 −1 1 1 −1 ]T,

Γ 4 = [ −1 1 −1 1 1 −1 1 −1 ]T.

The base vector Σ represents the rigid translation of the element, Λ1 repre-
sents tensile and compressive deformations, and Λ2 and Λ3 represent the shear
deformations. The base vectors Γ 1, Γ 2, Γ 3, and Γ 4 are referred to as the hour-
glass base vectors. In an 8-node hexahedron element, there are 4 hourglass
modes in each coordinate direction, which gives 12 hourglass modes in total.
Fig. 5.2 illustrates the hourglass modes in the η-direction.
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The velocity of a point within an element is given by

vi(ξ, η, ζ ) = NI (ξ, η, ζ )viI = Nvi (5.50)

where

vi = [ vi1 vi2 vi3 vi4 vi5 vi6 vi7 vi8 ]T

is the element nodal velocity vector consisting of velocity components in the
xi -direction of all nodes in the element. Eqs. (5.50) and (5.49) show that the
velocity vi(ξ, η, ζ ) of any point within the element can be expressed as a lin-
ear combination of the eight base vectors, namely, Σ , Λ1 through Λ3, and Γ 1

through Γ 4.
The calculation of stress and strain requires the partial derivatives of the

shape function NI with respect to xi , ∂NI /∂xi , which can be calculated from
∂NI /∂ξ , ∂NI /∂η, and ∂NI /∂ζ . These partial derivatives of the shape func-
tion NI at the centroid (ξ = η = ζ = 0) of the element can be evaluated using
Eq. (5.49) as follows:

∂N

∂ξ
= 1

8
ΛT

1 ,
∂N

∂η
= 1

8
ΛT

2 ,
∂N

∂ζ
= 1

8
ΛT

3 (5.51)

in which the hourglass modes Γ 1 through Γ 4 vanish. Therefore, the hourglass
modes result in a zero strain and thus zero stress at the centroid of an ele-
ment, although they result in a nonzero strain and nonzero stress elsewhere.
Since the one-point quadrature is used, the nodal internal force Eq. (5.34) is
simply the product of the volume and the integrand evaluated at the centroid
(ξ = η = ζ = 0) of the element, which is zero for the hourglass modes due to
the zero stress at the centroid. In other words, the hourglass modes will not gen-
erate any nodal force, i.e., they will not be resisted by the element, so that they
will lead to spurious oscillations. The hourglass modes have no contribution to
the strain energy of an element. That is why they are called the zero energy
modes.

For example, in the Taylor bar impact simulation, the one-point Gauss
quadrature results in a significant spurious oscillation due to the hourglass
modes, as shown in Fig. 5.3(a). This oscillation can be effectively eliminated
by introducing hourglass-resisting forces, as shown in Fig. 5.3(b).

The hourglass modes can be effectively suppressed by employing a viscous
hourglass control scheme, i.e., imposing hourglass-resisting forces. It can be
verified that the hourglass base vectors are orthogonal to other base vectors, i.e.,
Γ T

k Σ = 0 and Γ T
k Λl = 0, with k = 1,2,3,4 and l = 1,2,3. If an hourglass base
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FIGURE 5.3 Oscillation caused by hourglass modes (a) without hourglass control, and (b) with
hourglass control.

vector Γ k is not orthogonal to the element nodal velocity vector vi , i.e.,

hik = Γ T
k vi �= 0, (5.52)

the hourglass modes exist in the element velocity field so that the viscous forces
should be applied at all the nodes of the element to resist the hourglass modes.
The viscous forces f I

ik applied at node I in the xi -direction to resist the hour-
glass mode Γ k should be proportional to hik and opposite to Γ k , namely,

f I
ik = −αhhikΓkI , k = 1,2,3,4 (5.53)

where ΓkI is the I th component of the hourglass base vector Γ k . The coefficient
αh can be determined by

αh = QhρV
2/3
e

c

4
(5.54)

where Ve is the element volume, c is the material sound speed, and Qh is a
user-defined constant that is usually taken from the interval from 0.05 to 0.15.

The hourglass-resisting forces Eq. (5.53) are not orthogonal to rigid body
rotations so that they are not well suited in the problems involving large rigid
rotations. Flanagan and Belytschko proposed an hourglass-resisting force or-
thogonal to the rigid body rotations [121]. They defined the hourglass velocity
field as

vHG
iI = vi − vLIN

iI (5.55)
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with

vLIN
iI = v̄i + v̄i,j (xjI − x̄j ), (5.56)

x̄i = 1

8

8∑
I=1

xiI , v̄i = 1

8

8∑
I=1

viI . (5.57)

The hourglass base vectors are then defined as

γkI = ΓkI − NI,i

8∑
J=1

xiJ ΓkJ . (5.58)

If the element nodal velocity vector viI is not orthogonal to the hourglass
base vector gik , i.e.,

gik =
8∑

I=1

viI γkI �= 0, (5.59)

the hourglass modes exist in the element velocity field so that it is necessary
to apply the hourglass-resisting forces f I

ik which are proportional to gik and
opposite to the hourglass base vectors gik , namely,

f I
ik = −αhgikγkI , k = 1,2,3,4. (5.60)

The hourglass base vectors are orthogonal to other base vectors such that the
work done by the hourglass-resisting forces is negligible. The above hourglass
control scheme is simple and efficient.

5.1.4 Numerical Algorithm for an Explicit FEM

Finally, the numerical algorithm for an explicit FEM within a time step can be
summarized as follows, with the superscript k denoting the time step k:

1. Update the stress and density at Gauss quadrature points:
a. Calculate the rate of deformation tensor and vorticity tensor at Gauss

point p based on the element nodal velocity v
k−1/2
iI , i.e.,

D
k−1/2
ijp = (Nk

Ip,j v
k−1/2
iI + Nk

Ip,iv
k−1/2
jI ), (5.61)

Ω
k−1/2
ijp = (Nk

Ip,j v
k−1/2
iI − Nk

Ip,iv
k−1/2
jI ). (5.62)

b. Update the element density based on the volumetric strain increment
with

ρk+1
p = ρk

p/(1 + D
k−1/2
iip 
t). (5.63)

Note that the element density can also be calculated from Eq. (2.55).
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c. Update the pressure and deviatoric stress based on D
k−1/2
ijp and Ω

k−1/2
ijp

with the use of a constitutive model.
2. Calculate the element nodal forces and impose appropriate boundary condi-

tions:
Calculate the nodal internal force f

k,int
iI , nodal external force f

k,ext
iI , and

nodal hourglass-resisting force f
k,hg
iI using Eqs. (5.34), (5.35), and Eq. (5.53)

or Eq. (5.60), respectively. The sum of f
k,int
iI , f

k,ext
iI , and f

k,hg
iI gives the

nodal force f k
iI . Impose appropriate boundary conditions. For example, set

f k
I = 0 if node I is located at the fixed boundary.

3. Update the nodal position and velocity with

v
k+1/2
iI = v

k−1/2
iI + 
tkf k

iI /MI , (5.64)

xk+1
iI = xk

iI + 
tk+1/2v
k+1/2
iI . (5.65)

EFEP90 is a 3D explicit finite element code developed in the Computational
Dynamics Laboratory at Tsinghua University. It serves as the companion open
source code of the Chinese book entitled “Computational Dynamics” [122], and
can be downloaded from http://mpm3d.comdyn.cn. The source code structure
of the EFEP90 is very similar to that of the MPM3D-F90.

5.2 HYBRID FEM AND MPM

To take advantage of both the FEM and MPM, a hybrid FEM and MPM scheme
is described in this section with applications to reinforced concrete (RC) struc-
tures. As a common building material, RC has been extensively used to construct
civilian buildings, dams, nuclear reactor containments, and various defense
structures. Therefore, it is important to investigate its responses to blast and
impact loadings, where large strain, high strain rate, fracture, and crushing phe-
nomena occur.

The MPM could be used directly to simulate the transient responses of RC
structures to extreme loadings. However, the direct use of the MPM is compu-
tationally expensive if both rebars and concrete are discretized by particles with
the same particle spacing due to their significant difference in size. Based on
the fact that the rebars in concrete mainly sustain tensile loading, Lian et al.
proposed a hybrid finite-element material-point (HFEMP) method [39] by in-
corporating the truss element of the FEM into the MPM model to simulate the
transient responses.

As shown in Fig. 5.4, the rebars in RC are discretized into truss elements
as in the FEM, while the concrete is discretized into particles as in the MPM.

http://mpm3d.comdyn.cn


Coupling of the MPM with FEM Chapter | 5 157

FIGURE 5.4 RC discretization in the HFEMP method. Hollow dots denote concrete material
points, while solid dots denote rebar nodes, and the solid lines connecting solid dots denote rebar
elements.

FIGURE 5.5 (a) A steel bar, and (b) discretized model with rebar elements and background grid.

All the rebar nodes and particles move in the same single-valued velocity field,
approximately modeling the interaction between the rebars and concrete. Sim-
ilar to the original MPM, the momentum equations in the HFEMP method are
also solved on the background grid. In each time step, the momenta and forces
of all particles and rebar nodes are mapped to the corresponding grid nodes
to establish the nodal momentum equations. After solving the nodal momen-
tum equations, the results are mapped from the grid nodes back to the particles
and rebar nodes to update their positions and velocities. Strain increments of
particles and rebar elements are calculated in different ways as discussed in
detail as below. The stresses of particles and rebar elements are then updated
based on respective constitutive models. The nodal force of a rebar node is ob-
tained by accumulating the axial forces of the rebar elements connected to the
node.

For the sake of demonstration, a steel bar with length L and cross-sectional
area A is considered as an example. The steel bar is discretized by the rebar
elements as shown in Fig. 5.5.

A variable of rebar node r , denoted by ur , and its derivatives, ur,j , can be
obtained from its grid nodal value uI via the standard FE shape functions as
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follows:

ur =
ng∑

I=1

NIruI , (5.66)

ur,j =
ng∑

I=1

NIr,j uI . (5.67)

Taking rebar element e as an example, the incremental strain of the rebar
element e is given by


εk
e = (lke − lk−1

e )/ lk−1
e (5.68)

where lke denotes the length of the rebar element e at time tk . The axial stress of
the rebar element e is updated by

σk+1
e = σk

e + 
σk
e (5.69)

where 
σk
e is the incremental axial stress of the rebar element e obtained from

the incremental strain 
εk
e with an appropriate constitutive model.

The axial force of the rebar element e can be determined by

Fk+1
e = Aσk+1

e . (5.70)

Due to the contributions from the rebar nodes, the grid nodal mass mI , mo-
mentum piI , internal force f int

iI , and external force f ext
iI in the HFEMP method

take the form of

mI =
np∑

p=1

mpNIp +
nr∑

r=1

mrNIr , (5.71)

piI =
np∑

p=1

mpvipNIp +
nr∑

r=1

mrvirNIr , (5.72)

f int
iI = −

np∑
p=1

NIp,jσijpmp/ρp +
nr∑

r=1

NIrf
int
ir , (5.73)

f ext
iI =

np∑
p=1

mpNIpfip +
np∑

p=1

NIpt̄iph−1mp/ρp +
nr∑

r=1

NIrf
ext
ir (5.74)

where nr is the total number of rebar nodes, and mr and vir are the lumped mass
and velocity of rebar node r , respectively. f ext

ir is the external force acting on the
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rebar node r , and

f int
ir =

ne∑
e=1

ΛreFe cos θie (5.75)

is the internal force of rebar node r . In Eq. (5.75), Λre = 1 for the left side node
r of the rebar element e, Λre = −1 for other rebar nodes, and

cos θie = (xk
i1 − xk

i2)/ lke (5.76)

is the directional cosine of the element e.
The last terms on the right side of Eqs. (5.71)–(5.74) are the contributions

from the rebar nodes.
The numerical implementation of the HFEMP method can be described as

follows:

1. Loop over all the particles and rebar nodes to calculate their contributions to
the mass and momentum of the grid points of corresponding cells in which
they are located. The mass mk

I and momentum p
k−1/2
iI of grid node I are

obtained from Eqs. (5.71) and (5.72), respectively.
2. Loop over the grid points located on the boundary to reset their momentum

corresponding to the essential boundary conditions.
3. This step is only used in the USF scheme. Update the stress state of particles

and rebar elements as follows:
a. Loop over all the particles to calculate their incremental strain tensor


ε
k−1/2
ijp = 1

2

8∑
I=1

[Nk
Ip,j v

k−1/2
iI + Nk

Ip,iv
k−1/2
jI ]
t, (5.77)

spin tensor


Ω
k−1/2
ijp = 1

2

8∑
I=1

[Nk
Ip,j v

k−1/2
iI − Nk

Ip,iv
k−1/2
jI ]
tk, (5.78)

and density

ρk+1
p = ρk

p/(1 + 
ε
k−1/2
iip ), (5.79)

and then to update the Cauchy stress

σk+1
ijp = σk

ijp + σ̇
k−1/2
ijp 
t (5.80)

of all the particles with an appropriate constitutive model and EOS (if
needed). In the above equations, v

k−1/2
iI = p

k−1/2
iI /mk

I is the velocity
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of grid point I , σ̇ij is the material time derivative of the Cauchy stress
which is related to the Jaumann (co-rotational) stress rate σ∇

ij by

σ̇ij = σ∇
ij + σijΩlj + σjlΩli . (5.81)

The Jaumann (co-rotational) stress rate is determined from the strain rate
ε̇ij = (u̇i,j + u̇j,i )/2 with an appropriate constitution model.

b. Loop over all the rebar elements to calculate their incremental strain 
εk
e

using Eq. (5.68), and density using

ρk+1
e = ρk

e /(1 + 
εk
e ), (5.82)

and then update the axial stress σk+1
e with Eq. (5.69). Note that the

stresses of rebar elements are always updated in their co-rotational coor-
dinates.

4. Calculate the grid nodal internal force f
int,k
iI and external force f

ext,k
iI using

Eqs. (5.73) and (5.74), respectively. If the USF scheme is used, σijp = σk+1
ijp

and ρp = ρk+1
p ; otherwise σijp = σk

ijp and ρp = ρk
p . If the node I is fixed

in the ith direction, set f k
iI = f

int,k
iI + f

ext,k
iI = 0 to make its corresponding

acceleration ak
iI = 0.

5. Loop over all the grid points to update their momentum using Eq. (3.56).
6. Loop over all the particles and rebar nodes to update their velocity and po-

sition by mapping the grid nodal results back to them using Eqs. (3.57) and
(3.58).

7. This step is only used in the MUSL scheme. Extrapolate the new velocities
of particles and rebar nodes to the grid nodes to obtain the improved nodal
momentum, namely,

p
k+1/2
iI =

np∑
p=1

mpv
k+1/2
ip Nk

Ip +
nr∑

r=1

mrv
k+1/2
ir Nk

Ir . (5.83)

8. This step is only used in the MUSL and USF schemes. Update the stresses of
particles and rebar elements based on the updated velocity v

k+1/2
iI in a way

similar to that given in step 3. For the rebar elements, the incremental strain

εk+1

e is calculated using Eq. (5.68).
9. Discard the deformed background grid, if needed, and define a new regular

background grid. Return to step 1 for the next time step.

Lian et al. [39] simulated the perforation experiment of an ogival-nose projectile
to an RC slab [123] using the HFEMP method. The geometric configuration
and sizes of the projectile and the RC target with three layers of square-pattern
reinforcement bars are shown in Figs. 5.6 and 5.7, respectively.
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FIGURE 5.6 Projectile geometry (0.5 kg).

FIGURE 5.7 RC geometry with the location of steel reinforcement bars (5.59 mm diameter).

FIGURE 5.8 The damaged zone of RC after the projectile hitting steel bars through three layers.

An ideal elastoplastic model with a failure criterion was used for the rebars

while the HJC model was used for concrete. The rebars were discretized by truss

elements. Fig. 5.8 shows the damaged zone of the RC slab at time 0.5 ms, while

Fig. 5.9 colored by the pressure value demonstrates the deformation field of the

steel bars. The residual velocities of the projectile, as obtained with the HFEMP
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FIGURE 5.9 The deformation field of steel bars when the projectile hitting steel bars through three
layers at times 0.5 ms.

method for various striking velocity values, agrees well with those observed in
the experiment.

5.3 COUPLED FEM AND MPM

Although the MPM is more robust than the FEM for the problems involving se-
vere distortions and multi-phase interactions with failure evolution, the accuracy
of particle quadrature used in the MPM is lower than that of Gauss quadrature
used in the FEM. As a result, it is less accurate and efficient than the FEM for the
problems with small deformation. In addition, the MPM requires more compu-
tational storage because it requires both grid and particle data for the kinematic
variables. To take advantage of both methods, Lian et al. developed a coupled
finite-element and material-point (CFEMP) method [37], in which the body with
small deformation is treated by the FEM, while the body with extreme deforma-
tion is handled by the MPM. The interaction between the FEM body and the
MPM body is simulated with an MPM grid-based contact method [70,71,73,
74], in which the FE nodes located on the contact interface are treated as par-
ticles. The contact detection is determined by monitoring the velocities of two
bodies at the same grid node. Therefore, the CFEMP method is different from
the HFEMP method as discussed in Sect. 5.2, and requires a high degree of
meshing consistency between the FEM body and MPM body, namely,

R = LFEM

LMPM
≈ 1 (5.84)

where LFEM and LMPM represent the characteristic length of FEM elements and
MPM grid cells, respectively. If the meshing of the FEM body is coarser than
the grid cell, the solution accuracy may be seriously deteriorated, and the MPM
particles may penetrate into the FEM body. Consider the two bodies shown in
Fig. 5.10 as an example in which the MPM body s is moving towards the FEM
body r . Because the element size of FEM body r is much larger than the MPM
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FIGURE 5.10 Illustration of the CFEMP method with inconsistent meshing.

grid cell size, only the MPM body s contributes to the grid nodal velocities in
the cell i, while the FEM body r does not contribute to the gird nodal velocities.
Based on the contact detection scheme used in the CFEMP method, the bodies r

and s are considered as not in contact with each other at the grid nodes of cell i

so that no contact force will be imposed between them in this case. Therefore,
the body s will penetrate into the body r .

Consistent meshing may lead to the over-meshing in the FEM domain, which
would significantly decrease the time step size and increase the computational
cost as well as data storage. In order to satisfy the contact conditions exactly
at the FEM element faces and to avoid the over-meshing in the FEM domain,
Chen et al. [124] further improved the coupling between the FEM domain and
MPM domain, based on a particle-to-surface contact method. The contact forces
are calculated by using the Lagrange multiplier method, based on the pene-
tration level between the MPM particles and FEM element faces. Moreover, a
Coulomb friction model is employed to allow the relative slipping between two
bodies. The improved procedure employs the master element faces rather than
the grid nodes to detect whether the particles penetrate into the FEM domain
so that the contact conditions are satisfied exactly between the particles and the
FEM element faces, and the consistent meshing is no longer needed. Thus, the
meshing of the FEM body can be much coarser than the grid cells of the MPM
domain. Moreover, the computational efficiency of the improved procedure is
much higher than the CFEMP method since the total number of finite elements
is significantly reduced. Numerical studies have shown that the improved cou-
pled finite-element material-point (ICFEMP) method is very robust and capable
of modeling the extreme cases whose ratio of element size to grid cell size is far
beyond 2.0.

For the purpose of demonstration, the element faces located on the surface
of the FEM bodies are termed as segments in what follows. In the ICFEMP
method, we first determine the contact pairs, namely, the MPM particles and
the corresponding segments which may be penetrated by the particles, using a
global search. Then the exact contact position and the gap between the contact
pairs are calculated using a local search. Finally, a contact force resisting the
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FIGURE 5.11 Bucket-sorting scheme.

penetration is imposed between the contact pair if the gap is negative. This step
is neglected if the gap is equal to or greater than zero.

5.3.1 Global Search

The global search examines all segments to determine the potential contact parti-
cles. The global search costs most of the computer time in the contact algorithm
so that a bucket-sorting scheme [125] as shown in Fig. 5.11 is used to minimize
the cost as much as possible. The bucket-sorting scheme adopts a cell structure
whose cell sizes are taken to be close to the average element size. The key part
of this searching procedure is to identify all the particles in a cell, as shown
below.

The cell domain can be described by the following:

(xmin, xmax, Nx), (ymin, ymax, Ny), (zmin, zmax, Nz) (5.85)

where xmin and xmax denote the minimal and maximal x coordinates of the cell
domain and Nx signifies the number of cells in the x-direction. Other variables
are analogous to xmin, xmax, and Nx . The cell number in which a particle with
the coordinates (x, y, z) is located can be determined by

Ip = Ipz × Nx × Ny + Ipy × Nx + Ipx (5.86)

with

Ipx = round(Nx(x − xmin)/(xmax − xmin)),

Ipy = round(Ny(y − ymin)/(ymax − ymin)),

Ipz = round(Nz(z − zmin)/(zmax − zmin))

(5.87)

where round(x) is a C++ intrinsic function which rounds down the value of x.
The MPM particles and segments located in the same cell are defined as the

contact pairs.
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FIGURE 5.12 Local search scheme.

5.3.2 Local Search

The contact pairs detected by the global search are likely to contact with each
other, but it must be further determined whether the contact occurs or not. The
local search determines the exact contact position and the gap between the con-
tact pairs.

As shown in Fig. 5.12, a segment can be described by a parametric equa-
tion [126,127] as

r = f1(ξ, η)i + f2(ξ, η)j + f3(ξ, η)k (5.88)

where i, j , and k denote the unit vectors in the directions of x1, x2, and x3,
respectively, and fi(ξ, η) is the corresponding global coordinate of the point
(ξ, η) that can be obtained by interpolating the nodal coordinates of the segment
as

fi(ξ, η) =
4∑

J=1

φJ xiJ (5.89)

with φj (ξ, η) = 1
4 (1 + ξiξ) (1 + ηiη) representing the shape function of the

quadrilateral segment, and xiJ the ith coordinate of the segment’s j th node.
The local coordinates (ξc, ηc) of the contact point C on the segment can be

determined from

∂r

∂ξ
(ξc, ηc) · [t − r (ξc, ηc)

] = 0, (5.90)

∂r

∂η
(ξc, ηc) · [t − r (ξc, ηc)

] = 0 (5.91)

where t denotes the position vector of the particle p, as shown in Fig. 5.12.
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Eqs. (5.90) and (5.91) can be solved using the Newton–Rapson iterative
method. Thus, the gap can be calculated by

g = n · [t − r (ξc, ηc)
]

(5.92)

where

n =
∂r
∂ξ

(ξc, ηc) × ∂r
∂η

(ξc, ηc)∣∣∣ ∂r
∂ξ

(ξc, ηc) × ∂r
∂η

(ξc, ηc)

∣∣∣ (5.93)

is the unit normal vector pointing outwards at the contact point.

5.3.3 Contact Force

If g � 0, the particle does not penetrate into the segment so that no further treat-
ment is needed. Otherwise, the contact force must be imposed between the parti-
cle p and the contact point C to prevent penetration. After imposing the contact
force on the particle p of body s, the updated velocity v

s,k+1/2
ip is given by

v
s,k+1/2
ip = v̄

s,k+1/2
ip + 
tk

f
s,c,k
ip

ms
p

(5.94)

where

v̄
s,k+1/2
ip = v

s,k−1/2
ip + 
tk

8∑
I=1

NIp

f
s,k
iI

ms
I

(5.95)

is the trial particle velocity, v
s,k−1/2
ip is the particle velocity at the beginning of

each time step, and f
s,c,k
ip is the contact force applied on the particle p at time

step tk .
Similarly, the updated velocity v

r,k+1/2
ic of the contact point C on the segment

of body r can be evaluated by

v
r,k+1/2
ic = v̄

r,k+1/2
ic + 
tk

4∑
J=1

φJ (ξc, ηc)
f

r,c,k
iJ

mJ

(5.96)

where

v̄
r,k+1/2
ic =

4∑
J=1

φJ (ξc, ηc) v̄
k+1/2
iJ (5.97)

is the trial velocity of the contact point C, and

f
r,c,k
iJ = φJ (ξc, ηc)f

r,c,k
ic (5.98)

with f
r,c,k
ic being the contact force applied on the contact point C.
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For a sticking contact, the updated velocities of the particle p and contact
point C must satisfy the velocity continuity condition [71,72], namely

(v
r,k+1/2
ic − v

s,k+1/2
ip ) = 0. (5.99)

Substituting Eqs. (5.94) and (5.96) into Eq. (5.99), the contact force f
r,c,k
ic

for the sticking contact becomes

f
r,c,k
ic = ms

pmr
c(v̄

s,k+1/2
ic − v̄

r,k+1/2
ip )

(ms
p + mr

c)
tk
(5.100)

where mr
c denotes the equivalent mass of the contact point C defined by

1

mr
c

=
4∑

J=1

φ2
J (ξc, ηc)

mJ

. (5.101)

Therefore, the normal and tangential contact forces applied on the contact
point C take the form of

f
nor,k
ic = f

r,c,k
jc n

r,k
jc n

r,k
ic , (5.102)

f
tan,k
ic = f

r,c,k
ic − f

nor,k
ic (5.103)

where n
r,k
ic denotes the unit normal vector pointing out of the segment at the

contact point C.
For a slipping contact, the contact force applied at the contact point C can

be written as

f
r,c,k
ic = f

nor,k
ic + min(μ‖f nor,k

ic ‖,‖f tan,k
ic ‖)tr,kic (5.104)

where t
r,k
ic denotes the unit tangential vector of the segment at the contact

point C.
Finally, the contact forces applied on the four nodes of the segment can be

obtained by

f
r,c,k
iJ =

nc∑
c=1

φJ (ξc, ηc) f
r,c,k
ic , J = 1,2,3,4 (5.105)

where nc is the total number of contact points on all segments, namely, the total
number of contact pairs. The contact forces applied on the grid points can be
obtained by

f
s,c,k
iI =

np∑
p=1

NIpf
s,c,k
ip . (5.106)
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FIGURE 5.13 The water configurations at time t = 25 ms as obtained with different numbers of
elements in the wedge: (a) 171 elements; (b) 48 elements; and (c) 3 elements.

The ICFEMP method allows a significant inconsistent meshing. For exam-
ple, Chen et al. [124] simulated a wedge falling into water using the ICFEMP
method, and the obtained falling velocity of the wedge agreed well with experi-
ment data [128]. In order to examine the effects of inconsistent meshing on the
solution accuracy, the wedge was meshed with 171, 48, and 3 elements, respec-
tively. Fig. 5.13 compares the water configurations at time t = 25 ms as obtained
by the ICFEMP method with those obtained by the CFEMP method with differ-
ent numbers of elements in the wedge. The water configurations obtained with
the ICFEMP method fit the wedge shape well in all the cases, but those obtained
by the CFEMP method become worse as the inconsistence increases.

5.4 ADAPTIVE FEMP METHOD

To further take advantage of both the FEM and MPM, Lian et al. proposed an
adaptive finite-element material-point (AFEMP) method [41]. In the AFEMP
method, all bodies are initially discretized by finite elements, and then the dis-
torted or failed elements are adaptively converted into the MPM particles when
their effective plastic strain or distortion degree exceeds a user prescribed value
during the simulation process. The interaction between the converted MPM par-
ticles and the remaining finite elements is implemented based on the coupling
scheme proposed by Zhang et al. [36].

5.4.1 Discretization Scheme

In the AFEMP method, a material region Ω as shown in Fig. 5.14(a) is initially
discretized into finite elements as shown in Fig. 5.14(b). During the simula-
tion process, any distorted element is automatically converted into the MPM
particles as shown in Fig. 5.14(c) where a regular Eulerian background grid is
used to solve the nodal momentum equations. Therefore, the material region
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FIGURE 5.14 A material domain with the AFEMP discretization.

FIGURE 5.15 Conversion of finite elements to particles.

is discretized by both finite elements and particles, but the trial functions are
constructed via the mesh including both the finite element mesh and MPM back-
ground grid.

5.4.2 Conversion Algorithm

Lian et al. [41] proposed an element–particle conversion algorithm to convert
the distorted or failed elements into particles based on a given criterion to avoid
element distortion. An element is converted into particles when either its equiv-
alent plastic strain or its degree of element distortion exceeds a user-specified
value. The degree of element distortion can be evaluated with the ratio of the
minimum area over the maximum area of the element surfaces, considering
the hexahedral element as an example. Of course, other criteria could also be
used. Fig. 5.15 shows the quadrilateral FE mesh with a boundary defined by
FE nodes, a, b, . . . , n. Elements A and B are designated as the candidates for
the conversion to particles. It is common that four particles are placed uni-
formly in a cell in the MPM for 2D problems. Therefore, elements A and B
are removed from the finite element mesh and replaced by four particles, re-
spectively.

In order to guarantee the conservation of mass, momentum, and energy, the
mass, volume, and internal energy of the elements A and B are averaged equally
to the four particles, respectively. The stress, strain, and other state variables of
the four particles in each element are obtained from the corresponding Gauss
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FIGURE 5.16 Calculation of particle positions.

points of the replaced element, while the velocities of the particles are the same
as those of the adjacent FE nodes. As shown in Fig. 5.16, the positions of the
particles are calculated via the shape functions with specified natural coordi-
nates (±0.5,±0.5) as follows:

uip =
4∑

I=1

NI (±0.5,±0.5)uiI (5.107)

where uiI is the position of the FE node I .
The FE node c that is not connected to any element is removed from the FE

node list, while the FE nodes b, i, d, f, j, k, and g located at the interface between
the MPM particles and remaining elements are labeled as the transition nodes
whose nodal masses are reduced by the removal of elements.

After conversion, the one-Gauss-point quadrature is replaced by the four-
particle quadrature with the conservation of mass momentum and energy. In
3D problems, one hexahedral element is replaced by eight MPM particles in a
similar way.

5.4.3 Coupling Between Remaining Elements and Particles

The coupling between the remaining finite elements and particles is imple-
mented by the transition nodes based on the background grid within the MPM
framework, as proposed by Zhang et al. [36]. The momentum equations in the
MPM are solved on the background grid and the incremental strains of parti-
cles are calculated from the corresponding nodal velocity field, which implies
that the interaction between particles are carried out via the background grid.
Therefore, the momentum equations of transition nodes are also solved on the
background grid, together with those of the particles, to establish the interaction
between the FEM domain and MPM one.

For the sake of clarity, consider a 2D problem shown in Fig. 5.17 as an
example. The material domain is discretized with finite elements in its left part
and with particles in the remaining part. The FE nodes a, b, and c located at the
interface between the FEM domain and MPM one are termed as the transition
nodes. In each time step, the mass, momentum, and nodal force of the transition
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FIGURE 5.17 Coupling between the FEM and MPM.

FIGURE 5.18 Grid node I .

nodes are mapped to the background grid nodes abreast with the MPM particles.
Considering the grid node I shown in Fig. 5.18 as an example, the nodal mass
of grid node I is given by

mI =
np∑

p=1

NIpmp +
nt∑

t=1

NItmt (5.108)

where the subscript t denotes the transition node, and nt is the total number of
transition nodes. The nodal momentum of grid node I is obtained by

piI =
np∑

p=1

NIppip +
nt∑

t=1

NItpit , (5.109)

and the external nodal force of grid node I can be found to be

f ext
iI =

np∑
p=1

mpNIpbip +
nt∑

t=1

NItfit (5.110)

with fit being the nodal force of the transition node without the hourglass-
resisting force.

The velocity field used for the calculation of incremental strains of elements
and particles must be identical. Hence, the velocities of the transition nodes
must be reset by mapping the velocities of grid nodes back to the transition
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nodes before calculating the element strain, with the use of

vit =
ng∑

I=1

NtI viI . (5.111)

After solving the momentum equations on the background grid, the veloci-
ties and positions of the transition nodes are respectively updated as follows:

v
k+1/2
it = v

k−1/2
it + 
tk

( ng∑
I=1

f k
iIN

k
pI /mk

I + f
Γ,k
it /mt

)
, (5.112)

xk+1
it = xk

it + 
tk+1/2

( ng∑
I=1

p
k+1/2
iI Nk

pI /mk
I + 
tkf

Γ,k
it /mt

)
(5.113)

where f
Γ,k
it is the hourglass-resisting force. Therefore, the velocity field and

displacement field are consistent along the interface between the FEM domain
and MPM one.

In the AFEMP, a contact/friction/separation algorithm is implemented based
on the background grid to handle the contact event between different bod-
ies. Similar to the CFEMP, the AFEMP also requires a high degree of mesh-
ing consistence between the FEM body and MPM one due to the grid-based
contact method used. To overcome this limitation, Chen et al. [124] pro-
posed an improved adaptive finite-element material-point (IAFEMP) method
based on a particle-to-surface contact method whose details can be found in
Sect. 5.3.

In order to evaluate the accuracy and computational efficiency of the
IAFEMP as compared with the AFEMP, a projectile striking an oblique thick
plate with a velocity of 575 m/s at an inclined angle of 30◦ was investigated by
Chen et al. [124]. The projectile and target are discretized with hexahedral el-
ements with unstructured and structured arrangement, respectively. An element
is automatically converted into eight MPM particles when its equivalent plastic
strain exceeds the given threshold εc = 0.9. Three different cases with different
projectile element sizes were considered to study the size effect on the solution
accuracy of both methods. In these cases, the background grid cell size is 1 mm,
while the element average size of projectile head is 2.3, 3.8, and 5.7 mm, re-
spectively. The target is discretized by 314,600 elements in all cases, while the
projectile is discretized by 12,200, 2268, and 944 elements, respectively. Nu-
merical results show that the residual velocity of the projectile as obtained by
the IAFEMP is very close to the experiment data in all the cases, but that as ob-
tained by the AFEMP method largely depends on the meshing consistence. The
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FIGURE 5.19 Perforation process at the striking velocity v0 = 575 m/s: (a) experimental data,
and (b) the IAFEMP results.

FIGURE 5.20 Sectional view of the projectile–target system as obtained by (a) the AFEMP, and
(b) the IAFEMP.

perforation process as obtained by the IAFEMP agrees well with the experimen-
tal result, as shown in Fig. 5.19, where Fig. 5.19(a) shows a sequence of X-ray
photographs at three different times, and Fig. 5.19(b) shows the corresponding
numerical results.

For case 3, due to the significant meshing inconsistence in the AFEMP, the
projectile penetrates into the plate nonphysically as shown in Fig. 5.20(a), but
the IAFEMP still yields reasonable results as shown in Fig. 5.20(b).
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Constitutive models describe the material responses to different mechanical
and/or thermal loading conditions, which provide the stress–strain relations to
formulate the governing equations, together with the conservation laws and
kinematic relations. Constitutive models can be divided into EOSs which relate
the pressure to volume and internal energy or temperature, and strength mod-
els which relate the deviatoric stress to deviatoric strain. In addition, a failure
criterion is required to identify the onset and describe the evolution of mate-
rial failure. In this chapter, the essential features and numerical implementation
of the constitutive models used in the open-source MPM code are discussed to
facilitate the understanding and use of the code.

6.1 STRESS UPDATE

For nonlinear analyses, constitutive models are usually formulated in the rate
form. The numerical algorithm for integrating the rate form of constitutive
equations is called a constitutive integration algorithm or stress update al-
gorithm [60]. The stress σ (t + dt) at time t + dt can be obtained by integrating
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the stress rate σ̇ as follows:

σ (t + dt) = σ (t) + σ̇dt. (6.1)

The time derivative of the Cauchy stress tensor is not objective and depends
on the frame of reference. Hence, an objective stress rate such as the Jaumann
stress rate σ∇ (discussed in Sect. 2.5) must be used in constitutive models. The
material time derivative of the Cauchy stress tensor, σ̇ , is related to the Jaumann
stress rate σ∇ via the following:

σ̇ = σ∇ + σ · ΩT + Ω · σ (6.2)

where

Ω = 1

2
(L − LT)

is the spin tensor, and L is the velocity gradient. The Jaumann stress rate σ∇
can be determined from a constitutive model based on the deformation rate D.

In an explicit time integration, the stress rate at time tn+1/2, σ̇ n+1/2, can be
approximated by

σ̇ n+1/2 = σ∇n+1/2 + σ n · (Ωn+1/2)T + Ωn+1/2 · σ n. (6.3)

The Cauchy stress at time tn+1 can then be obtained from Eqs. (6.1) and
(6.3) as

σ n+1 = σ n + σ̇ n+1/2�tn+1/2

= σRn + σ∇n+1/2�tn+1/2 (6.4)

with

σRn = σ n + [σ n · (Ωn+1/2)T + Ωn+1/2 · σ n)�tn+1/2. (6.5)

The pressure and deviatoric stress can be updated independently due to

σ = s − p1. (6.6)

According to Eq. (6.4), the deviatoric stress s can be updated by

sn+1 = sRn + s∇n+1/2�tn+1/2 (6.7)

with

sRn = sn + [sn · (Ωn+1/2)T + Ωn+1/2 · sn)�tn+1/2. (6.8)

The last term in Eq. (6.7) will be determined by a strength model, as dis-
cussed in Sect. 6.2.
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The pressure can be updated with an EOS as

p = p(V,E) = p(V,T ) (6.9)

where the pressure p is positive if the material is in compression, V is the
relative volume, E is internal energy per unit initial volume, and T is the tem-
perature, as discussed in Sect. 6.3.

To find the pressure of a particle at time tn+1 using the EOS, the internal
energy of the particle at time tn+1 must be calculated first by integrating the
energy equation (2.87) as follows:

en+1 = en + V0Ė
n+1/2�tn+1/2

= en + V n+1/2sn+1/2 : �εn+1/2 − V n+1/2(pn+1/2 + qn+1/2)�εn+1/2
v

(6.10)

where V0 is the initial volume of the particle, V n is the volume of the particle at
time tn, �ε

n+1/2
v is the volumetric strain increment, and

�εn+1/2 = ε̇n+1/2�tn+1/2, (6.11)

V n+1/2 = 1

2
(V n + V n+1), (6.12)

sn+1/2 = 1

2
(sn + sn+1). (6.13)

Noting that V n+1/2�ε
n+1/2
v = V n+1 −V n = �V , pn+1/2 = (pn +pn+1)/2,

Eq. (6.10) can then be rewritten as

en+1 = e∗ n+1 − 1

2
�Vpn+1 (6.14)

where

e∗ n+1 = en + V n+1/2sn+1/2 : �εn+1/2 − 1

2
�Vpn − �V qn+1/2 (6.15)

is the trial internal energy of the particle at time tn+1.
If the EOS is linear in the internal energy [14], i.e.,

pn+1 = An+1 + Bn+1En+1 (6.16)

with An+1 and Bn+1 being constants,

En+1 = en+1

V0
(6.17)
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being the internal energy of the particle per unit initial volume, substitution of
Eqs. (6.17) and (6.14) into Eq. (6.16) gives the pressure at time tn+1, namely,

pn+1 = An+1 + Bn+1E∗ n+1

1 + 1
2Bn+1 �V

V0

(6.18)

with E∗ n+1 = e∗ n+1/V0. After solving Eq. (6.18) for pressure pn+1, the inter-
nal energy of the particle at time tn+1 can be found from Eq. (6.14).

If the EOS is nonlinear in the internal energy, an iterative solution procedure
is required [14]. The pressure can be estimated first with the EOS as

p∗ n+1 = p(V n+1,E∗ n+1), (6.19)

and the estimated pressure p∗ n+1 can then be substituted into Eq. (6.14) to
update the internal energy En+1 of the particle at time tn+1. The pressure at
time tn+1 can be corrected by substituting the updated internal energy En+1

into the EOS as

pn+1 = p(V n+1,En+1) (6.20)

until a suitable convergence criterion is satisfied. In impact and explosion simu-
lations, the time step is very small so that only one iteration is usually required.

6.2 STRENGTH MODELS

After reviewing the previous theoretical and computational results, as well as the
available experimental data, Chen and Schreyer [129] discussed the formulation
and computational aspects of elastoplasticity and damage models for solids in
a systematic way. A detailed discussion about fluid models with applications
to extreme events could be found in the representative references [49,53,130].
In this section, the main equations and their numerical implementation are pro-
vided only for those constitutive models used in the open-source MPM code.

6.2.1 Elastic Model

For an isotropic elastic model, the Jaumann stress rate is related to the defor-
mation rate via

σ∇ = CσJ : ε̇ (6.21)

where

CσJ = 2GI dev + K1 ⊗ 1 (6.22)
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is the fourth-order elasticity tensor, G = E/2(1 + ν) is the shear modulus, K =
E/3(1 − 2ν) is the bulk modulus, and

I dev
ijkl = 1

2
(δikδjl + δilδjk) − 1

3
δij δkl (6.23)

is the fourth-order deviatoric tensor. It can be shown that for any symmetric
deviatoric tensor s and symmetric tensor ε, the following identities:

CσJ : s = 2Gs, (6.24)

I dev : ε = ε′ (6.25)

are satisfied, with ε′ being the deviatoric part of the symmetric tensor ε.
Eq. (6.21) can be further decomposed into

s∇ = 2Gε̇′, (6.26)

σ̇m = Kε̇v (6.27)

where s∇ is the Jaumann rate of the deviatoric stress, σ̇m is the rate of the spher-
ical stress, and

ε̇′ = ε̇ − 1

3
ε̇v1 (6.28)

is the deviatoric strain rate, with ε̇v = V̇ /V being the bulk strain rate.
Substituting Eqs. (6.26) and (6.27) into Eq. (6.4) yields the stress update

formulation for the isotropic elastic model, namely,

sn+1 = sRn + 2Gε̇′n+1/2�tn+1/2, (6.29)

σn+1
m = σn

m + Kε̇n+1/2
v �tn+1/2. (6.30)

The elastic model is implemented in the FORTRAN subroutine M3DM1 in
Sect. 6.5.

6.2.2 Elastoplastic Models

For a metal specimen under uniaxial tension, a typical uniaxial stress–strain
curve is shown in Fig. 6.1, which demonstrates the elastoplastic behavior. Above
the initial yield strength, σ 0

y , plasticity occurs with a permanent (irreversible or
plastic) strain upon elastic unloading, and the yield strength increases with the
increase of the plastic strain, called strain hardening. There are many types of
elastoplastic models, such as the J2 flow theory for metal plasticity, the Mohr–
Coulomb model and Drucker–Prager model for soil plasticity, and the Gurson
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FIGURE 6.1 The uniaxial tensile test [14].

model for porous plastic solids [60]. Different models have different yield func-
tions f (σ ,q) and flow rules, where q represents a set of internal state variables,
such as the effective plastic strain and void volume fraction.

For finite strain problems, the hypoelastic–plastic model and hyperelastic–
plastic model are two main types of elastoplastic models. The hypoelastic–
plastic model divides the deformation rate into an elastic part and a plastic part,
namely,

ε̇ = ε̇e + ε̇p, (6.31)

and relates the objective stress rate, such as the Jaumann stress rate, to the elastic
part of the deformation rate by

σ∇ = CσJ : (ε̇ − ε̇p). (6.32)

As a result, the hypoelastic–plastic response cannot be expressed in terms of
an elastic strain energy function as the hyperelastic–plastic response.

The plastic strain rate ε̇p for non-associated plasticity is determined with a
non-associated flow law as follows:

ε̇p = λ̇r (6.33)

where λ̇ � 0 represents the plastic loading (> 0) or neutral loading (= 0), with
the corresponding magnitude of the plastic flow, and

r = ∂ψ

∂σ
(6.34)

describes the plastic flow direction, with ψ being the plastic potential function.
The plastic strain rate ε̇p is normal to the plastic potential surface, as shown in
Fig. 6.2, which is called the normality rule of plasticity.
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FIGURE 6.2 Plastic strain rate.

The flow rule for associated plasticity uses the yield function as the plastic
potential function, i.e., ψ ≡ f . Thus, the plastic flow direction takes the form of

r = ∂f

∂σ
. (6.35)

The internal state variables can be determined with the following equation:

q̇ = λ̇h(σ ,q). (6.36)

The Kuhn–Tucker conditions identify plastic loading, neutral loading, and
elastic unloading as follows:

λ̇ � 0, f � 0, λ̇f = 0. (6.37)

Eq. (6.37) indicates that the stress must be admissible (lie on or within the
yield surface) and that plastic flow can take place only on the yield surface
f = 0.

During plastic loading (i.e., λ̇ > 0), the stress must stay on the yield surface
(i.e., ḟ = 0) so that

λ̇ḟ = 0. (6.38)

Eq. (6.38) is called the plastic consistency condition from which the load-
ing parameter λ̇ can be determined as below.

The yield function f (σ ,q) is a function of stress and internal state variables
such that

ḟ = ∂f

∂σ
: σ̇ + ∂f

∂q
· q̇. (6.39)

The following identity is satisfied if the yield function f (σ , q) is a function
of the stress invariants [60]:

∂f

∂σ
: σ̇ = ∂f

∂σ
: σ∇ . (6.40)
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Substituting Eq. (6.40) into Eq. (6.39) results in

ḟ = ∂f

∂σ
: σ∇ + ∂f

∂q
· q̇. (6.41)

The substitution of Eqs. (6.36), (6.33), (6.32), and (6.41) into the consistency
condition Eq. (6.38) then yields

∂f

∂σ
CσJ : (ε̇ − λ̇r) + λ̇

∂f

∂q
· h = 0. (6.42)

Solving Eq. (6.42) for the loading parameter λ̇ gives

λ̇ = f,σ : CσJ : ε̇
f,σ : CσJ : r − f,q · h . (6.43)

Finally, the substitution of Eqs. (6.33) and (6.43) into Eq. (6.32) leads to

σ∇ = Cep : ε̇ (6.44)

with the fourth-order tensor

Cep =

⎧⎪⎪⎨⎪⎪⎩
CσJ if λ̇ = 0,

CσJ − (CσJ : r) ⊗ (f,σ : CσJ )

f,σ : CσJ : r − f,q · h if λ̇ > 0
(6.45)

being the continuum elastoplastic tangent moduli which can be used to formu-
late the acoustic tensor for discontinuous bifurcation analysis.

The hypoelastic–plastic models are simple for numerical implementation,
but their responses are dissipative even though a material is supposed to be elas-
tic. This type of models is commonly used for the materials whose elastic strains
are assumed to be relatively small so that the energy dissipation is very small
and can be neglected.

6.2.3 Return Mapping Algorithm

Given a deformation state εn, the corresponding plastic deformation εpn, and
the internal state variable qn at time tn, the purpose of a constitutive integra-
tion algorithm is to find the plastic deformation εp(n+1), the internal variable
qn+1, and �λn+1 at time tn+1 for a prescribed strain increment �εn+1 =
ε̇n+1/2�tn+1/2.
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The simplest numerical integration scheme is the forward Euler algo-
rithm [131–133], i.e.,

εn+1 = εn+�εn+1,

εp(n+1) = εpn + ε̇pn�t = εpn + �λnrn,

qn+1 = qn + q̇n�t = qn + �λnhn,

σ n+1 = σRn + CσJ : (�εn+1 − �εp(n+1))

(6.46)

with �λn = �tn+1/2λ̇n. The forward Euler algorithm is an explicit scheme,
whose final stress state σ n+1 does not satisfy the yield condition at time tn+1,
i.e., f n+1 = f (σ n+1,qn+1) �= 0. Therefore, the stress state obtained from the
forward Euler algorithm gradually deviates from the yield surface and results in
a significant error.

The return mapping algorithm [134] is the most commonly used consti-
tutive integration algorithm which consists of two steps, namely, an elastic trial
step and a plastic corrector step. In the elastic trial step, the material is assumed
to be in the elastic regime so that the elastic trial stress σ ∗(n+1) is calculated
elastically from the total strain increment �εn+1. If the trial state is still in the
elastic regime, the trial state is the true state. Otherwise, a plastic corrector step
is performed to project the trial stress onto the yield surface at tn+1. The radial
return algorithm [135] for the J2 flow theory is a special case of the return
mapping algorithm.

6.2.3.1 Fully Implicit Backward Euler Algorithm

In the forward Euler algorithm, both the plastic strain rate ε̇p and the internal
variable rate q̇ are evaluated at time tn. On the contrary, in the backward Euler
algorithm, they are evaluated at time tn+1, and the final stress σ n+1 must satisfy
the yield condition at time tn+1, namely [60],

εn+1 = εn+�εn+1,

εp(n+1) = εpn + ε̇p(n+1)�t = εpn + �λn+1rn+1,

qn+1 = qn + q̇n+1�t = qn + �λn+1hn+1,

σ n+1 = σRn + CσJ : (�εn+1 − �εp(n+1)),

f n+1 = f (σ n+1,qn+1) = 0

(6.47)

with �λn+1 = λ̇n+1�tn+1/2.
The fourth equation in Eq. (6.47) can be rewritten as

σ n+1 = σ ∗(n+1) + �σ n+1 (6.48)
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FIGURE 6.3 Return mapping algorithm for an associated plastic flow.

where

σ ∗(n+1) = σRn + C∇J : �εn+1 (6.49)

is the elastic trial stress, and

�σ n+1 = −CσJ : �εp(n+1) (6.50)

is the plastic corrector stress that returns the elastic trial stress to the updated
yield surface f n+1 = 0 along the plastic flow direction rn+1 at time tn+1, as
shown in Fig. 6.3. The final stress point σ n+1 is the closest point to the elastic
trial stress σ ∗(n+1) on the yield surface f n+1 = 0. Hence, this method is also
called the closest point projection method [136,137]. The elastic trial step is
driven by the strain increment �εn+1, while the plastic corrector step is driven
by the loading parameter increment �λn+1.

In the elastic trial step, the plastic strain and internal variables are fixed such
that �λn+1 = 0. If the yield condition is convex, the plastic loading and elastic
unloading can be uniquely determined by the trial state [137]. If f ∗(n+1) � 0,
the trial state is still elastic, i.e., �λn+1 = 0, so that the trial state is the true state.
If f ∗(n+1) > 0, the trial state is in plastic regime, i.e., �λn+1 > 0, such that a
plastic corrector step is required to calculate �λn+1 and to project the trial state
onto the yield surface f (σ n+1,qn+1) = 0.

Eq. (6.47) is a nonlinear system of equations and has to be solved with an
iterative scheme [60,137]. In the plastic corrector step, the strain εn+1 is con-
stant so that the iteration is performed on the loading parameter increment �λ.
A nonlinear equation m(�λ) = 0 can be linearized using the Newton’s iteration
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method with �λ(0) = 0 at the kth iteration as follows:

m(k) +
(

dm

d�λ

)(k)

δλ(k) = 0, �λ(k+1) = �λ(k) + δλ(k) (6.51)

where δλ(k) is the increment in �λ(k) at the kth iteration.
For the sake of clarity, the superscript n+ 1 will be omitted in the following.

Unless otherwise indicated, all quantities are evaluated at tn+1. The elastic trial
state is taken as the first guess state, namely, �λ(0) = 0, q(0) = qn, εp(0) = εpn,
σ (0) = σ ∗, and f (0) = f (σ ∗,qn).

To design the iterative solution scheme, the second, third, and fifth equations
of Eq. (6.47) are rewritten as

a(�λ) = −εp + εpn + �λr = 0,

b(�λ) = −q + qn + �λh = 0, (6.52)

f (�λ) = f (σ ,q) = 0.

Using Eqs. (6.51) and (6.50), Eq. (6.52) can be linearized as

a(k) + (CσJ )−1 : �σ (k) + �λ(k)�r(k) + δλ(k)r(k) = 0,

b(k) − �q(k) + �λ(k)�h(k) + δλ(k)h(k) = 0, (6.53)

f (k) + f (k)
,σ : �σ (k) + f (k)

,q · �q(k) = 0

with

�r(k) = r(k)
,σ : �σ (k) + r(k)

,q · �q(k),

�h(k) = h(k)
,σ : �σ (k) + h(k)

,q · �q(k).

Eq. (6.53) is a system of linear equations in �σ (k), �q(k), and δλ(k). Based
on the first and second equations of Eq. (6.53), �σ (k) and �q(k) can be ex-
pressed in terms of δλ(k) as{

�σ (k)

�q(k)

}
= −A(k)ã(k) − δλ(k)A(k)r̃(k) (6.54)

with

A(k) =
⎡⎣ (CσJ )−1 + �λ(k)r

(k)
,σ �λ(k)r

(k)
,q

�λ(k)h(k)
,σ −I + �λ(k)h(k)

,q

⎤⎦−1

,

ã(k) =
{

a(k)

b(k)

}
, r̃(k) =

{
r(k)

h(k)

}
.
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Substituting Eq. (6.54) into the third equation of Eq. (6.53) gives

δλ(k) = f (k) − ∂f (k)A(k)ã(k)

∂f (k)A(k)r̃(k)
(6.55)

with

∂f (k) =
[

f (k)
σ f

(k)
q

]
.

After solving Eq. (6.55) for δλ(k), �σ (k) and �q(k) can be obtained from
Eq. (6.54). The updated formulations of plastic strain, internal variables, loading
parameter and stress are listed as follows:

εp(k+1) = εp(k) + �εp(k) = εp(k) − (CσJ )−1 : �σ (k),

q(k+1) = q(k) + �q(k),

�λ(k+1) = �λ(k) + δλ(k),

σ (k+1) = σ (k) + �σ (k).

(6.56)

Based on the above discussions, the iterative process of the return mapping
algorithm consists of the following steps:

1. Initialize k = 0, εp(0) = εpn, q(0) = qn, �λ(0) = 0, σ = σ ∗;
2. Compute f (k) = f (σ (k),q(k)) and ã(k), and if f (k) < TOL1 and

∥∥̃a(k)
∥∥<

TOL2, the iteration loop has converged so that the iteration is terminated;
3. Compute δλ(k) using Eq. (6.55);
4. Compute the stress increment �σ (k) and internal variable increment

�q(k) using Eq. (6.54); and
5. Update εp(k+1), q(k+1), �λ(k+1), and σ (k+1) according to Eq. (6.56), and

letting k = k + 1 go to step 2 for the next iteration.
The iterative process of the return mapping algorithm is illustrated in

Fig. 6.4.
The backward Euler algorithm is a fully implicit method so that an itera-

tive loop is required in the incremental constitutive integration. The gradients of
r and h are required which involve the second order derivatives of the plastic
potential function such that their formulations are complicated. For some con-
stitutive models, these gradients may not be able to be obtained analytically. For
the J2 flow theory with isotropic linear hardening, however, the analytical so-
lution of Eq. (6.47) can be obtained so that the iteration loop is not needed, as
shown in Sect. 6.2.4.

6.2.3.2 Semi-implicit Backward Euler Algorithm

To avoid the calculation of the gradients of r and h in each time step, r

and h can be assumed to be constant and take the values at time tn, namely
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FIGURE 6.4 Iteration process of the return mapping algorithm.

FIGURE 6.5 The semi-explicit Euler scheme.

[60,138],

εp(n+1) = εpn + �λn+1rn,

qn+1 = qn + �λn+1hn,

f n+1 = f (σ n+1,qn+1) = 0.

(6.57)

This scheme is a semi-implicit scheme because it is implicit in the loading
parameter increment �λ, but explicit in r and h. During the iterative process, r

and h are kept unchanged and their gradients are zero as shown in Fig. 6.5. As
a result, the solution process is significantly simplified.

To establish the iterative algorithm, Eq. (6.57) is rewritten as

a(�λ) = −εp + εpn + �λrn = 0,

b(�λ) = −q + qn + �λhn = 0, (6.58)

f (�λ) = f (σ ,q) = 0
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where the superscript n + 1 has been omitted for the sake of clarity. Because r

and h are kept unchanged during the iteration, Eq. (6.58) can be linearized as
follows:

a(k) + (CσJ )−1 : �σ (k) + δλ(k)rn = 0,

b(k) − �q(k) + δλ(k)hn = 0, (6.59)

f (k) + f (k)
,σ : �σ (k) + f (k)

,q · �q(k) = 0.

Note that the first and second equations in Eq. (6.59) are linear equations of
�λ so that a(k) = b(k) = 0. Solving Eq. (6.59) yields{

�σ (k)

�q(k)

}
= −δλ(k)A(k)r̃n, (6.60)

δλ(k) = f (k)

∂f (k)A(k)r̃n
(6.61)

with

A(k) =
[

CσJ 0
0 −I

](k)

, ã(k) =
{

a(k)

b(k)

}
, r̃n =

{
rn

hn

}
.

6.2.4 J2 Flow Theory

The J2 flow theory as described in terms of the second invariant of deviatoric
stress is widely used for metal plasticity.

6.2.4.1 Yield Condition

In the J2 flow theory, the yield surface is given by

f (σ , q1) =√
3J2 − σy(ε̄) = 0 (6.62)

where q1 ≡ ε̄ is the accumulated effective plastic strain, σy is the yield strength,
and

J2 = 1

2
s : s (6.63)

is the second invariant of the deviatoric stress s. Because

√
3J2 =

√
3

2
s : s = σ̄ (6.64)



Constitutive Models Chapter | 6 189

is the von Mises effective stress, the J2 flow theory is also called the von Mises
yield criterion. There is only one internal variable in the J2 flow theory, i.e.,

q1 = ε̄, h1 = 1. (6.65)

As a result, it follows that

˙̄ε = λ̇ (6.66)

where

˙̄ε =
√

2

3
ε̇p : ε̇p (6.67)

is the von Mises effective plastic strain rate that is plastic-work-rate conjugate
to the von Mises effective stress σ̄ , namely,

σ̄ ˙̄ε = σ : ε̇p. (6.68)

For an isotropic constitutive model as shown in Eq. (6.22), the stress update
Eq. (6.48) can be decomposed into deviatoric stress update and spherical stress
update, namely,

sn+1 = s∗(n+1) − 2G�ε′p(n+1), (6.69)

σn+1
m = σ ∗(n+1)

m − K�εp(n+1)
v (6.70)

where �ε′p(n+1) is the plastic deviatoric strain increment, σn+1
m = 1

3σn+1
kk is the

mean stress, �ε
p(n+1)
v = tr(�εp(n+1)) is the plastic volumetric strain increment,

and

s∗(n+1) = sRn + 2G�ε′n+1, (6.71)

σ ∗(n+1)
m = σn

m + K�εn+1
v (6.72)

are the elastic trial deviatoric stress and elastic trial spherical stress, respec-
tively. �ε′n+1 is the deviatoric strain increment, and �εn+1

v is the volumetric
strain increment. For the associated J2 flow theory, �ε′p(n+1) = �εp(n+1) and
�ε

p(n+1)
v = 0.
Taking the double dot product of Eq. (6.69) with the unit normal tensor n

to the yield surface and using Eqs. (6.76), (6.77), and (6.79), the von Mises
effective stress can be updated with

σ̄ n+1 = σ̄ ∗(n+1) − 3G�λn+1. (6.73)
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FIGURE 6.6 Radial return algorithm for associated flow.

6.2.4.2 Radial Return Algorithm

In the associated J2 flow theory, the plastic flow is independent of hydrostatic
pressure, and the yield surface in the principal stress space is a circular cylinder.
With isotropic hardening, the cylinder diameter increases. With kinematic hard-
ening, the cylinder diameter remains constant but the cylinder translates. The
intersection of the yield surface with the π -plane (σ1 + σ2 + σ3 = 0) is a circle
whose normal vector is along the radial direction and is kept unchanged dur-
ing the plastic corrector step, as shown in Fig. 6.6. Hence, the return mapping
algorithm is degenerated to the radial return algorithm.

It can be verified that

∂s

∂σ
= I dev,

∂σ̄

∂σ
= 3

2σ̄
s. (6.74)

For associated plastic flow, hence, the plastic flow direction can be obtained
from Eq. (6.62) as

r = ∂f

∂σ
= 3s

2σ̄
=
√

3

2
n (6.75)

where

n =
√

3

2

s

σ̄
(6.76)

is the unit normal tensor to the yield surface, which stays unchanged during the
plastic corrector step so that it can also be found from the elastic trial stress,
namely,

n =
√

3

2

s∗

σ̄ ∗ (6.77)
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where

σ̄ ∗ =
√

3

2
s∗ : s∗ (6.78)

is the trial effective stress.
Substituting Eq. (6.75) into Eq. (6.33) results in the plastic strain increment,

i.e.,

�εp =
√

3

2
�λn. (6.79)

Eq. (6.79) indicates that the plastic strain in the J2 flow theory is a deviatoric
tensor, namely, the plastic volumetric strain ε

p
v = 0.

In the J2 flow theory, r and h are constant during the plastic corrector step
such that the update of plastic strain and internal variable (isotropic hardening)
is linear in �λ, as shown in the second and third equations in Eq. (6.47). Thus,
the residuals in Eq. (6.53) become a(k) = 0 and b(k) = 0. Using Eqs. (6.75),
(6.65), (6.74), and (6.76), the gradients of r and h1 can be calculated as

∂r

∂σ
= 3

2σ̄
Î ,

∂r

∂q1
= 0,

∂h1

∂σ
= 0,

∂h1

∂q1
= 0 (6.80)

with

Î = I dev − n ⊗ n. (6.81)

The gradient of the yield function (6.62) is given by

∂f

∂σ
= r,

∂f

∂q1
= −dσy

dε̄
= −Ep(ε̄) (6.82)

where Ep(ε̄) is the plastic modulus.
It can be shown that

I dev : Î = Î , 1 : Î = 0, Î : n = 0, (6.83)

and for the isotropic constitutive model it follows that

Î : CσJ : n = 0, Î : �σ (k) = 0. (6.84)

Substituting Eq. (6.80) into the first equation of Eq. (6.53), and then left-
multiplying the CσJ and making use of the relation CσJ : r(k) = √

6Gn(k) gives

�σ (k) = −√
6Gδλ(k)n(k). (6.85)
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Substituting Eq. (6.85) into Eq. (6.50) and noting that the plastic strain is a
deviatoric tensor in the J2 flow theory leads to

�εp(k) = − 1

2G
�σ (k) =

√
3

2
δλ(k)n(k). (6.86)

Substituting Eqs. (6.80), (6.82), and (6.85) into the second and third equa-
tions of Eq. (6.53) results in

�q
(k)
1 = �ε̄(k) = δλ(k), (6.87)

f (k) − 3Gδλ(k)n(k) : n(k) − Epδλ(k) = 0 (6.88)

where n(k) is a unit tensor such that n(k) : n(k) = 1. Hence, the plastic loading
parameter increment can be obtained from Eq. (6.88) as

δλ(k) = f (k)

3G + Ep
. (6.89)

Using Eqs. (6.73) and (6.66), the yield function in the kth iteration can be
written as

f (k) = σ̄ (k) − σy(ε̄
(k)) = σ̄ ∗ − 3G�λ(k) − σy(ε̄

(k)). (6.90)

The iteration loop used in the numerical integration of the J2 flow theory can
be finally described as follows:

1. Initialize k = 0, εp(0) = εpn, ε̄(0) = ε̄n, �λ(0) = 0, σ (0) = σ ∗;
2. Calculate the yield function f (k) using Eq. (6.90), and if |f (k)| < TOL,

the iteration loop has converged so that it can be terminated;
3. Calculate the loading parameter increment δλ(k) using Eq. (6.89);
4. Calculate �σ (k), �εp(k), and �ε̄(k) using Eqs. (6.85), (6.86), and (6.87),

respectively; and
5. Update the plastic strain, stress and internal variable with

εp(k+1) = εp(k) + �εp(k),

ε̄(k+1) = ε̄(k) + �ε̄(k),

�λ(k+1) = �λ(k) + δλ(k),

σ (k+1) = σ (k) + �σ (k),

and letting k = k + 1 go to step 2 to continue the iteration loop.

6.2.4.3 Linear Isotropic Hardening

For linear isotropic hardening, the plastic modulus Ep is a constant. Substituting
the linear hardening rule σn+1

y = σn
y + Ep�ε̄(n+1) and the relation �ε̄(n+1) =
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�λ(n+1) into the yield function at time tn+1 gives

f n+1 = σ̄ ∗(n+1) − 3G�λn+1 − σn+1
y

= σ̄ ∗(n+1) − σn
y − (3G + Ep)�λ(n+1). (6.91)

Thus, the yield condition f n+1 = 0 is a linear equation in �λn+1, which can
be solved directly for �λn+1 without iteration as

�ε̄(n+1) = �λn+1 = f ∗(n+1)

3G + Ep
(6.92)

where

f ∗(n+1) = σ̄ ∗(n+1) − σn
y (6.93)

is the elastic trial value of the yield function.
In the J2 flow theory with linear isotropic hardening, the plastic volu-

metric strain equals to zero, and the plastic strain increment �εp(n+1/2) =√
3
2�λn+1nn+1 is a deviatoric tensor. Hence, the deviatoric stress can be up-

dated according to Eqs. (6.69) and (6.75) with

sn+1 = s∗(n+1) − √
6G�λn+1nn+1. (6.94)

Accordingly, the von Mises effective stress can be updated with

sn+1 = s∗(n+1) − 3G�λn+1. (6.95)

Substituting Eq. (6.77) into Eq. (6.94) and making use of Eq. (6.95) and the
relation f n+1 = σ̄ n+1 − σn+1

y = 0 leads to

sn+1 = s∗(n+1)

σ̄ ∗(n+1)

(
σ̄ ∗(n+1) − 3G�λn+1

)
= σn+1

y

σ̄ ∗(n+1)
s∗(n+1). (6.96)

Eq. (6.96) indicates that the radial return method maps the elastic trial de-
viatoric stress s∗(n+1) onto the yield surface f (σ n+1,qn+1) = 0 at time tn+1.
Therefore, the numerical integration process of the J2 flow theory with linear
isotropic hardening can be summarized as follows:

1. Calculate the elastic trial stress σ ∗(n+1) and the elastic trial value of yield
function f ∗(n+1) using Eqs. (6.49) and (6.93), and if |f ∗(n+1)| � 0, the elastic
trial state is the true state so that let σ n+1 = σ ∗(n+1) and terminate the iteration
loop;

2. Calculate the effective plastic strain increment �ε̄(n+1) using Eq. (6.92);
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3. Update the effective plastic strain by

ε̄(n+1) = ε̄n + �ε̄(n+1); (6.97)

4. Update the yield stress by

σn+1
y = σn

y + Ep�ε̄(n+1); (6.98)

5. Calculate the scaling factor using the yield stress at time tn+1, i.e.,

m = σn+1
y

σ̄ ∗(n+1)
; (6.99)

6. Map the stress onto the yield surface with

sn+1 = ms∗(n+1), (6.100)

σ̄ n+1 = mσ̄ ∗(n+1). (6.101)

Note that for perfect plasticity (Ep = 0), only the last two steps are per-
formed.

The perfect plasticity and linear isotropic hardening plasticity are imple-
mented into the FORTRAN subroutines M3DM2 and M3DM3 in Sect. 6.5,
respectively.

The J2 flow theory as discussed in this section could be applied in many
cases. By choosing different yield surfaces, different material models could be
obtained. For example,

• Letting σy = 0 results in a fluid model whose strength is neglected;
• Choosing σy as a nonzero positive constant results in the perfect plasticity;
• Letting σy = ∞ leads to elasticity; and
• Assuming a general yield stress function σy = f (ε̄, ˙̄ε,T ), strain hardening,

thermal softening, and strain rate effects could be considered, such as the
Johnson–Cook flow stress model.

6.2.4.4 Johnson–Cook Flow Stress Model

For impact and explosion problems, the strain rate effects have to be included in
constitutive models. The flow stress can be expressed in the form of

σy = f (ε̄, ˙̄ε,T ) (6.102)

where ε̄ is the effective plastic strain, ˙̄ε is the effective plastic strain rate, and T

is the temperature.
At a low strain rate, the flow stress can be assumed to be

σy = σ0 + kε̄n (6.103)
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with σ0 being the initial yield strength, n the strain hardening exponent, and
k the strength coefficient. The effect of temperature on the flow stress can be
expressed as

σy = σr(1 − T ∗m) (6.104)

where σr is the flow stress at room temperature, T ∗ = (T − Tr)/(Tm − Tr) ∈
[0,1] is the dimensionless temperature, Tr and Tm are the room temperature
and melting temperature of the material, and m is a material constant.

The effect of strain rate is usually simplified as

σy ∝ ln ε̇p. (6.105)

Johnson and Cook proposed a flow stress model [118,139] to account for the
strain hardening, thermal softening, and strain rate effects as follows:

σy = (A + Bε̄n)(1 + C ln ˙̄ε∗)(1 − T ∗ m) (6.106)

where A, B , n, C, and m are material constants, ˙̄ε∗ = ˙̄ε/ε̇0 is the dimensionless
effective plastic strain rate, ε̇0 is the effective plastic strain rate corresponding
to the quasi-static test used to determine the yield and hardening parameters A,

B and n, and ˙̄ε ≈
√

2
3 ε̇′

ij ε̇
′
ij is the plastic strain rate. The material constants can

be determined either by torsion tests at different strain rates, Hopkinson’s tests
at different impact velocities and temperatures, and quasi-static tension tests or
by Taylor bar impact tests.

Johnson and Cook provided the material constants in 1983 [139] for a variety
of materials, such as OFHC copper, Cartridge brass, Nickel 200, Armco iron,
Carpenter electrical iron, 1006 steel, 2024-T351 aluminum, 7039 aluminum,
4340 steel, S-7 tool steel, Tungsten alloy, and DU-.75Ti.

The flow stress σy is a nonlinear function of the effective plastic strain εp

so that an iteration loop for finding the plastic strain increment is required to
get an accurate value of the flow stress. To avoid the iteration, a Taylor series
expansion with linearization about the current time can be used to solve for σy

with sufficient accuracy. The plastic modulus is given by

Ep = dσy

dεp
= nB(εp)n−1(1 + C ln ε̇∗)(1 − T ∗ m).

The Johnson–Cook dynamic failure model can be used with the Johnson–
Cook flow stress model, in which the strain at failure is expressed as [140]

ε̄f = (D1 + D2e
D3σ

∗
)(1 + D4 ln ε̇∗)(1 + D5T

∗m)
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where D1, D2, . . . , D5 are failure parameters, σ ∗ = σm/σ̄ is the triaxiality, σm

is the mean stress, and σ̄ is the von Mises effective stress. When the damage
parameter

D =
∑ �ε̄

ε̄f

reaches the value 1, a fracture occurs. After the fracture occurs, the deviatoric
stress s is set to zero, and no hydrostatic tension is permitted. If the mean stress
calculated is positive, it is reset to 0. Johnson and Cook provided failure param-
eters [140] in 1985 for OFHC copper, Armco iron, and 4340 steel. Note that
no spatial size effect on the failure evolution is specified in the Johnson–Cook
model. As a result, special caution must be taken when selecting a suitable spa-
tial discretization scheme to calibrate model parameters against experimental
data.

The Johnson–Cook plasticity model is implemented into the FORTRAN
subroutine M3DM4 in Sect. 6.5.

6.2.5 Pressure-Dependent Elastoplasticity

Soils, rock, concrete, and other geomaterials are frictional materials whose
plastic behaviors depend on the confining pressure. The J2 flow models are
independent of pressure such that they are not appropriate for frictional mate-
rials. Furthermore, the associated flow rule is also inappropriate for frictional
materials.

6.2.5.1 Mohr–Coulomb Yield Criterion

The Mohr–Coulomb model is an extension of the Coulomb friction model for
multi-axial stress–strain relations in continuum, and has been widely used in
modeling granular materials. The Mohr–Coulomb model assumes that yielding
in a material occurs when the shear stress τn and normal stress σn on any plane
satisfy the following condition:

τn = c − σn tanφ (6.107)

where c is the cohesion, and φ is the angle of internal friction. In the τnσn-plane,
the line represented by Eq. (6.107) is the envelop of the Mohr circles (called the
Mohr failure envelope), as shown in Fig. 6.7.

It can be obtained based on the Mohr circle as shown in Fig. 6.7 that

τn = 1

2
(σ1 − σ3) cosφ,

σn = 1

2
(σ1 + σ3) + 1

2
(σ1 − σ3) sinφ

(6.108)
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FIGURE 6.7 Yield surface of the Mohr–Coulomb model.

FIGURE 6.8 Mohr–Coulomb and Drucker–Prager yield surfaces in the π -plane.

where σ1 � σ2 � σ3 are the principal stresses. Substituting Eq. (6.108) into
Eq. (6.107), the Mohr–Coulomb yield criterion can be written as

f (σ ) = σ1 − σ3 + (σ1 + σ3) sinφ − 2c cosφ = 0. (6.109)

Eq. (6.109) represents a conical surface composed of six planes in the prin-
cipal stress space. The intersection of the Mohr–Coulomb yield surface with the
π -plane is an irregular hexagon, as shown in Fig. 6.8. The Mohr–Coulomb yield
criterion reduces to the Tresca yield criterion when φ = 0◦, and reduces to the
Rankine yield criterion when φ = 90◦.

6.2.5.2 Drucker–Prager Yield Criterion

The Mohr–Coulomb yield surface is composed of six planes so that it is con-
venient for analytical calculation. However, the Mohr–Coulomb yield surface is
not a smooth surface whose normal is not defined at the corners, which makes it
difficult for numerical calculation. The Drucker–Prager model defines a smooth
yield surface with the pressure effect taken into account as follows:

f s = τ + qφσm − kφ (6.110)
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where τ = √
J2 is the effective shear stress, σm = 1

3I1 is the hydrostatic (or
mean) stress, I1 = σkk is the first invariant of the Cauchy stress, kφ is the yield
stress under pure shear, and qφ is the friction coefficient that controls the in-
fluence of the pressure on the yield limit. If qφ = 0, the Drucker–Prager yield
criterion reduces to the Mises yield criterion whose plastic behavior is indepen-
dent of the pressure.

Eq. (6.110) represents a smooth conical surface in the 3D space of principal
stresses, whose intersection with the π -plane is a circle, as shown in Fig. 6.8.

The material constants kφ and qφ can be determined from the cohesion c and
the angel of internal friction φ of the material, with the use of

qφ = 6 sinφ√
3(3 ∓ sinφ)

, kφ = 6c cosφ√
3(3 ∓ sinφ)

. (6.111)

The Drucker–Prager yield surface can pass though either the inner or the
outer apexes of the Mohr–Coulomb yield surface in the π -plane as shown in
Fig. 6.8. The plus sign in Eq. (6.111) corresponds to the inner apexes, and the
minus sign corresponds to the outer apexes. If we choose

qφ = 3 tanφ√
9 + 12 tan2 φ

, kφ = 3c√
9 + 12 tan2 φ

, (6.112)

the Drucker–Prager yield surface inscribes the Mohr–Coulomb yield surface in
the π -plane.

The associated plastic flow rule is no longer appropriate for frictional materi-
als because it overestimates the dilatancy of frictional materials. In the Drucker–
Prager model, the plastic potential ψs for a non-associated flow rule can be
defined as

ψs = τ + qψσm (6.113)

where qψ is the dilatancy coefficient related to the ratio of plastic volume change
to plastic shear strain. The relationship between qψ and the angle of dilation ψ

is the same as that between qφ and φ in Eqs. (6.111) and (6.112). The case of
qψ = qφ yields the associated flow rule. If the angle of dilation qψ equals zero,
the plastic volume does not change under shear.

Most geomaterials provide little resistance to tensile loads. With a tension
cut-off, the Drucker–Prager yield surface in the 3D principal stress space is a
truncated cone, as shown in Fig. 6.9(a). In the σmτ -plane, the envelope of the
Drucker–Prager yield surface is shown in Fig. 6.9(b).

In Fig. 6.9(b), the envelope line AB corresponds to the shear yielding whose
yield function is given by Eq. (6.110), while the envelope line BC corresponds
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FIGURE 6.9 The Drucker–Prager yield surface: (a) in the principal stress space, and (b) in the
σmτ -plane.

to the tensile yielding whose yield function is given by

f t = σm − σ t (6.114)

where σ t is the tensile strength.
If the material constant qφ is nonzero, the tensile strength of the material

cannot exceed the maximum tensile strength σ t
max which can be obtained from

Fig. 6.9(b) as

σ t
max = kφ

qφ

. (6.115)

The plastic potential ψt for the associated flow rule corresponding to the
tensile yield function Eq. (6.114) is given by

ψt = σm. (6.116)

The Drucker–Prager plasticity model with a tension cut-off is a multi-surface
model. As shown in Fig. 6.9(b), the normal of the yield surface at the corner B
(singular point) in the σmτ -plane is not defined. Thus, in the shadow region
shown in Fig. 6.10 formed by the line BD (normal line of BC) and line BE (nor-
mal line of AB), the normal of the yield surface is not defined. Koiter assumed
the plastic strain rate at the singular point to be the combination of the plastic
strain rates determined by all the yield surfaces [137,141], namely,

ε̇p =
∑
α∈Jm

λ̇αf α
,σ (σ ,q) (6.117)

where Jm := {β ∈ {1,2, . . . ,mm}|f β(σ ,q) = 0}, and mm is the total number of
the yield surfaces.

The FLAC code [142] employed a simplified approach which divides the
region outside the elastic region into two subregions by the angle bisector BF of



200 The Material Point Method

FIGURE 6.10 Drucker–Prager model with a tension cut-off.

lines BD and BE, as shown in Fig. 6.10. If the elastic trial stress point is located
in region 1, the shear yielding occurs so that the plastic flow is determined by
the shear plastic potential ψs and the trial stress point will be returned to the line
f s = 0. If the elastic trial stress point is located in region 2, the tensile yielding
occurs such that the plastic flow is determined by the tensile plastic potential ψt

and the trial stress point will be return to the line f t = 0.
The slope of line BD is zero, while the slope of line BE is 1/qφ . Based on

the relationship

tan θ = 2 tan θ
2

1 − tan2 θ
2

,

the slope of line BF can be found to be

αB =
√

1 + q2
φ − qφ. (6.118)

Substituting σm = σ t into f s = 0 leads to the effective shear stress at point B
as

τB = kφ − qφσ t . (6.119)

Thus, the equation of line BF can be written as [142]

h(σm, τ) = τ − τB − αB(σm − σ t ) = 0. (6.120)

According to Eq. (6.119), when the tensile strength σ t = kφ/qφ , τB = 0 and
the function h(σm, τ) becomes

h = τ − αB(σm − kφ/qφ). (6.121)

6.2.5.3 Plastic Corrector

The elastic trial deviatoric stress s
∗(n+1)
ij and the elastic trial mean stress σ

∗(n+1)
m

at time tn+1 can be calculated from Eqs. (6.71) and (6.72). The elastic trial
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effective shear stress is defined as

τ ∗(n+1) =
√

1

2
s
∗(n+1)
ij s

∗(n+1)
ij . (6.122)

According to Fig. 6.10, the elastic trial stress may satisfy one of the follow-
ing four conditions:

1. If σ
∗(n+1)
m < σ t and f s(τ ∗(n+1), σ

∗(n+1)
m ) > 0, the shear yielding occurs,

and the elastic trial stress is corrected based on the plastic flow determined by
the shear plastic potential ψs .

2. If σ
∗(n+1)
m < σ t and f s(τ ∗(n+1), σ

∗(n+1)
m ) � 0, the elastic trial state is the

true state so that no correction is required.
3. If σ

∗(n+1)
m � σ t and h(τ ∗(n+1), σ

∗(n+1)
m ) > 0, the shear yielding occurs,

and the elastic trial stress is corrected based on the plastic flow determined by
the shear plastic potential ψs .

4. If σ
∗(n+1)
m � σ t and h(τ ∗(n+1), σ

∗(n+1)
m ) � 0, the tensile yielding occurs,

and the elastic trial stress is corrected based on the plastic flow determined by
the tensile plastic potential ψt .

By checking the above four conditions, the elastic trial stress can be cor-
rected accordingly, as detailed below.

Shear Yielding Corrector

If shear yielding occurs, the elastic trial stress should be corrected to the yield
surface f s = 0 based on the plastic flow determined from the shear plastic po-
tential ψs . The corrected stress σn+1

ij must satisfy the yielding condition at time

tn+1, i.e.,

f s(σn+1
ij ) = f s(σ

∗(n+1)
ij − CσJ

ijkl�ε
p
kl) = 0. (6.123)

Approximating Eq. (6.123) by the first-order Taylor series about the elastic
trial stress point σ

∗(n+1)
ij gives

f s(σ
∗(n+1)
ij ) − ∂f s

∂σij

CσJ
ijkl�ε

p
kl = 0 (6.124)

where ∂f s/∂σij is evaluated at the trial stress point σ
∗(n+1)
ij . The incremental

plastic strain �ε
p
kl is then determined from the shear plastic potential ψs as

�ε
p
ij = �λs ∂ψs

∂σij

(6.125)

with �λs being the plastic loading parameter.
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Substituting Eq. (6.125) into Eq. (6.124) leads to

�λs = f s(σ
∗(n+1)
ij )

∂f s

∂σij
CσJ

ijkl
∂ψs

∂σkl

. (6.126)

For the isotropic elasticity tensor as shown in Eq. (6.22), we have

Cijkl

∂ψs

∂σkl

= 2G

(
∂ψs

∂σij

− 1

3

∂ψs

∂σkl

δklδij

)
+ K

∂ψs

∂σkl

δklδij . (6.127)

Substituting Eq. (6.127) into Eq. (6.126), the plastic loading parameter �λs

can be rewritten as

�λs = f s(σ
∗(n+1)
ij )

2G
∂f s

∂σij

(
∂ψs

∂σij
− 1

3
∂ψs

∂σkl
δklδij

)
+ K

∂f s

∂σij

∂ψs

∂σkl
δklδij

. (6.128)

Invoking Eqs. (6.110), (6.113), and the equations

∂τ

∂σij

= sij

2τ
,

∂σm

∂σij

= 1

3
δij (6.129)

results in

∂f s

∂σij

= ∂f s

∂τ

∂τ

∂σij

+ ∂f s

∂σm

∂σm

∂σij

= sij

2τ
+ qφ

3
δij , (6.130)

∂ψs

∂σij

= ∂ψs

∂τ

∂τ

∂σij

+ ∂ψs

∂σm

∂σm

∂σij

= sij

2τ
+ qψ

3
δij . (6.131)

Substituting Eqs. (6.130) and (6.131) into Eq. (6.128) and invoking the equa-
tions sij δij = 0 and δij δij = 3 leads to the plastic loading parameter �λs of the
Drucker–Prager model as

�λs = f s(σ
∗(n+1)
ij )

G + Kqφqψ

. (6.132)

Based on Eqs. (6.125) and (6.131), the deviatoric plastic strain increment
�ε

′p
ij , volumetric plastic strain increment �ε

p
kk , and effective plastic strain in-

crement �εp can be obtained as

�ε
′p
ij = �λs sij

2τ
, (6.133)

�ε
p
kk = �λsqψ, (6.134)

�εp = �λs

√
1

3
+ 2

9
q2
ψ. (6.135)
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Substituting Eqs. (6.133) and (6.134) into Eqs. (6.69) and (6.70), the cor-
rected deviatoric stress and mean stress at tn+1 can be found to be

sn+1
ij = s

∗(n+1)
ij − G�λs

sn+1
ij

τ n+1
, (6.136)

σn+1
m = σ ∗(n+1)

m − Kqψ�λs. (6.137)

Substituting Eqs. (6.76), (6.77), and the relation s = √
3τ into Eq. (6.136)

gives
√

2τn+1nn+1
ij = √

2τ ∗(n+1)nn+1
ij − √

2G�λsnn+1
ij , (6.138)

so that

τn+1 = τ ∗(n+1) − G�λs. (6.139)

Using Eqs. (6.136) and (6.139), the deviatoric stress update formulation can
be reformulated as

sn+1
ij = τn+1

τn+1 + G�λs
s
∗(n+1)
ij

= τn+1

τ ∗(n+1)
s
∗(n+1)
ij (6.140)

where τn+1 can be obtained from the yield condition f s(n+1) = 0 at tn+1 as

τn+1 = kφ − qφσn+1
m . (6.141)

Similar to the J2 flow theory, the deviatoric stress is also updated by scal-
ing the elastic trial deviatoric stress, namely, by returning the elastic trial stress
along the radial direction to the yield surface.

Tensile Yielding Corrector

Taking derivatives of the tensile yielding function Eq. (6.114) and the tensile
plastic potential Eq. (6.116) with respect to the stress results in

∂f t

∂σij

= ∂f t

∂τ

∂τ

∂σij

+ ∂f t

∂σm

∂σm

∂σij

= 1

3
δij , (6.142)

∂ψt

∂σij

= ∂ψt

∂τ

∂τ

∂σij

+ ∂ψt

∂σm

∂σm

∂σij

= 1

3
δij . (6.143)

Substituting Eqs. (6.142) and (6.143) into Eq. (6.128) and replacing the su-
perscript s with t , the plastic loading parameter can be solved as

�λt = f t (σ
∗(n+1)
ij )

K
= σ

∗(n+1)
m − σ t

K
. (6.144)
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The plastic strain increment can be obtained from the plastic flow rule as

�ε
p
ij = �λt ∂ψt

∂σij

= 1

3
�λtδij . (6.145)

From Eq. (6.145), the plastic volumetric strain increment and effective plas-
tic strain increment can be obtained as

�ε
p
kk = �λt , (6.146)

�εp =
√

2

3
�λt . (6.147)

Substituting Eq. (6.146) into Eq. (6.70) and invoking Eq. (6.144) results in
the corrected mean stress at tn+1 as

σn+1
m = σ ∗(n+1)

m − K�λt = σ t . (6.148)

For tensile yielding, only the mean stress is corrected, and the deviatoric
stress stays unchanged during the plastic corrector stage (i.e., sn+1

ij = s∗n+1
ij ).

Thus, the stress at tn+1 takes the form of

σn+1
ij = s

∗(n+1)
ij + σ tδij = σ

∗(n+1)
ij + (σ t − σ ∗(n+1)

m )δij . (6.149)

6.2.5.4 Numerical Algorithm

Based on the above discussion, the numerical algorithm for the Drucker–Prager
model can be summarized as follows:

1. Calculate the rotated stress σRn

ij , elastic trial deviatoric stress s
∗(n+1)
ij , and

trial mean stress σ
∗(n+1)
m using Eqs. (6.5), (6.71), and (6.72), respectively, and

then calculate the elastic trial shear stress τ ∗(n+1);
2. If σ

∗(n+1)
m < σ t and f s(τ ∗(n+1), σ

∗(n+1)
m ) > 0, calculate the loading pa-

rameter �λs and shear stress τn+1 using Eqs. (6.132) and (6.141), respec-
tively, and then update the deviatoric stress sn+1

ij and mean stress σn+1
m using

Eqs. (6.140) and (6.137), respectively;
3. If σ

∗(n+1)
m � σ t and h(τ ∗(n+1), σ

∗(n+1)
m ) > 0, calculate the loading param-

eter �λs and shear stress τn+1 using Eqs. (6.132) and (6.141), respectively, and
then update the deviatoric stress sn+1

ij and mean stress σn+1
m using Eqs. (6.140)

and (6.137), respectively;
4. If σ

∗(n+1)
m � σ t and h(τ ∗(n+1), σ

∗(n+1)
m ) � 0, update the stress σn+1

ij using
Eq. (6.149).

The Drucker–Prager model with a tension cut-off is implemented into the
FORTRAN subroutine M3DM9 in Sect. 6.5.
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6.2.6 Newtonian Fluid

Ideal fluids have no shear stress and viscosity, i.e., sij = 0, and their pressure is
determined from an EOS. Newtonian fluids are the simplest mathematical model
of fluids that accounts for viscosity [130], whose viscous stress sij is related to
the deviatoric strain rate ε̇′

ij by

sij = 2με̇′
ij (6.150)

where μ is the dynamic (shear) viscosity that does not depend on the velocity or
stress state of the fluid. For non-Newtonian fluids, the viscosity is dependent on
shear rate or shear rate history. Many common liquids and gases, such as water,
alcohol, light oil, and air, can be assumed to be Newtonian. The viscosity of
water at room temperature is about 1.01 × 10−3 kg/m s.

Note that when μ = 0, the fluid has no resistance to shearing, and could
experience extremely large shear deformation under a very small shear force,
which will lead to numerical instability. Thus, μ = 0 should be avoided in nu-
merical simulation, and a critical value must be chosen with the viscosity being
assumed to be very small, which is consistent with physics. Otherwise, an EOS
should be used. The pressure p, density ρ, and temperature T of an ideal fluid
are related by an EOS as follows:

p = p(ρ,T ). (6.151)

For example, the EOS of an ideal gas is given by

p = RρT (6.152)

where R is the specific gas constant.
The model for ideal fluids is implemented into the FORTRAN subroutine

M3DM7 in Sect. 6.5.

6.2.7 High Explosive

Detailed information about high explosive modeling could be found in repre-
sentative references [49,53]. The model used in the open-source MPM code to
simulate the detonation process of a high explosive is introduced here. Based on
the Chapman–Jouguet theory, an ideal detonation consists of two processes, the
steady-state detonation process and the following process including the expan-
sion of gaseous products and their interaction with the surrounding material, as
shown in Fig. 6.11.

The steady-state detonation can be seen as a shock wave moving through the
explosive, whose front compresses and heats the explosive to initiate chemical
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FIGURE 6.11 Detonation process of an explosive.

reaction. Because the velocity of the detonation wave is very fast, the exother-
mic reaction is completed within a few microseconds. The energy released by
the reaction feeds the shock front and drives it forward. At the same time, the
gaseous products are expanding and interact with the surrounding material. The
shock front, chemical reaction, and the leading edge of the rarefaction are all in
dynamic equilibrium such that they are all traveling at the same velocity which
is named as the detonation velocity and is one of material constants of a spec-
ified explosive [143]. For military explosives, the detonation velocity is about
6500 to 9500 m/s, and the pressure of the detonation products could reach to
tens of GPa with temperature of 3000 to 5000 K. Please refer to Sect. 2.9 for
further information about the detonation wave.

In the initialization phase, a lighting time tL is calculated for all the parti-
cles in the explosive by dividing the distance from the detonation point by the
detonation velocity D. If multiple detonation points are specified, the closest
point determines tL. After the detonation, the gaseous product is controlled by
an EOS. The real pressure p of the gaseous product is given by multiplying
the pressure pEOS obtained from the EOS for the explosive with a burn fraction
F that controls the release of chemical energy for simulating detonation [14],
namely,

p = F · pEOS (6.153)

where F is the burn fraction taken as

F =
{

(t−tL)D
1.5h

t > tL,

0 t � tL
(6.154)

where h denotes the characteristic size of a particle, and t is the current time.
If F exceeds 1, it is reset to 1. It often takes several time steps for F to reach
the value 1 with this calculation of the burn fraction. After reaching the value 1,
F is held constant. With this method, the discontinuous detonation wave can be
smoothed to be a continuous one with a rapidly changing wavefront in a narrow
region to suppress the numerical oscillation induced by the discontinuities [134,
144].
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Eq. (6.154) predicts the ignition due to the propagation of detonation wave.
A high explosive can also be ignited due to shock compression whose burn
fraction can be calculated by

F = β(1 − V ) (6.155)

with

β = ρ0D
2

pCJ
= 1

1 − VCJ
(6.156)

where pCJ is the Chapman–Jouguet pressure provided as a material constant
by users, and VCJ is the Chapman–Jouguet relative volume. If both ignition
mechanisms are considered, the burn fraction F in Eq. (6.153) should be chosen
as the maximum value of those obtained from Eqs. (6.154) and (6.155).

Explosives can be assumed as an ideal elastoplastic material before ignition,
and an ideal gas after ignition. To avoid numerical instability, the viscosity of
certain value should be included in the gaseous product of explosives, as shown
in Eq. (6.150).

The high explosive model is implemented into the FORTRAN subroutine
M3DM6 in Sect. 6.5.

6.3 EQUATION OF STATE

An equation of state (EOS) is a relation among state variables, such as pressure,
volume, temperature, or internal energy, which describes the state of matter un-
der a given set of physical conditions. The details of the EOSs related to extreme
events can be found in the representative references [49,53]. The essential fea-
tures and numerical implementation of the EOSs used in the open-source MPM
code are introduced in this section.

6.3.1 Polytropic Process

A polytropic process obeys the relation

pvn = C (6.157)

where v = 1/ρ is the specific volume, n is the polytropic index, and C is a
constant. The condition of n = 0 represents an isobaric process, n = 1 represents
an isothermal process, n = γ = cp/cv represents an isentropic process, and n =
∞ represents an isochoric process.

For an isentropic process (n = γ ), the first law of thermodynamics gives

de = −pdv (6.158)



208 The Material Point Method

where e is the specific internal energy. Integrating Eq. (6.158) leads to

e = −
∫ v

v0

pdv = −C

∫ v

v0

v−γ dv

= pv − p0v0

γ − 1
= p

ρ(γ − 1)
− p0

ρ0(γ − 1)
. (6.159)

Eq. (6.159) can be rewritten as

p = ρ

ρ0
p0 + (γ − 1)ρe = ρ

ρ0
[p0 + (γ − 1)E] (6.160)

with E being the internal energy per unit initial volume.
The expansion of the gaseous products of a high explosive can be modeled

as a polytropic process. In the high pressure regime, n approximately equals
to 3. The value of n decreases with the expansion of the products, and finally
approaches 1.4 when the products expand to the atmospheric pressure state.

6.3.2 Nearly Incompressible Fluid

If an EOS is used for a fluid with a very low Mach number, the critical time
step of an explicit time integration scheme will be very small, especially when
the Mach number approaches zero, which corresponds to a nearly incompress-
ible fluid. To avoid this numerical difficulty, an artificial EOS can be employed
which uses an artificial speed of sound. By choosing an appropriate value of the
artificial speed of sound, the critical time step can become large, and the density
fluctuation can be reduced, namely, less than 3%.

When simulating free surface flows with the SPH, Monaghan [46,99] em-
ployed the artificial EOS [145] as follows:

p = p0

[(
ρ

ρ0

)γ

− 1

]
(6.161)

where γ = 7, and p0 and ρ0 are the reference pressure and reference density,
respectively. Choosing γ to be 7 can keep the density fluctuation very small
to satisfy the incompressible condition. However, a small error in density may
result in a significant error in pressure.

Morris et al. [146] employed the following EOS in simulating a low
Reynolds number incompressible flows with the SPH, i.e.,

p = c2ρ (6.162)

where c is the artificial speed of sound, which should be much smaller than the
true speed of sound of the fluid to make the critical time step large enough,
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but should not be too small to make the fluid nearly incompressible. Mor-
ris et al. [146] proposed to estimate the artificial speed of sound with the use
of

c2 ∼ max

(
V 2

0

δ
,
νV0

L0δ
,
FL0

δ

)
(6.163)

where V0 is the fluid velocity, F is the body force per unit mass, L0 is the
characteristic length, ν = μ/ρ is the kinematic viscosity, and

δ = �ρ

ρ0

is the relative density fluctuation that can be chosen as δ � 3%.

6.3.3 Linear Polynomial

The linear polynomial EOS is given by

p = c0 + c1μ + c2μ
2 + c3μ

3 + (c4 + c5μ + c6μ
2)E (6.164)

where c0, c1, c2, c3, c4, c5, and c6 are user-defined material constants, and

μ = ρ

ρ0
− 1 = 1

V
− 1 (6.165)

where V = ρ0/ρ is the relative volume, namely, the ratio of the current volume
to the initial volume.

To determine the critical time step of an explicit time integration scheme, the
partial derivatives of pressure p with respect to density ρ and internal energy E

are required, as shown in Eq. (3.43). The derivative of μ with respect to density
ρ can be obtained from Eq. (6.165) as

dμ

dρ
= 1

ρ0
. (6.166)

Taking partial derivatives of Eq. (6.164) with respect to ρ and E and invok-
ing Eq. (6.166) leads to

∂p

∂ρ

∣∣∣∣
E

= ∂p

∂μ

∣∣∣∣
E

dμ

dρ
= 1

ρ0
[c1 + 2c2μ + 3c3μ

2 + (c5 + 2c6μ
2)E], (6.167)

∂p

∂E

∣∣∣∣
ρ

= c4 + c5μ + c6μ
2. (6.168)
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TABLE 6.1 Material Constants in the JWL EOS for Different Explosives

Explosive CJ parameters Coefficients in EOS
ρ0
g/cm3

p

GPa
D

cm/µs
γ E0

kJ/cm3
A

GPa
B

GPa
R1 R2 ω

TNT 1.63 21.0 0.693 2.727 7.0 371.2 3.23 4.15 0.95 0.30

Tetryl 1.73 28.5 0.791 2.798 8.2 586.8 10.67 4.4 1.20 0.28

Substituting Eqs. (6.167) and (6.168) into Eq. (3.43), the adiabatic sound
speed of the material can be obtained as

c =
{

4G

3ρ
+ 1

ρ0
[c1 + 2c2μ + 3c3μ

2 + (c5 + 2c6μ
2)E]

+ pV 2

ρ0
(c4 + c5μ + c6μ

2)

} 1
2

. (6.169)

When the material is in the tensile regime (μ < 0), the coefficients of μ2 are
set to zero, namely, c2 = c6 = 0.

When choosing c0 = c1 = c2 = c3 = c6 = 0 and c4 = c5 = γ − 1, the linear
polynomial EOS is reduced to the Gamma law EOS for ideal gas, namely,

p = (γ − 1)ρe (6.170)

where γ = cp/cv is the adiabatic index, heat capacity ratio, or the ratio of spe-
cific heat, cp is the heat capacity at constant pressure, and cv is the heat capacity
at constant volume.

The linear polynomial EOS is implemented into the FORTRAN subroutine
eos1 in Sect. 6.5.

6.3.4 JWL

The JWL (Jones–Wilkins–Lee) EOS can be used to describe the relation among
pressure, internal energy, and volume of the gaseous products of high explo-
sives, which takes the form of

p = A

(
1 − ω

R1V

)
e−R1V + B

(
1 − ω

R2V

)
e−R2V + ωE

V
(6.171)

where E = ρ0e is the internal energy per unit initial volume, and ω, A, B , R1,
and R2 are user-defined material constants. Table 6.1 lists the material constants
for two kinds of explosives [8,147].
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Taking partial derivatives of Eq. (6.171) with respect to ρ and E and invok-
ing Eq. (3.41) results in

∂p

∂ρ

∣∣∣∣
E

= ∂p

∂V

∣∣∣∣
E

dV

dρ

= V 2

ρ0

{[
AR1

(
1 − ω

R1V

)
− A

ω

R1V 2

]
e−R1V +[

BR2

(
1 − ω

R2V

)
− B

ω

R2V 2

]
e−R2V + ωE

V 2

}
, (6.172)

∂p

∂E

∣∣∣∣
ρ

= ω

V
. (6.173)

Substituting Eqs. (6.172) and (6.173) into Eq. (3.43), the adiabatic sound
speed of the material can be obtained as

c =
{

V 2

ρ0

{[
AR1

(
1 − ω

R1V

)
− A

ω

R1V 2

]
e−R1V +[

BR2

(
1 − ω

R2V

)
− B

ω

R2V 2

]
e−R2V + ωE

V 2

}
+ pω

ρ

} 1
2

.

(6.174)

The JWL EOS is implemented into the FORTRAN subroutine eos3 in
Sect. 6.5.

6.3.5 Mie–Grüneisen

The Mie–Grüneisen EOS used to determine the pressure in a shock-compressed
solid is given as [50]

p = pH + γ

v
(e − eH ) (6.175)

where pH and eH are the pressure and specific internal energy on the Hugo-
niot, respectively, which can be found from Eqs. (2.81) and (2.77), and γ is the
Grüneisen parameter determined by

γ = v

(
∂p

∂e

)
v

= 3αv

CvK
(6.176)

where 3α = (1/v)(∂v/∂T )p is the thermal expansion coefficient, K =
−(1/v)(∂v/∂P )T is the isothermal compressibility coefficient, and Cv =
(∂e/∂T )v is the heat capacity at constant volume. The Grüneisen parameter
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γ obeys the following relation:

γ

v
= γ0

v0
= constant (6.177)

where γ0 and v0 are the Grüneisen parameter and specific volume at the refer-
ence state, respectively.

Due to pH � p0, Eq. (2.81) can be rewritten as

pH = c2
0(v0 − v)

[v0 − s(v0 − v)]2
= ρ0c

2
0μ(1 + μ)

[1 − (s − 1)μ]2
(6.178)

where μ = ρ/ρ0 − 1 = v0/v − 1. Eq. (6.178) can be approximated by a Taylor
series of degree 3 about μ = 0 as

pH ≈ pH |μ=0 + dpH

dμ

∣∣∣∣
μ=0

μ + 1

2

d2pH

dμ2

∣∣∣∣
μ=0

μ2 + 1

6

dp3
H

dμ3

∣∣∣∣∣
μ=0

μ3

= ρ0c
2
0[μ + (2s − 1)μ2 + (s − 1)(3s − 1)μ3]. (6.179)

Substituting the internal energy Eq. (2.77) on the Hugoniot curve into
Eq. (6.175) and assuming p0 = 0 and e0 = 0, we have

p = pH (1 − γμ

2
) + γ0E (6.180)

with E = ρ0e.
For expanded materials, i.e., μ < 0, the pressure is defined by

p = ρ0c
2
0μ + γ0E. (6.181)

The partial derivatives of Eq. (6.180) with respect to ρ and E can be obtained
as

∂p

∂ρ

∣∣∣∣
E

= ∂p

∂μ

∣∣∣∣
E

dμ

dρ
=
⎧⎨⎩
[

dpH

dμ

(
1 − γμ

2

)− pH
γ
2

]
1
ρ0

μ � 0,

c2
0 μ < 0,

(6.182)

∂p

∂E

∣∣∣∣
ρ

= γ0. (6.183)

Thus, the adiabatic sound speed of the material can be found from Eq. (3.43) as
follows:

c =

⎧⎪⎪⎨⎪⎪⎩
{

4G
3ρ

+ 1
ρ0

[
dpH

dμ

(
1 − γμ

2

)− pH
γ
2

]
+ pV 2

ρ0
γ0

} 1
2

μ � 0,{
4G
3ρ

+ c2
0 + pV 2

ρ0
γ0

} 1
2

μ < 0

(6.184)
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with

dpH

dμ
= ρ0c

2
0

1 + (s1 + 1)μ

[1 − (s1 − 1)μ]3

≈ ρ0c
2
0[1 + 2(2s − 1)μ + 3(s − 1)(3s − 1)μ2]. (6.185)

Eq. (6.178) shows that when μ = 1/(s − 1), we get p = ∞, namely, the
maximum value of μ of the material is μmax = 1/(s − 1).

The Mie–Grüneisen EOS is implemented into the FORTRAN subroutine
eos2 in Sect. 6.5.

6.4 FAILURE MODELS

How to predict the onset and evolution of localized failure remains a challenging
task, as shown in the special issue on the recent Sandia Fracture Challenge [148].
A lack of consistency across different international research groups in address-
ing problems of fracture necessitates further investigations in failure modeling
via integrated analytical, experimental, and numerical efforts. The focus of this
section is on the introduction of the criteria used in the open-source MPM code
to identify the onset of localized failure. Both continuous and discontinuous ap-
proaches are available for modeling and simulating the evolution of localized
failure, depending on the level of discontinuity [149–151], etc. However, a fur-
ther discussion on this topic is beyond the scope of this book. Hence, only the
essential features and numerical implementation of commonly used failure cri-
teria are given below.

In Lagrangian FEM codes, a failed element is usually removed from the
computational process (element erosion) to overcome the numerical difficulties
associated with the element distortions. However, the erosion will cause a loss of
mass, strength, and internal energy, due to the nonlocal nature of failure, so that
it is not a physics-based modeling procedure. In the MPM, there is no element
distortion so that erosion is no longer required. In the open-source MPM code,
a failed particle is unable to sustain shear or tensile stress. In each time step,
hence, the deviatoric stresses of all failed particles are set to zero. In addition,
the mean stress of a failed particle is also set to zero if its hydrostatic pressure
is negative. Note that this treatment does not consider the nonlocal nature of
failure evolution for computational convenience so that special caution must be
taken when calibrating the model parameters against experimental data based
on a specific arrangement of background grid and particle spacing. A recent
study on the improved decohesion modeling with the MPM has circumvented
the mesh-dependency of numerical solutions [151].



214 The Material Point Method

6.4.1 Effective Plastic Strain Failure Model

A particle is assumed to be failed if its effective plastic strain εp exceeds a
user-defined critical value ε

p
max, i.e., εp > ε

p
max. This criterion is usually used to

model ductile materials. Refer to Sect. 6.2.2 for the calculation of the effective
plastic strain εp .

6.4.2 Hydrostatic Tensile Failure Model

A particle is assumed to be failed if it is in tension and its hydrostatic pressure
p is less than a user-defined critical value (negative) pmin, which is usually
adopted to model brittle failure.

The effective plastic strain and hydrostatic tensile failure models can be used
together, namely, if a particle satisfies the condition of εp > ε

p
max or p < pmin,

the particle is assumed to be failed.

6.4.3 Maximum Principal/Shear Stress Failure Model

When the maximum principal stress or maximum shear stress of a particle ex-
ceeds a user-defined value, the particle is assumed to be failed.

The principal stress can be found from the following characteristic equation:

λ3 − I1λ
2 − I2λ − I3 = 0 (6.186)

where

I1 = σkk, (6.187)

I2 = −1

2
(σiiσkk − σikσik), (6.188)

I3 = det(σ ) (6.189)

are the three invariants of the Cauchy stress. It can be shown that Eq. (6.186)
possesses three real roots, σ1, σ2, and σ3. Assuming σ1 � σ2 � σ3, the maximum
shear stress can be written as

τmax = σ1 − σ3

2
. (6.190)

6.4.4 Maximum Principal/Shear Strain Failure Model

When the maximum principal strain or maximum shear strain of a particle ex-
ceeds a user-defined value, the particle is assumed to be failed.
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6.4.5 Effective Strain Failure Model

When the effective strain εeff of a particle exceeds a user-defined value, the
particle is assumed to be failed. The effective strain εeff is defined as

εeff =
(

2

3
ε : ε

) 1
2

. (6.191)

The above two criteria are suitable for strain-based constitutive modeling,
such as strain-based damage models, in failure analyses.

6.5 COMPUTER IMPLEMENTATION OF MATERIAL MODELS

The main purpose of constitutive modeling is to update the stress state σ n+1

for the given strain rate, vorticity, and internal state variables based on the
previous state, as discussed in Sect. 6.1. The deviatoric stress sn+1 is up-
dated using Eq. (6.7), and the pressure pn+1 is updated using Eq. (6.18). In
the MPM3D-F90, the module MaterialData encapsulates the variables of the
material models initialized by the user input data file, while the module Ma-
terialModel encapsulates the inherent variables and operators of the material
models.

6.5.1 Module MaterialData

The module MaterialData encapsulates the variables of material models which
are initialized by the user input data file, such as the material parameters, the
total number of detonation points, and their positions. When implementing new
constitutive models and EOSs, the new required variables could be added into
the module.

The module MaterialData defines a derived data type Material with the fol-
lowing elements:

• integer::MatType – Type of strength model (1-Elasticity, 2-Perfect elasto-
plasticity, 3-Linear isotropic hardening, 4-Johnson–Cook plasticity,
5-Simplified Johnson–Cook plasticity, 6-Simplified Johnson–Cook plastic-
ity with failure, 7-Johnson–Cook plasticity with failure, 8-high explosive,
9-Null material, and 10-Drucker–Prager plasticity);

• integer::EosType – Type of EOSs (1-Polynomial, 2-Mie–Grüneisen, and
3-JWL);

• real(8)::Density – Initial density of a particle;
• real(8)::Young – Young’s modulus;
• real(8)::Poisson – Poisson’s ratio;
• real(8)::Mp – Particle mass;



216 The Material Point Method

• real(8)::Yield0 – Initial yield strength;

• real(8)::TangMod – Tangential modulus;

• real(8)::roomt – Room temperature;

• real(8)::Melt: Melting temperature;

• real(8)::SpecHeat – Specified heat;

• real(8)::B_jc, n_jc, C_jc, m_jc – Parameters for Johnson–Cook plasticity;

• real(8)::epso – The effective plastic strain-rate of the quasi-static test, ε̇0,

used to determine the yield and hardening parameters in the Johnson–Cook

plasticity model;

• real(8)::prd – The tensile pressure value to initiate damage;

• real(8)::epf – The effective plastic strain at failure;

• real(8)::D – Detonation velocity;

• real(8)::cEos(10) = 0 – The constants in the EOSs, which are C0, C1, C2, C3,

C4, C5, C6 for the linear polynomial EOS, C1, C2, C3, C4 for the Grüneisen

EOS, and A, B, R1, R2, W, E0, V0 for the JWL EOS;

• real(8)::Wavespd – The sound speed of a NULL material. In MPM3D-F90,

the sound speed of linearly elastic material, Eq. (3.45), is used to determine

the critical time step. Thus, for a NULL material, an artificial sound speed

has to be specified by users; and

• real(8)::q_fai, k_fai, q_psi, ten_f – The parameters for the Drucker–Prager

model.

The module MaterialData also defines the following global variables:

• integer::nb_mat = 0 – Total number of material sets defined in the user input

data file;

• type(Material), allocatable::mat_list(:) – The list of materials, which stores

the nb_mat materials;

• logical::Jaum = .true. – Flag to identify whether to use Jaumann stress rate

in the stress update;

• integer, parameter::maxDeto = 10 – The maximum number of detonation

points;

• integer::nDeto = 0 – Total number of detonation points defined in the user

input data file, which must be less than or equal to maxDeto;

• real(8)::DetoX(maxDeto) = 0.0, DetoY(maxDeto) = 0.0, DetoZ(maxDeto) =

0.0 – The x, y, and z coordinates of the detonation points; and

• real(8)::bq1 = 0.0, bq2 = 0.0 – The artificial bulk coefficients.

The source code of the module MaterialData can be found in the file Mate-

rial.f90.
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6.5.2 Module MaterialModel

The module MaterialModel encapsulates the variables and corresponding op-
erators for each material model, which consists of a strength model and an
EOS for extreme events. The strength model is used to update the deviatoric
stress, while the EOS is used to update the pressure. The strength models
implemented in the module MaterialModel include elasticity, elastoplasticity,
Johnson–Cook plasticity, Drucker–Prager plasticity, null material, and high ex-
plosive material. The EOSs implemented in the module MaterialModel include
the polynomial, Mie–Grüneisen, and JWL EOSs. New variables and operators
could be added in the module MaterialModel to implement new strength models
and/or EOSs.

The module MaterialModel defines the following global variables:

• integer::mid – The material ID;
• integer::etype_ – Type of EOS;
• integer::mtype_ – Type of strength model;
• real(8)::young_, poisson, yield0_, tangmod_ – The elastic modulus, Pois-

son’s ratio, initial yielding strength, and elastoplastic tangent modulus, re-
spectively;

• real(8)::den0_ – The initial density of material;
• real(8)::den_ – The current density of material;
• real(8)::vold – The volume of a particle at the nth time step;
• real(8)::vol_ – The current volume of a particle;
• real(8)::vol0_ – The initial volume of a particle;
• real(8)::dvol – Half of the volume increment of a particle;
• real(8)::dinc(6) – The strain increment of a particle;
• real(8)::sm – The mean stress of a particle;
• real(8)::sd(6) – The deviatoric stress of a particle;
• real(8)::sig(6) – The stress of a particle;
• real(8)::dsm – The pressure increment of a particle;
• real(8)::bqf – The bulk viscosity force;
• real(8)::seqv – The effective stress;
• real(8)::epeff_ – The effective plastic strain;
• real(8)::sig_y – The current yield stress;
• real(8)::depeff – The effective plastic strain increment;
• real(8)::ratio – For hardening calculation;
• real(8)::G2, K3, PlaMod – 2*G, 3*K, and plastic hardening modulus;
• real(8)::specheat_ – Specific heat capacity;
• real(8)::tmprt – Temperature;
• real(8)::iener – Internal energy
• real(8)::specen – Internal energy per initial volume;
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• real(8)::mu – mu = den_/den0_ −1;
• real(8)::rv – Relative volume
• real(8)::bfac – Burn fraction; and
• real(8)::cp – Sound speed.

The module MaterialModel defines the following operators:

• Constitution(de, vort, b, p) – Update the stress of particle p by invoking cor-
responding strength model and EOS. The parameters de, vort, b, and p are
the strain increment, vortex increment, body index, and particle ID, respec-
tively;

• sigrot (vort, sig, sm, sd) – Rotate the stress state when the Jaumann rate is
used in the stress update, as shown in Sect. 6.1;

• elastic_devi – Update the deviatoric stress of the particle using the elasticity
model Eq. (6.29);

• elastic_p – Update the mean stress of the particle using the elasticity model
Eq. (6.30);

• lieupd – Update the internal energy of the particle whose strength model is
not used with an EOS, using Eq. (6.10);

• hieupd – Update the internal energy of the particle whose strength model is
used with an EOS, using Eq. (6.15);

• EquivalentStress – Calculate the effective stress of the particle using
Eq. (6.64);

• M3DM1 – The elasticity model, as shown in Sect. 6.2.1;
• M3DM2 – The perfect elastoplasticity model, as shown in Sect. 6.2.4;
• M3D3 – The linear isotropic hardening model, as shown in Sect. 6.2.4;
• M3DM4 (mat, DT, tmprt) – The Johnson–Cook plasticity model in which

the parameters mat, DT, and tmprt are the material ID, time step size, and
current temperature, respectively, as shown in Sect. 6.2.4.4;

• M3DM5(mat, DT) – The simplified Johnson–Cook plasticity model that
must be used with an EOS, as shown in Sect. 6.2.4.4;

• M3DM6(mat, DT) – The high explosive model that must be used with an
EOS, as shown in Sect. 6.2.7;

• M3DM7 – The null material model that must be used with an EOS for fluid,
as shown in Sect. 6.2.6;

• M3DM8(mat, DT) – The Johnson–Cook plasticity model that must be used
with an EOS, as shown in Sect. 6.2.4.4;

• M3DM9(mat, DT) – The perfect Drucker–Prager plasticity model, as shown
in Sect. 6.2.5;

• seleos(failure) – Update the pressure of a particle by invoking an EOS. The
parameter failure indicates whether the particle is failed;

• eos1(failure) – The polynomial EOS, as shown in Sect. 6.3.3;
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• eos2(failure) – The Mie–Grüneisen EOS, as shown in Sect. 6.3.5;
• eos3(failure) – The JWL EOS, as shown in Sect. 6.3.4;
• bulkq – Calculate the artificial bulk viscosity force, as shown in Sect. 2.8.2.

The source code of the module MaterialModel can be found in the file Consti-
tution.f90.
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Research efforts have been made over the recent years to advance the MPM for
multiscale modeling and simulation. A multi-level refinement scheme has been
designed for the GIMP Method [83], a hierarchical approach has been proposed
in which material points at the fine level in the MPM are allowed to directly
couple with the atoms in molecular dynamics (MD) simulations [152], and a
sequential procedure has been developed to formulate the EOS based on the
MD results for the macroscopic MPM simulation [153]. However, the need for a
transition region between different spatial scales in the hierarchical/sequential or
multi-level refinement approaches limits its application to the cases where dis-
crete nano/microstructures of certain sizes interact with each other in composite
systems. To circumvent this limitation, a particle-based multiscale scheme has
been proposed, in which MD is linked with Cluster Dynamics (CD) via a hierar-
chical way for sub-micron scale simulations while CD is coupled with the MPM
concurrently for microscale simulations [154]. With this approach, the longi-
tudinal impact response between two microrods with different nanostructures
has been explored based on the size effect on the impact responses of discrete
nanostructures [155,156]. However, the CD potential is formulated from the
L-J MD potential, and much work remains to be performed to formulate the
CD potential for better modeling the interactions among metallic nanostruc-
tures.

To extend the recent work [154] to more applicable cases, the particle-based
multiscale procedure has been improved with a concurrent link between the
MPM and Dissipative Particle Dynamics (DPD) for microscale simulations, and
a hierarchical bridge from MD to DPD for nanoscale simulations [157]. In par-
ticular, an effective interfacial scheme between the DPD and MPM is designed
for concurrent simulations, as described below.
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© 2017 Tsinghua University Press Limited. Published by Elsevier Inc. All rights reserved 221

http://dx.doi.org/10.1016/B978-0-12-407716-4.00007-7


222 The Material Point Method

7.1 GOVERNING EQUATIONS AT DIFFERENT SCALES

To better understand the particle-based multiscale simulation procedure, the
governing equations at different scales are first summarized in this section.

At molecular scale, the dynamics of a system with N molecules is governed
by the following equation of motion for each molecule i (assumed to be a rigid
particle):

mi

d2r i

dt2
= miai = − ∂

∂r i

Utot (r1, r2, . . . , rN) (7.1)

in which mi , r i , and ai are the mass, position, and acceleration vectors of
molecule i, respectively, and Utot represents the total potential energy that de-
pends on all the molecular positions and could be divided into two parts, namely,
nonbonded molecular interaction and intramolecular interaction. To demon-
strate the essential feature of the multiscale simulation procedure, only the
nonbonded molecular interaction is considered here.

With the molecular details being coarse-grained at the sub-micron scale, the
DPD governing equations for each rigid particle i can be summarized as follows:

mi

d2r i

dt2
= miai = f C

i + f D
i + f R

i , (7.2)

f C
i =

∑

i �=j

−∇U
(
r ij

)
eij , (7.3)

f D
i =

∑

i �=j

−γijw
D

(
r ij

)
vij , (7.4)

f R
i =

∑

i �=j

σijw
R

(
r ij

)
dWijei (7.5)

where f C
i , f D

i , and f R
i represent respectively the conservative force (in a form

similar to MD), dissipative force, and random force vector acting on particle i,
with mi , r i , and ai being respectively the mass, position, and acceleration vec-
tor of particle i, U the inter-particle potential, γij and σij the force magnitudes,
wD and wR the weight functions of r ij = r i − rj , vij = vi − vj the velocity
difference vector between particle i and j, ei = r i/ |r i | the normalized position
vector of particle i, eij = r ij /

∣∣r ij

∣∣ the normalized connection vector between
particle i and j, and Wij the independent d-dimensional Wiener processes. The
above three kinds of force vectors have their respective cutoff radius which is
several orders larger than that in MD, depending on the coarse-graining level
in different cases. In fact, all the discrete approaches such as MD and DPD
adopt discrete forcing functions with different values of cutoff radius, while the
continuous approaches such as the FEM use the internal force vectors obtained
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from the constitutive models defined over specific material elements. As can
be found from the MPM formulation, the MPM is a continuum-based particle
method such that it possess useful features of both discrete and continuous ap-
proaches, as shown next.

At microscale (continuum level), the governing differential equations dis-
cretized with the MPM take the form of

mt
ia

t
i = (

f t
i

)int + (
f t

i

)ext (7.6)

for a lumped mass matrix, where the internal force vector is given by

(
f t

i

)int = −
Np∑

p=1

Mpss,t
p · Gi

(
xt

p

)
(7.7)

with the particle stress ss,t
p = ss

(
xt

p, t
)

and the gradient of shape function
Gi

(
xt

p

) = ∇Ni |xt
p
, and the external force vector is defined to be

(
f t

i

)ext = ct
i + bt

i (7.8)

with ct
i and bt

i denoting the specific traction and body force vectors evaluated at
the grid nodes, respectively.

As can be seen from the above, Eqs. (7.1), (7.2), and (7.6) have similar form
although they are formulated at different scales with different domains of in-
fluence. The right-hand side (forcing function) of these equations includes the
internal interactions among discrete particles (molecules, DPD particles or ma-
terial points), as well as the external forces. The difference between the MPM
and DPD/MD is that Eq. (7.6) is evaluated at the background grid nodes, instead
of the material points. As a result, the strain and stress fields in the MPM could
be easily determined with the use of the gradient of nodal basis function and
constitutive model, respectively, instead of finding a representative domain of
certain cutoff radius to determine the strain and stress as required in the DPD
and MD. Thus, the particle-based multiscale simulation procedure consists of a
concurrent link between the MPM and DPD particles to simulate mesoscale/mi-
croscale responses, and a hierarchical bridge from MD to DPD to characterize
the DPD forcing function for nano and sub-micron scale simulations based on
the MD solutions. In the concurrent MPM and DPD computational domain, a
particle is a DPD one if its forcing function is defined as shown in Eq. (7.2) for
which there is a cutoff distance. Within the MPM framework, the DPD cutoff
distance should be larger than the cubic cell size for 3D problems. It will be
demonstrated that the DPD details could be effectively coarse-grained with the
use of the mapping and re-mapping procedure via a coarse MPM background
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grid. The reason is because the lower order shape functions could smooth out the
higher order responses. A particle is a material point if the constitutive model
at continuum level is used to calculate the internal force vector as shown in
Eq. (7.7). It is possible for a single MPM cell to include both DPD and MPM
particles at a given time so that the mapping and re-mapping procedure in the
MPM yields a computational homogenization scheme over the cell domain. The
concurrent link between the MPM and DPD enables the seamless integration of
constitutive modeling at continuum level with discrete DPD forcing functions.
The simplicity of the particle-based simulation procedure provides a robust way
for zoom-in to molecular details and zoom-out to microscale responses.

7.2 SOLUTION SCHEME FOR CONCURRENT SIMULATIONS

The specific solution steps for a concurrent MPM and DPD simulation are de-
scribed below.

7.2.1 Preprocessor

1. Discretize a continuum body into a finite set of Np material points with re-
spect to the original configuration of the body. Each material point carries its
original material properties, which is a DPD particle if the DPD forcing func-
tion is active, or an MPM particle if the constitutive model formulated at the
continuum level is used for calculating the internal force vector. The material
points are followed throughout the deformation process of the body. An arbitrary
background grid of certain spatial resolution is employed to find the natural co-
ordinates of any material point, and the grid cell that contains the material point.

2. Initialize all the state variables at the material points, input the control
parameters for the computer code, and equilibrate the system of material points
as required for the concurrent MPM and DPD simulation due to the use of the
DPD forcing functions.

7.2.2 Central Processing Unit

The detailed steps in each temporal increment are listed as follows:
1. For each material point (include both DPD particles and MPM particles),

perform the mapping operation from the point to the corresponding cell nodes.
Map the mass from the material points to the nodes of the cell containing

these points

mt
i =

Np∑

p=1

MpNi

(
xt

p

)
(7.9)
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where mt
i is the mass at node i at time t, Mp the material point mass, Ni the

shape function associated with node i, and xt
p the location of the material point

at t. Map the momentum from the material points to the nodes of the cell con-
taining these points

(mv)ti =
Np∑

p=1

(Mv)tp Ni

(
xt

p

)
(7.10)

where (mv)ti denotes the nodal momentum at node i at t, and (Mv)tp the material
point momentum at t. Find the internal force vector at the cell nodes for the
MPM particles associated with that cell

(
f t

i

)int = −
Np∑

p=1

Gi

(
xt

p

) · st
p

Mp

ρt
p

(7.11)

in which Gi

(
xt

p

)
is the gradient of the shape function associated with node

i evaluated at xt
p , st

p the particle stress tensor at t, and ρt
p the particle mass

density at t. For the DPD particles related to that cell, Eq. (7.11) is replaced with
the following one:
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where f C
pj , f D

pj , and f R
pj represent respectively the conservative, dissipative,

and random force vectors acting on particle p by particle j (j = 1,2, . . . ,N
j
p )

with N
j
p being the number of the DPD particles within the cutoff radius of par-

ticle p.
2. Apply essential and natural boundary conditions to the cell nodes, and

compute the nodal force vector

f t
i = (

f t
i

)int + (
f t

i

)ext
. (7.13)

3. Update the momenta at the cell nodes

(mv)t+�t
i = (mv)ti + f t

i�t. (7.14)

4. For each material point, perform the mapping operation from the nodes of
the cell containing the material point to that point.

Map the nodal accelerations back to the material point

at
p =

Nn∑

i=1

f t
i

mt
i

Ni

(
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p

)
. (7.15)
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Map the current nodal velocities back to the material point

v̄t+�t
p =

Nn∑

i=1

(mv)t+�t
i

mt
i

Ni

(
xt

p

)
. (7.16)

Compute the current material point position

xt+�t
p = xt

p + v̄t+�t
p �t (7.17)

that represents a backward integration.
Compute the material point displacement

ut+�t
p = xt+�t

p − x0
p. (7.18)

As can be seen from Eqs. (7.16) and (7.17), nodal shape functions are used
to map the nodal velocity continuously to the interior of the grid cell so that the
positions of the material points are updated by moving them in a single-valued,
continuous velocity field.

5. Map the updated material point momenta back to the nodes of the cell
containing these material points

(mv)t+�t
i =

Np∑

p=1

(Mv)t+�t
p Ni

(
xt

p

)
. (7.19)

6. Find the updated nodal velocities

vt+�t
i = (mv)t+�t

i

mt
i

. (7.20)

7. Apply the essential boundary conditions to the nodes of the cells contain-
ing the boundary material points.

8. Find the current gradient of particle velocity

Lt+�t
p =

Nn∑

i=1

vt+�t
i Gi

(
xt

p

)
(7.21)

and the particle strain increment

�ep = (
symLt+�t

p

)
�t (7.22)

so that the stress increment could be obtained from the constitutive model for
the given strain increment to update the stress tensor of the MPM particle

st+�t
p = st

p + �s. (7.23)
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9. Identify which grid cell each material point belongs to, and update the
natural coordinates of the material point. This is the convective phase for the
next time increment.

10. Go to Step 1 for the next time increment, if the required termination time
has not been reached. Otherwise, go to Postprocessor for processing the output
files.

7.3 INTERFACIAL TREATMENT

For the DPD and MPM particles in the interfacial region, a simple interfacial
treatment can be employed to capture the essential physics by smoothing the
mismatch between DPD and MPM particles. The internal force due to the DPD
and MPM particles in the interfacial region is calculated with the following
equation:
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with Nd
p and Nm

p being the number of the DPD and MPM particles within the
interfacial region, respectively. For each DPD particle in the interfacial region,
f C

pj , f D
pj , and f R

pj in the first term of Eq. (7.24) are determined as follows:
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where N
j
p is the total number of the particles within the cutoff radius of DPD

particle p. In combination with Eq. (7.13), Eqs. (7.11) and (7.12) are used to find
the internal forces due to the MPM and DPD particles outside the interfacial
region, respectively. It can be found from Eqs. (7.25)–(7.27) that each DPD
particle inside the interfacial region can feel the interactions from the MPM
particles (treated as the DPD particles with corresponding forcing functions)
within its cutoff radius. On the other hand, the use of Eq. (7.24) includes the
internal force contributions from both DPD and MPM particles located within
the interfacial region. Hence, each interfacial MPM particle is also connected
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FIGURE 7.1 Deformed configurations of the Cu target at 10 ps after impact occurs, simulated with
(a) a DPD only model, and the model coupling DPD particles with the MPM background grid of
(b) cell size 2 Å and (c) cell size 8 Å, respectively [157].

with its neighbor DPD particles via the mapping and re-mapping process within
the MPM framework.

7.4 DEMONSTRATION

Consider first a copper target under impact loading. As shown in Fig. 7.1, the
MPM mapping and re-mapping operation would coarsen the DPD deformation
details if the background grid resolution is decreased (i.e., the cell size is in-
creased). As can be observed from Fig. 7.1(c), a large cell size leads to the
loss of the detailed deformation pattern as shown in Fig. 7.1(a) that is pro-
duced by DPD-only simulation. In contrast, the use of a small cell size could
produce more details about the evolution of localization and the deformation
pattern close to that predicted by the DPD-only model, as shown in Fig. 7.1(b).
Thus, the spatial resolution of the MPM background grid is related to the coarse-
graining level of DPD simulations without affecting the essential feature of wave
propagation in the impacted target.

To further confirm the above findings, consider a copper rod under dynamic
tensile loading with the use of the DPD-only model and the model coupling the
DPD particles with the MPM background grid, as illustrated in Fig. 7.2. The
rod has the dimension of 216 Å × 72.3 Å × 72.3 Å along the x, y, and z co-
ordinates. The two ends of thickness 15 Å each are treated as a rigid body with
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FIGURE 7.2 The geometric sketch of a Cu rod subjected to tensile loading at both ends, with
(a) a DPD only model and (b) the model coupling DPD particles with the MPM background
grid [157].

FIGURE 7.3 Stress–strain relations of the Cu rod under tension at a strain rate of 0.02/ps, simulated
with a DPD only model and the models coupling DPD particles with the MPM background grid of
different cell sizes [157].

a constant velocity applied in the opposite directions. As shown in Fig. 7.3 for
the stress–strain relations of the copper rod, the elastic responses are consis-
tent for both the DPD-only model and the model coupling DPD particles with
the MPM background grid of different cell sizes, which implies that the elas-
tic modulus is independent of the spatial resolution of the MPM background
grid. Hence, it could be confirmed that the elastic wave speed is not affected
by the coupling between the DPD and MPM background grid. Moreover, it can
be found that the peak stress approaches the value predicted by the DPD-only
model with the decrease of the MPM cell size.

More examples and related references could be found from the recent papers
for concurrent MPM/DPD simulations of failure evolution, solid–fluid interac-
tion, and solid-state sintering [157,158] in order to demonstrate the robustness
and potential of the proposed procedure for multiscale simulations which com-
bines discrete and continuous approaches in a single computational domain.
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Based on the theoretical framework and numerical implementation as discussed
in the previous chapters, this chapter further demonstrates the features of the
MPM with practical applications. Since the MPM possesses the advantages
of both Lagragian and Eulerian descriptions, no element distortion exists in
the MPM so that the MPM is robust in solving problems involving extremely
large deformations and moving discontinuities. Applications of the MPM in
extreme loading cases such as transient fracture, hyper-velocity impact, pene-
tration, explosion, and multiphase interaction involving failure evolution have
been attracting much attention in recent years, as described below. In addition,
the on-going research efforts on multiscale analyses and special computational
schemes are also introduced here.

8.1 FRACTURE EVOLUTION

Simulating the evolution of fracture more accurately and effectively can be
considered as one of the original driving forces for developing novel spatial dis-
cretization methods such as meshfree methods and the MPM. Cracks are strong
discontinuities, which is in contradiction with the continuity requirement of fi-
nite element approximation. Embedding cracks in finite elements and allowing
arbitrary propagation directions are therefore a challenging task for the tradi-
tional FEM. Remeshing is usually required for simulating crack propagation,
which is not only a computationally heavy burden but also involves the mesh
generation for complex geometry, not to mention the possible accuracy loss due
to the mapping process between the old mesh and new mesh.

The MPM, though employing the finite element shape function, does not
suffer from the above difficulties. Discontinuities can be described in two ways.
One is to abandon the single-valued velocity field property near the crack by
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using two or more background meshes, and the other is to use failed material
points to approximately describe the crack.

In the first approach, Nairn and his collaborators [66,159] developed the
formulations containing multiple velocity fields for two- and three-dimensional
fracture problems. They named their method as “CRAcks with Material Points
(CRAMP)” [66]. For the nodes far way from the crack path, the nodal variables
are assembled in the classical way. For each node adjacent to the crack, the ma-
terial points influenced by the node are divided into two groups, depending on
whether the material point and the node are at the same side. Only the material
points on the same side can contribute to nodal equations. A function v(p, I )

identifying whether the node I and the material point p are at the same side is
employed in CRAMP [66,159]. Taking a 2D case, for example, v(p, I ) = 1 if
the material point is at the “upper” side of the crack path or both the node and the
material point are far away from the crack path; v(p, I ) = 2 if the material point
is at the “lower” side of the crack path. The value of v(p, I ) and the position
of the node will determine whether point p will contribute to the nodal equa-
tions of node I . The crack surface in the CRAMP method is described with line
segments in 2D and triangle patches in 3D cases [66,159]. The essential idea of
the CRAMP method can be extended to other problems with discontinuities or
interfaces [160]. However, the use of the function v(p, I ) may be more suitable
for a single crack and the elements which the crack cuts through, while a more
precise description for multiple cracks and more complex fracture problems is
still under development.

Typical fracture parameters, such as the energy release rate, the stress inten-
sity factor, or the J-integral, are critical to the fracture analysis. The criteria for
crack propagation are also based on these parameters. Tan and Nairn [82] first
discussed the details of calculating the energy release rate with the MPM. High
numerical accuracy is always desired for the calculation due to the singularity at
the crack tip. Tan and Nairn [82] proposed a scheme to increase the numerical
accuracy, which contains a multiple-sized background mesh and the refinement
of material points. Guo and Nairn [161] discussed the calculation of J -integral
and then dynamic stress intensity factor. The stresses at the material points are
mapped (extrapolated) to corresponding nodes. The boundary part in J -integral
is calculated with nodal physical variables, and the domain part is calculated
with the physical variables at material points. The CRAMP results of stress in-
tensity factors of typical problems were validated with the theoretical results
and the solutions from other numerical methods. The influences of integration
path and background mesh size were also investigated [161].

The MPM for crack propagation under transient loading conditions was de-
veloped [162,163] based on the above schemes. The propagation criterion based
on the J -integral was adopted, and new material points were inserted in front
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of the crack tip when the criterion was satisfied. The cohesive law was used
to describe the mechanical behavior of the material points in the processing
zone. Bardenhagen et al. [162] investigated the influences of various computa-
tional parameters and physical parameters in a mode-I problem. The parameters
included the time step size, the computational domain for the J -integral, the
parameter of the cohesive law, and the fracture strength. Daphalapurkar [163]
studied the dynamic propagation of mode-II crack with the GIMP and cohesive
modeling.

Another approach for fracture simulation uses failed material points to ap-
proximately represent cracks instead of an explicit description of discontinuities.
Such a scheme is referred to as the implicit fracture simulation scheme in the
context. The formation of failed material points represents the initiation, prop-
agation, and branching of cracks. The position of the crack and the interaction
between two sides of the crack, therefore, do not need to be explicitly stated.
After the discontinuous bifurcation analysis identifies the transition from contin-
uous to discontinuous failure, a decohesion model is used to predict the failure
evolution. A representative decohesion model consists of the following set of
equations [164,165]:

(Stress-strain relationship) σ∇ = C : (ε̇ − ε̇d), (8.1)

(Traction equilibrium) τ̇ = σ̇ · n, (8.2)

(Decohesion evolution) u̇d = λ̇dm, (8.3)

(Strain–displacement relationship) ε̇d = λ̇d

2Le

(n ⊗ m + m ⊗ n) , (8.4)

(Consistency condition) F d = τ e − U0[1 − (λd)q ] = 0 (8.5)

where the decohesion displacement ud is the displacement jump between the
two sides of a failure surface, ε̇d is the strain rate tensor associated with the de-
cohesion displacement, n is the unit normal vector to the failure surface, τ is the
traction vector, and λ̇d is a dimensionless variable characterizing the evolution
of decohesion. Le is an effective length, which can be defined as the ratio of a
material volume to the area of the failure surface inside the volume. The vec-
tor m has the displacement dimension and represents the direction in which the
two sides of the failure surfaces detach. The effective traction takes the form of
τ e = τ · m. U0 is the reference surface energy. The parameter q determines the
convexity of the function relating λd with τ e. The meaning of the other variables
can be found in the preceding chapters.

Once the detachment direction m is determined, Eqs. (8.1)–(8.5) can be
solved. A simple but effective way is to use the associated evolution equa-
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tion [165], i.e.,

m = u0
Ad · τ

(τ · Ad · τ )1/2
(8.6)

where u0 = U0/τ 0, and Ad is a positive second-order tensor which determines
the failure mode. For two-dimensional problems, Ad can be written in the fol-
lowing form:

Ad = τ 2
0

⎡
⎢⎢⎢⎣

1

τ 2
np

1

τ 2
tp

⎤
⎥⎥⎥⎦ . (8.7)

The non-associated evolution equation [165] can also be used to determine m.
Chen et al. [166,167] adopted the MPM to simulate failure evolution of

brittle solids under impact loading. Sulsky and Schreyer [168] investigated the
spalling failure of brittle material with the above decohesion model. Similar to
the role of the failure criteria in modeling crack initiation and propagation, iden-
tifying the transition from continuous (microcracking) to discontinuous (macro-
cracking) processes is also very important in describing the complete failure
evolution process. To make the governing equations well-posed with the least
computational expenses, Chen et al. [164,169] proposed the discontinuous bi-
furcation analysis in combination with decohesion modeling to determine when
the failure mode of a material point becomes discontinuous and to which di-
rection the evolution of failure will go. The bifurcation analysis is based on
the continuum tangent stiffness tensor obtained from a suitable local elasto-
plastic constitutive model. Chen et al. [170] combined a decohesion model and
heat conduction analysis to study the material failure under local heating, where
the finite difference method was used to find the temperature field while the
MPM was employed to complete the thermomechanical solution process. Shen
et al. [171] investigated the fragmentation of the glass under impact loading.
The Drucker–Prager model was used to describe the compression stage, the
rate-dependent damage model was used to describe the tension stage, and the
decohesion model was used to describe the material behavior as discontinuous
bifurcation occurred.

Sulsky et al. [172] studied the movement and deformation of sea ice in Beau-
fort Sea based on the decohesion model and heat conduction analysis. Both the
land and sea were discretized with material points in the simulation. Velocity
boundary conditions were enforced for the boundary of the sea region accord-
ing to the remote measurement from satellite data, while the material points
for the land are fully fixed. Satellite and meteorological observed data were
used to specify the initial conditions and the initial notches inside the sea ice.
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The position and opening displacement of the discontinuities obtained by the
MPM simulation qualitatively agreed with the observed data [172] except for
one small region where the difference might be caused by the perturbation of
the wind and ocean current.

To perform large-scale simulation of failure evolution, Yang et al. [151]
improved the decohesion model for metals in combination with J2 plasticity
model. They replaced the bifurcation analysis with the following limit strength
criterion to identify the onset of decohesion:

1. Mode I failure will occur if σ1 � σmax and τt < τmax;
2. Mode II failure will occur if σ1 < σmax and τt � τmax;
3. Mixed mode failure will occur if σ1 � σmax and τt � τmax.

Here σ1 is the maximum principal stress, τt is the maximum shear stress, and
σmax and τmax are the tensile limit strength and the shear limit strength, respec-
tively. As result, the failure mode would change during the evolution of failure
due to its nonlocal nature, instead of being fixed as assumed in the previous in-
vestigations. The vector n corresponding to each failure model is then calculated
by the following:

n = n1 (for mode I),

n = n2 × (n1 + n3)

‖n2 × (n1 + n3)‖ (for mode II),

n = n̄, n̄ = n1 + n2 × (n1 + n3)

‖n2 × (n1 + n3)‖ (for mixed mode)

where ni (i = 1,2,3) is the unit vectors along the ith principal direction.
Yang et al. [151] simulated the Sandia fracture challenge problem [148], which
is a compact tension specimen with initial holes, using the MPM with the above
improved decohesion model. The final configurations of the MPM results and
the experimental results are consistent as shown in Fig. 8.1.

Gupta et al. [173] compared the performances of different meshfree parti-
cle methods, including the element free Galerkin method, the SPH method, and
the MPM, for the dynamic fracture problems. Various criteria were tested for
the problems of uniform tension, four-point bending, and crack branching. Re-
sults indicated that the proper fracture criterion is more important in correctly
predicting the fracture behavior, and the difference between the results from
different meshfree particle methods is not crucial. Wang et al. [174] calculated
the stress intensity factor of the crack of mixed modes with irregular point dis-
cretization, with the results comparing well with finite element results. Gilabert
et al. [175] simulated the initiation and propagation of cracks near the quartz
inclusion in brittle materials such as ceramics and glasses. Their work adopted
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FIGURE 8.1 Comparison of the results from (a) the MPM simulation with improved decohesion
model and (b) the experiment.

a local Rankine criterion and the energy release rate as the criteria for predict-
ing crack initiation and propagation. Their simulation results indicated that the
crack was first initiated in the inclusion and then propagated into the matrix,
which was consistent with the experimental observation. They further investi-
gated the influences of different inclusion shapes on the fracture mode [176].
They found that cracks surrounded the inclusion for the circular inclusion, sev-
eral cracks cut through the inclusion for the ellipse inclusion, only one crack
occurred and ran through the inclusion for the rectangular case, and the cracks
were close to the vertices if the inclusion had triangular shape. All the modes
were observed in the experiments.

8.2 IMPACT

Impact problems often involve strong nonlinearities including large deforma-
tion, fracture, fragmentation, or even phase transformation. The applications of
the MPM in different impact problems have been receiving much attention in the
recent years. The existence of extreme deformation will lead to a sharp decrease
of the characteristic discretization length, i.e., the element size or the distance
between nodes, during the impact. The critical time step size of the explicit
FEM and typical explicit meshfree methods (EFGM or SPH) would therefore
decrease sharply due to the decrease of the characteristic discretization length.
Since it is controlled by the background mesh size in the MPM, the critical time
step size of the MPM will not decrease much even when undergoing extremely
large compression. Therefore, the MPM has advantages in efficiency over the
explicit FEM and other meshfree particle methods. Ma et al. [47,177] showed
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that the cost of the MPM could be about one fourth of that of the SPH method
when solving impact problems. Numerical fractures would occur in the SPH
simulation of the Taylor bar impact problem, but the MPM results do not show
any numerical fracture.

There are different responses for different impact velocities. The elastic and
plastic deformations dominate the responses when the impact velocity is low.
Local failure will happen when the structure is under an impact of intermediate
velocity, such as a bird impact on an aircraft and the projectile penetrating the
target plate. The mechanism and the configuration of failure and the influences
on the loading capacity of the structure are major issues of the medium-velocity
impact problems. When the impact velocity further increases, the influence of
material strength is sharply decreased, and serious local failure such as the cra-
tering, spalling, phase transformation, and debris cloud will occur. When the
impact pressure is much higher than the material strength, which is usually
called the hyper-velocity impact, the material behavior is close to fluid flow.
Material melting and even material vaporization may happen when the pressure
and temperature are very high.

Sulsky et al. [178] derived the axisymmetric formulation for the MPM and
applied it in the analysis of the upsetting process and Taylor bar impact problem.
Wang et al. [179] investigated the responses of the steel-porous aluminum–steel
sandwich composite structure to the flyer impact. Zhang et al. [79,180] simu-
lated the perforation of the steel target by the tungsten projectile with the MPM
of modified shape functions. Proper contact algorithms are essential in simu-
lating impact problems of medium- and low-velocities. The automatic single-
valued velocity field in the original MPM may not be accurate enough because
only non-slip conditions could be enforced. Ma et al. [74] simulated perfora-
tion problems with the MPM equipped with the contact algorithms based on
local multiple background grids. The indicators such as the residual velocity
were identical to experimental results. Huang et al. [73] further compared the
results of the original MPM and the MPM with a contact algorithm for perfora-
tion simulation, and they found that the results with the contact algorithm were
much better. Li et al. [181] studied the influences of the impact velocity on the
failure pattern of brittle disc, and showed that the simulation results agreed well
with the experiment and that circular cracks appeared when the impact velocity
was relatively low. A single crack penetrated into the disc at a medium impact
velocity. Many cracks appeared and cut the disc into several fragments when the
impact velocity was further increased.

For the cases with high-velocity and hyper-velocity, Ma et al. [177,182] in-
vestigated the hyper-velocity impact on the thin plate and thick plate with the
MPM. The results agreed well with the empirical formula and those from the
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FIGURE 8.2 The configuration of debris cloud [183]: (left) MPM results; (right) experimental
results.

other numerical simulations. Huang et al. [183] studied the effects of the back-
ground mesh size and the number of material points on the debris cloud occurred
in the hyper-velocity impact. They obtained the debris cloud with the MPM sim-
ulation of 13 million material points. The sizes of the debris cloud are identical
to the experiment observation, as compared in Fig. 8.2. Pan et al. [184] inves-
tigated the deformation and the collapse of the hole in high explosive under
impact loading. Simulation demonstrated that the hole collapsed due to the mi-
crojet of the material on the top of the hole. Xu et al. [185,186] investigated
the responses of porous material under impact, and the effects of the impact ve-
locity, the porous ratio, the impact intensity, and the hole size were thoroughly
studied. Chen et al. [187] simulated the spalling of the Armco steel during the
impact.

The impact response is usually highly localized. The deformation in the im-
pact region will be extremely large, while the far-field region may only undergo
small plastic deformation or even elastic deformation. Such a feature makes the
finite element material point method quite appropriate for the impact simulation.
Zhang et al. [36] simulated the hyper-velocity impact problem with the finite
element material point method. Lian et al. simulated the perforation of metal
targets with the coupled finite element material point (CFEMP) method [37] and
the adaptive finite element material point (AFEMP) method [41]. The objects or
the regions undergoing small deformation were simulated with the FEM, while
those undergoing large deformation or fracture were simulated with the MPM.
Fig. 8.3 illustrates an example in which a rod made of tungsten alloy penetrates
a steel plate [41]. The initial length of the rod is L0 = 75 mm, the diameter is
D0 = 5 mm, and the in-plane dimensions of the target are 150 mm × 150 mm.
Two cases were studied: the thickness of the plate and the impact velocity were
chosen as 5 mm and 1500 m/s, respectively, in case 1, while they were 10 mm
and 2500 m/s, respectively, in case 2. Only a half of the model needs to be sim-
ulated owing to the symmetry, as shown in Fig. 8.3. Both the projectile and the
target were initially discretized with eight-node cuboid elements, and the finite
elements were automatically converted into material points when the effective
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FIGURE 8.3 Schematic diagram of the long rod perforation example (left) and the discretization
model of material points (right) [41].

FIGURE 8.4 Results of the long rod perforation example, the configurations at various times
(case 1) [41].

plastic strain reached the threshold value. The Johnson–Cook strength model
and the Mie–Grüneisen equation of state were employed.

Figs. 8.4 and 8.5 demonstrate the configurations of cases 1 and 2 at differ-
ent times [41]. The elements in the impact region were continuously converted
into finite elements as the projectile penetrated into the target. Hence, the MPM
was automatically adopted for the stage of large deformation, and possible ele-
ment distortion in the impact region was fully avoided. Comparisons of the final
configurations of numerical and experimental results are shown in Fig. 8.6, and
the non-dimensional residual rod length and velocity are compared in Table 8.1.
The results of the original MPM are also listed in Table 8.1. Both the original
MPM and AFEMP methods obtained identical to experimental results.

Table 8.2 compares the maximum time step size (�tmax), the minimum time
step size (�tmin), the number of time steps, and the CPU time of the AFEMP
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FIGURE 8.5 Results of the long rod perforation example, the configurations at various times
(case 2) [41].

FIGURE 8.6 Comparison of the final configurations of the long rods after perforation [41]: (left)
numerical results; (right) experimental results. The top two figures are results of case 1, and the
bottom ones are results of case 2.

TABLE 8.1 Result Comparison of the Long Rod Penetration Exam-
ple [41]

Case Method Dimensionless residual
length

Dimensionless residual
velocity

1 Experiment 0.85 0.97

AFEMP 0.82 0.96

MPM 0.85 0.96

2 Experiment 0.76 0.99

AFEMP 0.72 0.97

MPM 0.74 0.97
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TABLE 8.2 Efficiency Comparison for Simulating the Long Rod Penetra-
tion [41]

Method �tmax/µs �tmin/µs The number of time
steps

CPU time/s

AFEMP 3.67 × 10−2 1.52 × 10−2 2208 838

MPM 6.45 × 10−2 3.71 × 10−2 1180 2241

FIGURE 8.7 The geometry of the projectile and the rebar distribution [39].

method with those in the original MPM. The minimum time step size of the
AFEMP method is only decreased by 58.6% during the penetration, which is
because the failure elements were converted into material points as the penetra-
tion evolved. The maximum time step size of the AFEMP method is less than
that of the MPM because the initial characteristic length of finite element is less
than the nodal distance of MPM background mesh. Although the total number
of time steps in the AFEMP computation is larger than that in the MPM compu-
tation, the efficiency is greatly improved as the computational cost of one single
FEM time step is less than the cost of one MPM time step in the phase of small
deformation. The total CPU time of AFEMP simulation is only 37% of MPM
CPU time.

The perforation of the reinforced concrete can be well simulated with the
hybrid finite-element material-point (HFEMP) method [39]. Discretizing the re-
bars with material points will result in an extremely large number of degrees of
freedom. Simulating the rebars with bar element is a much better choice, and
the HFEMP method provides a seamless way to link the bar element and the
material points through the background mesh. A projectile of mass 0.5 kg and
diameter 25.4 mm perforated a reinforced concrete target plate of dimensions
610 mm × 610 mm × 178 mm. Fig. 8.7 shows the geometry of the projectile
and the rebar distribution [39]. The experimental results did not indicate obvi-
ous plastic deformation in the projectile except for a very small region near the
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projectile tip where the material was a little abrased. Hence, the elastic material
model was used for the projectile. The HJC elastic–plastic model was used for
the concrete, and the ideal elastic–plastic model was used for the rebars.

Three kinds of simulation were performed [39] to study the functionality of
the rebars in resisting perforation. The first used the plain concrete target; the
second used the reinforced concrete target, but the projectile did not directly
strike the rebars; and the third used the reinforced concrete target, and the pro-
jectile directly hit the rebars. When the initial velocity was 749 m/s, the residual
velocities of the first and second cases were the same (585 m/s). The residual
velocity of the third case was 565 m/s, which was obviously lower. The exper-
imental result, where the point of impact was not on the rebar network, was
615 m/s, so that the simulation and the experimental results had only 4.9% dif-
ference. Fig. 8.8 compares the damaged region of the target surface after the
projectile perforated the target. It can be seen that the rebars effectively limited
the damaged material in a smaller region even when the projectile did not hit di-
rectly on the rebars. Fig. 8.9 shows the configuration of damaged target and the
fractured rebar network at the time t = 0.5 ms. Fig. 8.10 compares the residual
velocities from the simulation and the experiment. A small deviation from the
experimental residual velocity was observed when the initial velocity is high,
but the results for low impact velocities were very close.

8.3 EXPLOSION

Explosion problems always contain extremely large deformation and fragmen-
tation of materials, which is one of the major application fields of the MPM.
The modeling and simulation of explosion problems usually have two aspects.
The first is how the material responds and fails under explosion loading. The
explosively driven flyer, metal jetting, and explosion welding are typical exam-
ples. The second aspect is how to describe the evolution of denotation field. The
MPM has been widely applied in both areas, and has demonstrated its robust-
ness.

Hu and Chen [93] validated the MPM with typical explosion problems in-
cluding the shock tube and the Sedov–Taylor detonation wave problems. They
then evaluated the fracture of the concrete wall under explosion loading. All the
materials, including the air, explosive, and wall were discretized with material
points in the simulation which was straightforward because there was no need
to employ different methods for different regions even though the material prop-
erties in different regions were quite different. Requirement of high accuracy in
simulating the explosion field usually demands discretization refinement, while
the volume of the explosive usually varies greatly during the explosion. It would
be much better if the discretization could be adapted automatically in the explo-
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FIGURE 8.8 Comparison of the damage on the target surface for different simulation cases [39].

FIGURE 8.9 The configuration and damage of the target plate (left) and the deformation and
fracture of the rebar network (right) at t = 0.5 ms when the projectile directly hits the rebar [39].
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FIGURE 8.10 Comparison of the simulated residual velocity and the experimental residual veloc-
ity [39].

FIGURE 8.11 The configuration of 3D shaped charge jet obtained by the adaptive MPM [81,188]
(color denotes the velocity). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this chapter.)

sion simulation. Otherwise, numerical fracture may occur. The adaptive MPM

proposed by Ma et al. [81,188] can effectively avoid numerical fracture because

the initial number of material points need not be too large and the extremely

elongated material point will be split into two material points automatically.

Application of the adaptive MPM in the shock tube problem and the shaped

charge jet problem indicated that it would be more suitable in solving explosion

problems than the original MPM. The configuration of the simulated shaped

charge jet obtained by the adaptive MPM is illustrated in Fig. 8.11.

Ma et al. [81,188] also applied the adaptive MPM in the simulation of the

explosively driven flyer. Lian et al. [189] further studied the validity of the em-

pirical formula for the open-face sandwich and the flat sandwich configurations

of the explosively driven flyer. The open-face sandwich configuration is shown



Applications of the MPM Chapter | 8 245

FIGURE 8.12 The open-face sandwich configuration of the explosively driven flyer [189].

FIGURE 8.13 Comparison of the final velocity of the flyer obtained by the numerical results and
empirical formulae [189]: (a) 1D model; (b) 2D model.

in Fig. 8.12. The Gurney equation gives the final velocity of the flyer by [50]

V = √
2E

[
3

1 + 5(M/C) + 4(M/C)2

]1/2

where
√

2E is the Gurney characteristic velocity, M and C are the masses of the
flyer and explosive, respectively. It was reported that the Gurney equation is not
accurate enough when M/C is small. Aziz et al. [190] improved the estimate
with the following formulation

V

D
= 1 − 27

16

M

C

[(
1 + 32

27

C

M

)1/2

− 1

]

where D is the detonation velocity. The JWL equation of state and the Johnson–
Cook strength model were used for the explosive and the flyer, respectively, and
the details of the material parameters can be found in Lian et al. [189]. Both the
one- and two-dimensional models were calculated to validate the above equa-
tions. The final velocities of the flyer obtained by the one-dimensional model
and the two empirical formulae are plotted in Fig. 8.13. All three results agree
well when M/C is large, while the result by the Gurney equation is obviously
lower than the other two solutions when M/C is small. The two-dimensional
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model was employed to study the transverse effect [189]. Fig. 8.13 also com-
pares the result by the Gurney equation and the results from the two-dimensional
model. It is shown that the Gurney equation has an obvious deviation for all the
M/C values, which reflects the influence of the finite size in the transverse di-
rection. The compression wave is reflected at the free surface, and the reflected
expansion wave will reduce the kinetic energy of the flyer. In other words, the
chemical energy of the explosive cannot be effectively converted into the kinetic
energy of the flyer so that the Gurney equation will yield a higher solution than
the practical result. The time to accelerate the flyer will be longer if M/C is
larger, which will result in a more obvious transverse effect. If the transverse
effect is considered by reducing the effective mass of the explosive, as shown
in Fig. 8.13 (modified Gurney equation), the result will be much closer to the
computational result.

Wang et al. [191–193] investigated the sliding detonation and the explosion
welding systematically with the MPM. The calculated impact velocity of the
flyer and the detonation pressure coincided with the Richter equation. Zhang
and Chen [194] introduced the reaction rate equation into the MPM to de-
scribe the ignition process, and they analyzed the shock-to-detonation process
of the heterogeneous solid explosive. The influences of the fragment material
and the thickness of the shielding plate on the critical detonating speed were
studied. It was found that the critical speed for copper and steel were close, but
that for tungsten was much lower. They also calculated the same problem with
the Lagrangian FEM and ALE method. Mesh distortion was observed for both
mesh-based methods, and using the erosion scheme in the FEM led to smaller
fragments. Yang et al. [195] introduced the Gurson model and the random fail-
ure scheme into the MPM simulation, and they investigated the expansion and
fragmentation process of metal shells under explosion loading. Both the mate-
rial model based on the evolution of microscale damage and the material model
with macroscale failure were employed. The Gurson model and the Tepla-f fail-
ure condition were used to describe the evolution of micro-cavities, while the
J2 plasticity theory and the random failure scheme with Weibull distribution
were used to calculate the macroscale failure. Yang et al. [195] simulated the
fragmentation process of typical metal shells, including the cylindrical shell and
spherical shell, under explosion loading. Results indicated that the shell rup-
tured in a mixed mode, and both necking and shear instability were observed,
as shown in Fig. 8.14. For the spherical shell, the accumulative mass of the
fragments approximately obey the power law. An efficient scheme for fragment
statistics was presented by Yang et al. [195] based on the background mesh.
The results of shell fragmentation agreed well with the theoretical prediction
and experiments, and it was also shown that the MPM simulation with the Gur-
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FIGURE 8.14 The configuration of the cylindrical metal shell subjected to inner detonation [195]:
(a) the results obtained by the Gurson model; and (b) the results obtained by the random failure
model.

son model can effectively predict the transition from ductile fracture to brittle
fracture.

8.4 FLUID–STRUCTURE/SOLID INTERACTION

The challenges in simulating fluid–structure/solid interaction (abbreviated as
fluid–structure or fluid–solid interaction in the context) lies in the nonlinear vari-
ation of the interface shape and the huge difference between the properties of
different material phases. It is usually demanded to solve the entire problem si-
multaneously if the interactions between different material phases are strong.
More complex phenomena may appear in some strong fluid–structure interac-
tion problems. For example, the splitting, curling, and merging of free liquid
surface bring strong nonlinearity into the liquid sloshing problem. Accurately
describing the interactions, the pressure on the structure exerted by the fluid, for
instance, is often desired in the engineering practice.

How to apply the MPM in fluid–structure interaction problems has been re-
ceiving special attention since the infant stage of the MPM. This is attributed to
the fact that the MPM inherits the advantages of both Lagrangian and Eulerian
methods. The MPM can be used in both the structure/solid region and the fluid
region directly. If the fluid–solid interface satisfies the non-sliding condition, the
inherent single-valued velocity field can automatically describe the interaction
between different regions. York et al. [92] first adopted the two-dimensional
MPM to simulate the interaction between the fluid and the membrane struc-
ture such as the airbag expansion. The calculation of outward normal vector of
the membrane structure is important in the above simulation. If the structure is
discretized with finite elements, the normal can be easily determined from the
element geometry. Special scheme is required for the MPM simulation as the
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boundary is represented by a group of points, though the calculation of normal
vector from points in two-dimensional problems is not difficult as the membrane
degenerates into a curve. Gan et al. [196,197] proposed a more general algo-
rithm for three-dimensional cases, where the membrane was first discretized into
triangle patches, and the material points were placed on the vertices of the tri-
angles. The outward normal at each material point was calculated by averaging
the outward normal vector of all the triangles it connected. Gan et al. [196,197]
analyzed the zona piercing process in intracytoplasmic sperm injection with the
above method. The cytoplasm was modeled with the fluid equation of state, and
the zona pellucida was simulated with the isotropic elastodamage model and
the decohesion model. Hu et al. [94,95] simulated the aeroelastic problem with
a unified MPM framework. They also discretized the structure region and fluid
region both with material points, and different constitutive models were em-
ployed for different regions. The adaptive mesh refinement scheme was adopted
in the fluid region to achieve better accuracy.

One essential difference between the MPM and FEM is that the Gaussian
quadrature scheme is replaced by numerical integration with particles in the
MPM, which will lead to accuracy loss in small deformation problems. Some
investigators coupled the MPM with high-accuracy CFD solvers to satisfy the
accuracy requirement for the fluid field. The key issue to effectively and seam-
lessly couple the MPM with other solvers is the interface treatment. Owing to
the existence of the background mesh, the MPM can be more easily coupled
with other Eulerian methods. Guilkey et al. [96] developed a fluid–structure
coupling scheme based on the multi-material implicit continuous fluid Eulerian
(ICE) solver where the variables of all the materials were assembled onto the
background mesh and were solved from the fluid dynamic equations for multi-
ple materials. A fractional stepping scheme was adopted in the ICE framework.
One time step was split into the Lagrangian and Eulerian steps, whose flowchart
was similar to the MPM flowchart, which made it easier to incorporate the MPM
simulation. In Guilkey et al.’s work, the MPM was used to simulate the solid ma-
terial, and the state variables of solid particles were mapped onto the background
mesh nodes. Then the nodal equations were solved in an iterative way to achieve
the equilibrium status. Finally, the stress, velocity, and the other variables of the
material points were updated through the MPM flowchart, while the variables
in the fluid region were updated by their corresponding schemes. Problems with
strong fluid–solid interactions, such as the explosion of the energetic devices,
were successfully simulated.

The immersed boundary (IB) method is an effective way to deal with
fluid-structure interactions. Gilmanov and Acharya [198,199] combined the
IB method and MPM to construct a numerical method for three-dimensional
fluid–structure interaction problems. The equations in the fluid region was first
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FIGURE 8.15 Schematic view of the collapse of the water column and the impact of water on the
elastic obstacle [37].

solved in each time step so that the traction applied by the fluid on the solid
surfaces could be obtained. Then the MPM was used to solve the deforma-
tion of the solid region under the aforementioned traction, and the variables
of the material points were updated. After that the boundary velocity and the
boundary pressure of the fluid region could be obtained from the solution of
the solid region. The fluid region and solid region were solved alternatively
with the above scheme. The surfaces of the solid region were discretized into
triangular patches, and the mesh nodes adjacent to the patches were recog-
nized as the fluid boundary nodes. The prescribed boundary conditions on the
fluid boundary nodes were constructed by the information from material points
in solid region and from the inner part of the fluid region. Such a method
was also extended to the analysis of the fluid–solid–thermal coupling prob-
lems [199].

The deformation of the solid region is not large in many kinds of fluid–solid
interaction problem, and the FEM can well simulate these solid regions. The
coupled finite element material point (CFEMP) method is quite suitable for such
fluid–solid interaction problems. Lian et al. [37] utilized the CFEMP method to
successfully simulate the collapse of water column and the interaction between
the water and the elastic obstacle. As shown in Fig. 8.15, the water column
was initially at rest, and then it collapsed under the gravity. Thus, the water
impacted on the elastic bar. The water was simulated with the MPM and the
Mie–Grüneisen EOS, and the elastic bar was simulated with the FEM and the
elastic constitutive model. The plane strain condition was applied to confine the
movement in 2D.

The configurations of the system at different times are plotted in Fig. 8.16.
The results calculated by the CFEMP method were consistent with those of the
particle finite element method [200]. The time history of the deflection of the
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FIGURE 8.16 Comparison of the configurations at different times for the water collapse prob-
lem [37]. The sub-figures in the first and the third columns were obtained by the CFEMP method,
and the sub-figures in the second and the fourth columns were obtained by the particle finite element
method.

FIGURE 8.17 Comparison of the time history of the deflection of the left upper corner of the elas-
tic obstacle [37]. FE-Euler stands for the solution obtained by the finite element-Eulerian coupled
method.

upper left corner of the obstacle is plotted in Fig. 8.17. Results of the other
two numerical methods, that is, the particle finite element method [200] and the
finite element-Eulerian couple method based on the level set algorithm [201],
are also plotted. All three results agree very well, but the CFEMP solution is
closer to the solution of the particle finite element method.
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Another category of fluid-structure coupling problems is that the fluid and
solid occupy the same region, and the coupling between different materials is
strong. One problem being widely focused on is the porous media problem
composed by the solid skeleton and the pore fluid. Zhang and Wang [202] pro-
posed a bi-phase material point method to analyze the dynamic problems of the
saturated porous media. Two groups of material points were introduced in the
bi-phase MPM, which was utilized to respectively describe the solid skeleton
and the porous fluid. The solid-phase material point and the fluid-phase mate-
rial point resided at the same place. In other words, each position actually had
two material points. Then the material points were updated with the momentum
equations of their own phase. The interaction between different phases was re-
flected by assigning the damping force proportional to the velocity difference
between the two phases. Only one set of background mesh was used in the bi-
phase MPM.

8.5 MULTISCALE SIMULATION

Many engineering problems are related to multiple spatial and temporal scales.
Representative examples are the dynamic fracture evolution, mechanics of
bones, and turbulence problem. Analyzing these problems across different
scales, however, is still very challenging. In Chapter 7, a multiscale MPM has
been presented, in which both hierarchical and concurrent approaches are used
to simulate a certain type of problems. In this section, other recent advances in
multiscale simulation are discussed with a focus on the MPM-related develop-
ment.

The multiscale methods can be divided into two groups. The first is called
the concurrent multiscale method whose essential idea is to employ the numer-
ical methods applicable to the atomic scale and the continuum-based numerical
methods (for example, the FEM, MPM, and FDM) for different regions, and
all the regions are integrated concurrently. The MD method, molecular statics
method, or the Monte Carlo method is adopted for the kernel region such as the
regions around the crack tip or the shear band. The continuum-based methods
are usually adopted for the far-field regions where the continuum assumption
is valid. The concurrent multiscale methods can greatly increase the efficiency
owing to the reduction of degrees of freedom in the far-field region, and the
accuracy of the results is still satisfactory. The second group is called the sequen-
tial (or hierarchical or upscaling) multiscale method. Numerical simulations at
a smaller scale will provide necessary material parameters for the simulations
at a larger scale, while the results from a larger scale are the constraints for the
simulations at a smaller scale. A typical example of the sequential multiscale
method is first to calculate the potential parameters of classical MD with quan-
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tum mechanics, and then to run the simulation with classical MD to obtain the
heat conductivity, and finally, solve the heat conduction problems with the FEM.

As a continuum-based meshfree particle method, the MPM is quite suit-
able to be combined with the MD method to construct concurrent multiscale
methods. Guo and Yang [203] and Lu et al. [204] investigated the MD-MPM
concurrent coupling multiscale method. The MPM region and the MD region
provided the boundary condition for each other, and a transition region (or hand-
shaking region) was used between the MD and the MPM regions. Their coupling
schemes required material points to be located at the lattice sites in the transi-
tion region. A coarser background mesh was also adopted in the far-field region
to save the computational cost. High-velocity impact problems of copper-to-
copper and silicon-to-silicon at nanoscale was investigated with the concurrent
method by Guo and Yang [203]. Lu et al. [204] used the multiscale method to
simulate the necking process in the tension of nanowire.

The limitation of MD mainly comes from its huge computational cost. The
MPM provides the ideas to improve the MD method for a larger applicable tem-
poral scale. The MD results include both the low-frequency motions and the
high-frequency motions. The low-frequency motions reflect the overall defor-
mation, while the high-frequency part denotes the atomic vibrations around the
atom sites. The high-frequency motions are not important in some problems, but
their existence hinders the use of a larger time step size. The factor controlling
the critical time step size in the MPM is the size of the background mesh instead
of the distances between material points, which is because the equations of mo-
tions are constructed at the background mesh nodes and the variables of the
material points are updated by the variables of the background mesh nodes. It
has been widely validated that the time step of the MPM will not be decreased by
the decrease of the distances between material points. Liu et al. [205] proposed
the smoothed molecular dynamics (SMD) method by introducing a background
mesh into the flowchart of molecular dynamics, as shown in Fig. 8.18. The
atomic equations of motion are assembled onto the background mesh nodes,
and the atomic variables are updated by the interpolation of the nodal increments
after solving nodal momentum equations. The assembling and interpolation pro-
cess converts the factor controlling the critical time step size to the size of the
background mesh in the SMD method so that the available time step size of the
SMD method can be much larger than that of the MD method [205]. The time
step size of the SMD method can even be one order larger than the critical time
step size of the MD method. Although the assembling and interpolation process
in the SMD flowchart increases the computational cost in one time step, the
overall computational cost will be much smaller than MD cost because the total
number of time steps is greatly decreased. Examples indicated that the essence
of the SMD method is to smooth out the high-frequency atomic motions that the
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FIGURE 8.18 The background mesh of the SMD method and the coupling between the MD
method and SMD method [205].

mesh cannot describe, which is why the name “smoothed molecular dynamics”
was used.

The shortcoming of the SMD method is that the local atomic disorders would
be smoothed in the assembling and interpolation process. If the evolution of lo-
cal atomic disorders is important, the simulation accuracy would be affected.
One solution scheme is to couple the MD method and SMD method, as shown
in Fig. 8.18. The region containing atomic disorders is calculated with the MD
method, and the far-field region containing smooth deformations is calculated
with the SMD method. Multiple time steps are employed in the MD-SMD cou-
pling method. Because the regions containing atomic disorders usually occupy
a small part of the entire region, the overall computational time could still be
well decreased as compared with the pure MD computation. Except for the as-
sembling and interpolation process, the SMD flowchart is the same as the MD
flowchart. The coupling between MD and SMD is therefore natural and straight-
forward. The atomic interactions between the atoms in the MD region and the
atoms in the SMD region actually reflect the interaction between two regions,
and the background mesh size near the interface does not have to be reduced to
the lattice constant. He et al. [206] further improved MD-SMD coupling method
with the adaptive scheme. The entire region is covered with background ele-
ments, and the elements inside SMD region will be automatically converted into
MD region if local atomic disorders happen. The element in MD region will be
converted back to SMD region if the atomic disorders propagate into other el-
ements. Fig. 8.19 demonstrates the results obtained by the MD method and the
MD-SMD coupling method for the nano-indentation problem. The yield point,
which is denoted by a sudden decrease in the force-indentation depth curve, can
be well captured by the coupling method. The MD computation is executed as
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FIGURE 8.19 The variation of the indentation force versus the indentation depth [205]. The solid
curve represents the MD results, and the dotted curve represents the results from the MD-SMD
coupling method.

FIGURE 8.20 Tension of the pre-cracked plate (left) and the variation of the crack length versus
the engineering strain (right) [207].

the dislocations occur in the region right beneath the indenter, and the SMD
computation is used in the other regions.

Wang et al. [207,208] developed the parallel algorithm and the adaptive mesh
refining scheme for the SMD method. Fig. 8.20 illustrates the pre-cracked plate
subjected to uniform tension, which was simulated with the parallel MD-SMD
coupling method. The MD method was used for the central cracked region, and
the SMD method was used in the other regions. The crack length–strain curves
obtained by the MD and coupling methods match each other well. The variation
of the background mesh in the simulation of nano-indentation problem with the
adaptive SMD method is shown in Fig. 8.21. The mesh for the region under
the indenter was refined continuously when the indentation depth was increas-
ing. The mesh size for the far-field region had the same value. Similar to other
concurrent multiscale methods, the high-frequency parts of the atomic motions,
if they are beyond the description capability of the background mesh, will be



Applications of the MPM Chapter | 8 255

FIGURE 8.21 History of mesh refinement when the indentation depth increases in the nano-
indentation example [208].

reflected back into MD region when they arrive at the MD-SMD interface. He
et al. [206] proposed a seamless transition scheme to suppress the reflection
of high-frequency motions based on scale decomposition. A damping force is
applied to the high-frequency part of atomic motions before they approach the
interface. Numerical examples indicated that the transition scheme can well ab-
sorb the high-frequency motions and avoid their influences on the solutions of
MD region. The formulation of the transition scheme is concise because the
scale decomposition is intrinsic in the assembling and interpolation process of
SMD flowchart.

Criteria are crucial to the accuracy and efficiency in both the adaptive mesh-
refinement scheme and the adaptive MD-SMD coupling scheme. Such a crite-
rion can be constructed naturally in the SMD flowchart. The forces to update
atomic displacements and velocities in the SMD method are different from the
original MD atomic forces. Wang et al. [208] developed a criterion based on
the average of the differences in the two types of forces in one element. If the
average value is large, it is indicated that the mesh needs refinement. If the value
is very small, the mesh can be coarsened to reduce the computational burden.
He et al. [206] developed two robust criteria. One criterion is the average of
the centro-symmetry parameter (CSP) value of all the atoms in one element.
The other one is based on the average of the difference between the original
atomic displacement and the SMD atomic displacement, which is defined as the
displacement after assembling to the nodes and then being interpolated back.
They found that the CSP and displacement criteria can both identify the regions
with atomic disorders well, and that the displacement criterion is much more
efficient.

The MPM has also been applied in sequential multiscale computations. Ay-
ton et al. [209] utilized the non-equilibrium molecular dynamics (NEMD) to
calculate the transfer coefficient for the lipid bilayers, which was then used in
the MPM computation. Shen and Chen [210] combined the MD computation
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and MPM computation for the investigation of the membrane delamination.
Borodin et al. [211] applied the sequential multiscale computation for the nano-
composites. The viscoelastic property and the interface shear modulus were
obtained first by MD simulation, and then a stress relaxation with the MPM
was executed to calculate the macroscopic viscoelastic properties of the entire
composites. An accurate equation of state is crucial for satisfactory simulation
of the material subjected to hyper-velocity impact, but the extreme conditions
of high temperature and high pressure pose great difficulties in measuring the
parameters of EOS. Wang et al. [208] proposed a sequential multiscale method
for the hyper-velocity impact problems. MD simulation was used to calculate
the corresponding values of a part of thermodynamic variables with the other
variables being prescribed. A large number of MD simulations were carried out
to obtain a group of state points. These state points can be used to construct an
EOS in tabular form or can be used to calculate the parameters of an existing
EOS. Wang et al. obtained the parameters of the GRAY EOS and simulated the
hyper-velocity impact processes of several typical metals. The simulated Hugo-
niot curve and debris cloud configurations coincided with experimental results.
Zhang et al. [212] combined the MPM and hybrid Monte Carlo (MC) method
to study the evolution of the microstructure of the polycrystalline material. The
Monte Carlo method was used to analyze the motion of the grain boundaries,
and the MPM was used to calculate the stress field. The MPM-MC method was
then extended to analyze the plastic behaviors of polycrystals.

The MPM has also demonstrated the potential in constructing micro- and
meso-structures of novel materials. For instance, the foam material has attractive
material properties such as high specific strength, high specific modulus, and
nice capability to absorb energy. The stress–strain curve of the foam material
contains three typical stages, the elastic, plateau, and densification stages. These
are closely related to the local buckling of the cell walls, the yielding of the cell
wall material, and the collapse of the cells. Reconstructing the cellular structures
inside the foam material could improve the prediction of macroscopic material
properties. But the randomly distributed cells with a variety of sizes inside the
foam material make it almost impossible to discretize the cell wall structures
with traditional mesh-based methods. In addition, the cell walls of the intrinsic
structure often undergo large deformations under compression. The above is-
sues make meshfree particle methods more appropriate than the FEM to model
the intrinsic structure of the foam material. A large number of contacts between
different cell walls and self-contacts of the cell walls may appear during the
deformation, which requires efficient contact algorithms along with meshfree
particle methods. Since the original MPM assures the non-interpenetration con-
dition automatically and efficient contact algorithms can be constructed based
on the background mesh, the MPM is more competitive in modeling the foam
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FIGURE 8.22 Comparison of the damage profiles of the aluminum foam layer under hyper-
velocity impact [216]: (upper row) numerical results; (lower row) experimental results. The cor-
responding impact velocities are marked under their corresponding sub-figures.

material than other spatial discretization methods. Bardenhagen and his collab-
orators [213,214] constructed an intrinsic structure of the foam material with
both the reconstruction from X-ray images and random generation, and they
simulated the compression of a cubic representative volume element (RVE).
Although only the hyper-elastic constitutive model was adopted in their simu-
lation, the typical stress–strain curve with the plateau phase and densification
phase was obtained. The results indicated that the porous ratio has important in-
fluences on the macroscopic properties of the foam material. Daphalapurkar et
al. [215] reproduced the intrinsic structure of the close-celled PMI foam mate-
rial from μ-CT images, and simulated the response of the RVE with the MPM.
Although the calculated stress–strain curve had some differences from the ex-
perimental results, their numerical results clearly showed a stress–strain curve
with three stages. The elastic buckling of the cell walls was observed even in
the elastic phase of the macroscopic stress–strain curve. The intrinsic porous
structure of the aluminum foam results in an excellent capability to scatter and
fragment the space debris when the foam is used to shield the hyper-velocity
impact from the space debris. The complex interaction between the space debris
and the intrinsic structure also requires the formulation of a realistic intrinsic
structure model. Gong et al. [216] reconstructed the intrinsic structure model
from μ-CT images, and simulated the shielding performance of foam-based
shielding structures under hyper-velocity impact. The filled Whipple structure
and sandwich Whipple structure were investigated. Fig. 8.22 compares the dam-
age profiles of the foam layer of the filled Whipple structure. The numerical and



258 The Material Point Method

FIGURE 8.23 The tube-falling method to generate the intrinsic structure of the CNT-reinforced
composites [218].

experimental results were consistent in both shape and size. Liu and Gong et
al. [217] further investigated the influences of the relative density and strain rate
effect of the cell wall material on the plateau stress level and the strain rate ef-
fect of the overall material. If all the pixels are reserved during the conversion
from images to corresponding material points, the computational cost may be
too high. Hence, a reduction in RVE size and merging of multiple points into
one point were adopted in the above works to balance the computational cost
and the numerical accuracy. It should be noted that the outcome of conversion
and merging of material points depends on the particle feature of the MPM.

The carbon nanotube (CNT) reinforced composites have outstanding me-
chanical and electric properties, which is also attributed to their complex intrin-
sic structure. But only the model composed of quasi-straight tubes can be con-
structed with traditional mesh-based methods. If more realistic curved tubes are
used, the penetration between different tubes will not be removed. Otherwise,
the desired high volume ratio of CNTs will not be achieved. Wang et al. [218]
proposed a tube-falling method based on the MPM. As shown in Fig. 8.23, a se-
ries of curved tube described by material points were created and piled up first.
Then the tubes fell under the gravity and formed the reinforcement network.
After the reinforcement network was filled with matrix points, the final micro-
structure model for CNT-reinforced composites is generated. The tube-falling
method fully utilized the advantage of the MPM that the contacts between dif-
ferent CNTs can be efficiently treated. The micro-structure model generated
by the tube-falling method does not have interpenetration between tubes, and
the volume ratio of CNTs is consistent with the actual value. Wang et al. [208,
218] investigated the mechanical and electric properties of CNT-reinforced com-
posites based on the above model, and the influences of the volume ratio and
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connection properties between different CNTs on the macroscopic properties
were described.

The aforementioned methods to investigate the macroscopic properties
based on the simulation of intrinsic structure model or RVE with the MPM can
be widely used for other materials. Shen et al. [219] studied the local plastic
deformation of the polycrystals. Xue et al. [220] simulated larger grains directly
from the intrinsic model, and simulated smaller grains by homogenization. They
also applied such a method in the study of viscoelastic properties of an explo-
sive.

8.6 BIOMECHANICS PROBLEMS

The complex nature of an organism makes it extremely challenging to under-
stand the functionality of the organism from its internal structure. Even with
very fine scanned images, modeling the internal structure of the organism with
traditional mesh-based methods is still extremely difficult, and many assump-
tions and simplifications have to be introduced. The generated mesh requires
careful smoothing to avoid bad mesh qualities. Similar to constructing micro-
and meso-structures in the multiscale analysis, the conversion of CT-scanned
images to the material points is convenient and efficient. The MPM is very
suitable for large-scale simulation so that the MPM models can preserve many
details and reflect the real situation. The deformations of the tissues are usually
large, for which the MPM simulation is competitive. Investigating the biome-
chanics problems with the MPM should be appealing.

Based on the images provided by confocal microscopy, Guilkey et al. [221]
constructed a material point model for the microvascular fragments. A large
scale simulation with 13 million material points and 0.45 million background
nodes was performed by a modified implicit MPM and 200 processors. Both the
microvascular and the collagen gel were modeled with a neo-Hookean hyper-
elastic model. Simulation results indicated that the stress distribution was highly
inhomogeneous, and the stress of the vascular was higher than that of the gel.
The influences of the background mesh size and shear modulus of the vascular
were also investigated. Ionescu et al. [222] discussed the simulation scheme for
the failure of soft tissue with the MPM. They simplified the tissue to a compos-
ite model with unidirectional reinforced fibers. The matrix was modeled with
a neo-Hookean model, and the stress of reinforced fiber was described with
a piecewise function of the fiber elongation. Different failure criteria were as-
signed to the matrix and the fiber, where the matrix failure depended on the shear
strain, and the fiber breakage depended on the tensile strain. They simulated the
process in which a myocardial slab was penetrated by a bullet. The results in-
dicated that the size of the wound exit was larger than the size of the wound
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FIGURE 8.24 The MPM model of the human body generated by CT-scanned images: (left) front
view; (right) side-view.

entrance, which coincided with the clinical report. When the projectile speed
was only 50 m/s, the anisotropy resulted in an irregular wound shape. When
the projectile speed was increased to 150 m/s, the wound shape was closer to a
circle.

Zhou et al. [223–225] constructed a material point model for the entire hu-
man body based on CT images, and investigated the responses of the head and
spine to impact loading. The material point model of the human body is shown
in Fig. 8.24. They developed three kinds of head model to examine the proper
boundary conditions to be applied. The three models were the simplified head
model with free boundary condition (SHFr), the head model with muscles and
free boundary condition (MHFr), and the head model with muscles and fixed
shoulders (MHSFi). The responses of different models to the impact of a cylin-
der of the velocity 6.4 m/s demonstrated that whether the boundary was free or
fixed did not affect the results if the impact time was less than 2 ms. However,
the fixed shoulders would induce multiple impacts and affect the head damage
significantly for the impact with a longer time. The muscles would distribute
the stresses and reduce the damage. The injuries caused by the acceleration
and deceleration were also simulated, and the impact velocity was from 6.4
to 19.2 m/s. Simulation results showed a direct injury at the impact region and
an indirect injury near the eye socket. The injury mechanism of the acceleration
and deceleration was found to be different. Zhou et al. [225] further constructed
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FIGURE 8.25 Failure of the sandy soil slope [120]: (upper) the MPM results; (lower) the FEM
results.

a computational model for the impact of the human skeleton, which was com-
posed of the head, cervical vertebra, thoracic vertebra, ribs, shoulder blades,
lumbar vertebra, coccygeal vertebra, pelvis, ligaments, intervertebral discs, the
seat back. They investigated the influence of the bone density on the responses
of the human skeleton. It was found that the maximum acceleration at the head,
breast, lumbar vertebra, cervical vertebra, and pelvis were all increased when
the bone density was decreased. The magnitude of the acceleration of the cer-
vical vertebra varied nonlinearly with the bone density, and the acceleration of
the other parts varied almost linearly with the bone density.

8.7 OTHER PROBLEMS WITH EXTREME DEFORMATIONS

Large deformations of geological materials are often encountered in engineering
problems. Since the MPM does not have mesh distortion, the applications of the
MPM in geotechnical engineering have increased in recent years. Bardenhagen
et al. [71] first employed the MPM to simulate grain materials. Cummins and
Blackbill [104] developed an implicit material point method for grain materi-
als. Coetzee and his collaborators [226,227] investigated the excavation process
and the flow of grain materials with the MPM. They compared the results ob-
tained by the MPM with a nonpolar continuum theory, the MPM with a polar
continuum theory, the discrete element method (DEM), and the experiments.
They found that the results calculated with the MPM were better, and the results
calculated by the MPM with the polar theory were the best. Huang et al. [120]
simulated the slope failure and the penetration of soil material with the MPM
and the Drucker–Prager model. The final configuration of the failed sandy soil
slope is shown in Fig. 8.25. The FEM and MPM configurations are very similar,
and extremely large deformations can be observed at the surface of the slope.
Large deformations led to a sharp decrease of the FEM time step size and mesh
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FIGURE 8.26 Final configuration of the slope [41]: (upper) the experimental results; (lower) the
AFEMP results.

distortion, while the MPM time step size was nearly not influenced by large
deformations. The overall computational time of the MPM was much smaller
than that of the FEM. Anderson et al. [228] also simulated slope failure with
the MPM, and they employed a simplified model to study the influence of slope
failure on the structures built on the slope.

Small deformations exist in a large area in the slope failure problem such
that it will be more efficient and accurate to employ the FEM for the small-
deformation region. Lian et al. [41] analyzed the slope failure problem with
the adaptive finite element material point (AFEMP) method. The entire slope
was discretized with hexahedron elements, and the finite elements were con-
verted into material points whenever their effective plastic strain exceeded the
critical value. The Drucker–Prager model was used to model the sandy soil.
The AFEMP and experimental results were consistent, as shown in Fig. 8.26.
It should be noted that the experiment was equivalent to an indoor experiment
with a piles of dry aluminum tubes carried out by Bui et al. [229]. The aluminum
tubes were initially piled up to a cuboid shape, and they were kept stationary by
a vertical baffle. The baffle was then removed, and the tubes collapsed to form
a slope. The corresponding material properties of the soil could be derived from
the interactions between the tubes. Grid lines were drawn on the background
wall and on the initial outer surface of the tube pile. The movement of the grid
lines could clearly indicate the slope surface and failure surface. The surface
lines of the experimental results, the standard MPM results, and the AFEMP
results are all compared in Fig. 8.27. Both the MPM and AFEMP produced
identical to the experimental results, but the AFEMP fully utilized the advan-
tages of the FEM in small deformation phase. The time step size and the CPU
time of the standard MPM and AFEMP are listed in Table 8.3. The AFEMP is
more efficient than the original MPM when the deformation is small. Although
the total number of time steps is larger in the AFEMP computation, the total
computational cost of the AFEMP is much less than that of the original MPM.

Wieckowski [230] applied the MPM in metal forming and metal cutting
processes. Ambati et al. [231] simulated the metal cutting process with the
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FIGURE 8.27 Comparison of the slope surfaces and the failure surfaces from the experimental
results, the original MPM results and the AFEMP results [41].

TABLE 8.3 Comparison of the Time Step Size and the Efficiency Between
the Original MPM and AFEMP [41]

Method �tmax/µs �tmin/µs Total number of time
steps

CPU time/s

AFEMP 48.41 22.85 47,402 1123

MPM 48.41 29.94 34,765 1791

GIMP method, and they thoroughly investigated the effects of friction and cut-
ting depth. The results indicated that the MPM can well simulate the extremely
large deformation during cutting. The localization phenomenon, i.e., the adia-
batic shear band, can be captured by numerical simulation. Burghardt et al. [232]
combined the MPM with a nonlocal theory to avoid the mesh dependency as-
sociated with local models. They proposed a scheme to calculate the nonlocal
integration in the MPM. The results of compression and slope failure problems
indicated that the nonlocal theory ensured the convergence of shear band size
when the background mesh size was decreased. The mesh dependency was il-
lustrated for local models for which the characteristic length of the shear band
was decreased with the reduction in mesh size. Li et al. [233] studied the contact
law by simulating the large deformation process near the contact region with the
MPM.
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A
Acceleration, 24, 43, 51, 57, 68, 69, 95,
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Accuracy, 7, 8, 48, 56, 58, 59, 79, 82, 139,

162, 172, 195, 248, 251, 255
Adaptive finite element material point, see

AFEMP
Adiabatic sound speed, 45, 210–212
AFEMP, 103, 168, 172, 173, 238–241,

262, 263
Algorithm

numerical, 67, 68, 155, 175, 204
radial return, 183, 190
return mapping, 183, 184, 186, 187,
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Artificial bulk viscosity, 30, 31, 106, 107,

219
Assembling and interpolation process,

252, 253, 255

B
Background grid, 39–41, 50, 56, 66, 77,

104, 108, 113, 116, 118, 119, 157,
170, 172, 213, 224

Base vector, 60, 152, 153, 155
hourglass, 152–155

Block, 110–112, 120
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51, 60, 67, 68, 87, 91, 125, 126,

130, 135, 136, 159, 226, 252,
260

Burn fraction, 206, 207, 218

C
Carbon nanotube, see CNT
Cauchy stress, 11, 19, 20, 24, 159, 160,

176, 198, 214
Cauchy stress tensor, 18, 19, 145, 176
Cell crossing noise, 69, 74, 76
Cell number, 115, 119, 164
Central difference method, 43–45, 57, 90,

104
Centro-symmetry parameter, see CSP
CFEMP method, 162, 163, 168, 249, 250
Characteristic element length, 2, 46, 57,

58
Chemical reaction, 32, 34–36, 206
CJ detonation model, 32
CNT, 258, 259
Computational cost, 42, 43, 56, 57, 66,

79, 81, 82, 89, 94, 141, 142, 151,
163, 241, 252, 258

Computational efficiency, 8, 41, 56, 58,
59, 68, 71, 163, 172
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186, 189, 191, 194, 223, 224, 226,
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109, 116, 119, 123, 140, 164, 237
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Contact method, 59, 67
Contact node, 55, 66, 119
Contact pair, 116, 163–165, 167
Contact point, 60–62, 165–167
Contact state, 62, 63
Contact surface, 59–61, 109, 119
Continuity equation, 21, 22
Continuum-based particle method, 6, 223
Convected particle domain interpolation,

see CPDI
Coordinate

natural, 39, 118, 147, 148, 150, 170,
224, 227

relative, 118–120
spatial, 12, 13, 38, 143, 150

Coupled finite element material point
method, see CFEMP method

CPDI, 74, 75
CPU time, 8, 82, 142, 239, 262
Crack, 231–233, 235–237
Critical time step, 2, 45, 47, 109, 208,

209, 216
Critical time step size, 2, 31, 57, 89, 90,

236, 252
CSP, 255
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D
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Debris cloud, 2, 56, 58, 237, 238
Deformation, 1, 12, 16, 19, 73, 76, 234,

238, 243, 249, 252, 256, 259, 262
Deformation gradient, 11, 14–16, 73, 74,
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Deformation gradient of particle, 53, 73
Deformation rate, 11, 17, 19, 20, 24, 40,

176, 178, 180
Deformation tensor, 17, 47, 155
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Derivatives, 20, 25, 26, 118, 119, 144,

150, 151, 157, 203
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Detonation point, 108, 112, 137, 206,
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Detonation velocity, 32–35, 206, 216, 245
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Deviatoric stress, 89, 90, 140, 156, 175,

176, 179, 188, 193, 196, 203, 204,
213, 215, 217, 218

elastic trial, 189, 193, 200, 203, 204
Deviatoric tensor, 191–193
Dissipative particle dynamics, see DPD
DPD, 221–224, 228, 229
DPD particles, 223–225, 227, 228
DPD simulations, 224, 228
Drucker–Prager model, 104, 108, 141,

179, 197, 198, 200, 202, 204, 216,
234, 261, 262

Dual domain material point, see DDMP

E
Effective plastic strain, 115, 140, 141,

168, 180, 188, 194, 214, 216, 217,
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Efficiency, 1, 6, 8, 56, 59, 79, 80, 82, 100,
236, 241, 251, 255, 263

Elastic trial stress, 183, 184, 190, 193,
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Energy, 1–3, 6, 20, 25, 28, 32, 37, 58,
114, 169, 170, 206, 256

conservation of, 24, 28, 31, 33
internal, 23, 27, 31, 46, 78, 105, 116,

169, 175, 177, 178, 207–211, 213,
217, 218

Erosion, 58, 59, 213
Erosion technique, 2, 3, 58
Eulerian, 1, 4, 5, 14
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Eulerian grid, 3, 4
Eulerian mesh, 4, 5
Eulerian method, 1, 3–5, 7, 248
Eulerian–Lagrangian method, 4, 5
Explosion, 231, 242, 248
Explosion problems, 194, 242
Explosive, 33–35, 104, 111, 113, 137,

205–208, 210, 238, 242, 245, 246,
259

F
Failed material points, 232, 233
Failure evolution, 1, 7, 101, 104, 162,

196, 213, 229, 231, 233–235
Failure mode, 1, 234, 235
Failure surface, 58, 233, 262, 263
FE node, 162, 169, 170
FEM, 6–8, 25, 39, 41, 45, 48, 52, 56–59,

93, 139, 141–143, 148, 156, 162,
168, 171, 222, 238, 246, 249–252,
256, 262

explicit, 56, 57, 103, 155, 236
FEM body, 162, 163
FEM simulations, 58, 139, 141
Finite element discretization, 20, 38, 39,

143
Finite element method, see FEM
Finite elements, 163, 168–170, 231, 238,

239, 241, 247, 262
Fluid–structure interaction problems, 247,

248
Flyer, 242, 244–246
Fracture, 156, 196, 213, 231, 236, 238,

242, 243
Fragmentation, 1, 7, 234, 236, 242
Free surface, 4, 91–93, 246

G
Gauss point, 57, 155
Gauss quadrature

one-point, 56, 57, 148, 149, 151
Generalized interpolation material point,

see GIMP

Ghost pressure, 91, 93
GIMP, 37, 69–74, 76, 79, 103, 104, 116,

118, 233
Governing equations, 11, 20, 24, 25, 175,

222, 234
Gradient, 41, 75, 76, 79, 100, 186, 187,

191, 223, 225
modified, 76

Grid, 1–3, 6, 38, 39, 41, 47, 50, 52, 56,
59, 79–82, 103, 108, 117, 124,
134, 137, 162, 224

deformed, 48, 51, 56, 68
multi-level, 82, 83, 85

Grid cell, 30, 31, 57, 78, 118, 162, 163,
224, 226, 227

Grid cell size, 47, 163
Grid data, 115, 116
Grid nodal acceleration, 47, 50
Grid nodal mass, 49, 57, 67, 71, 124, 158
Grid nodal momentum, 47, 49–51, 57, 68,

135
Grid nodal shape function, 42, 70, 71, 83,

118
Grid nodal velocity, 41, 42, 47–52, 57, 59,

67, 68, 90, 127, 163
Grid node, 47, 48, 50, 52, 53, 57, 62–68,
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129, 131, 134–136, 157, 159, 160,
162, 163, 171, 223
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Grid point, 25, 39–41, 159, 160, 167
Grid spacing, 108, 112, 137, 140, 141
GridData, 115, 117, 119, 120, 124–126,

128, 130, 131, 134, 135
module, 116, 117, 119

Grüneisen parameter, 211, 212
Gurney equation, 245, 246
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Heat capacity, 210, 211, 217
Hexahedron, 75, 125, 127, 129, 134, 136,

148
Hexahedron element

8-node, 147, 148, 152
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HFEMP method, 103, 156–162, 241
Hourglass mode, 93, 151–155
Hourglass-resisting forces, 153, 155
Hugoniot curve, 28, 29, 212
Hybrid finite element material point

method, see HFEMP method
Hyper-velocity impact, 231, 237, 238,

256, 257

I
IAFEMP, 172, 173
ICFEMP, 163, 168
Impact velocity, 8, 195, 237, 238, 260
Impenetrability condition, 59–61, 64, 65
iMPM, 89, 90, 92–94
Improved adaptive finite-element

material-point method, see
IAFEMP

Improved coupled finite-element
material-point method, see
ICFEMP

Incompressible material point method, 88,
89

Integrals, 20, 56, 75, 76, 148
Interface, 3, 4, 20, 83, 91, 170, 172, 232,

253, 255
Intrinsic structure, 256–258
Isotropic hardening

linear, 192, 193
Iteration, 96, 178, 184, 186, 188, 193, 195
Iteration loop, 95, 186, 192, 193, 195
Iterative process, 186, 187

J
Jacobian, 15, 16, 58, 96, 99
Jaumann rate, 20, 111, 179, 218
Jaumann stress rate, 109, 176, 178, 180,

216
Johnson–Cook flow stress model, 194,

195
Johnson–Cook plasticity model, 104, 107,

196, 215–218

K
Keyword, 105–110, 114, 119, 121

Kinetic energy, 42, 44, 105, 139, 246
Krylov method, 99, 100

L
Lagrangian, 1, 4, 5, 13, 20, 38, 41
Lagrangian description, 12–14, 20
Lagrangian grid, 2
Lagrangian method, 1, 5, 7
Lagrangian phase, 5, 38, 39, 41, 48
Linear momentum

conservation of, 22–24
Linearization, 96, 195
Loading parameter, 181, 182, 186
LS-DYNA, 7, 8, 88, 139, 141

M
Magnitude, 55, 65, 90, 97, 222, 261
Mass

conservation of, 21, 22, 25, 27, 28, 169
Mass matrix

lumped, 145, 223
Material

frictional, 196, 198
Material constant, 29, 107, 195, 206, 207,

210
user-defined, 209, 210

Material coordinates, 12, 13
Material domain, 2, 3, 37–39, 68, 81, 110,

116, 119, 120, 140, 169, 170
Material interfaces, 2, 4, 20
Material model library, 103, 104
Material parameters, 139, 140, 215, 245,

251
Material point method, see MPM
Material point model, 259, 260
MaterialData

module, 119, 124, 126, 128, 131, 134,
135

MaterialModel
module, 217–219

Matrix
strain-displacement, 150, 151

Matrix form, 99, 149, 150, 152
Maximum shear stress, 214, 235
MC (Monte Carlo) method, 251, 256
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MD, 221–223, 252–254
MD method, 251–254
Mesh, 5, 45, 46, 79, 169, 231, 253–255,

261
Mie–Grüneisen EOS, 108, 111, 140, 211,

213, 219, 249
Model

elastoplastic, 179, 180
Modified update-stress-last, see MUSL
Module MaterialData, 215, 216
Mohr–Coulomb model, 196, 197
Molecular dynamics, see MD
Momentum, 1, 3, 20, 27, 37, 40, 47, 49,

57, 58, 63, 67, 71, 116, 117, 124,
131, 132, 159, 160, 169, 170,
225

Momentum equation, 25, 26, 38, 64, 66,
67, 79, 89, 100, 122, 130, 157,
170, 172, 251

Motion, 11–15, 25, 30, 52, 61, 95, 222,
252, 256

equation of, 42–44
high-frequency, 252, 255
low-frequency, 94, 252

MPM, 6–9, 20, 25, 39, 41, 47, 48, 50, 52,
53, 55–60, 77, 79, 88, 92,
101–104, 115, 118, 123, 139–143,
156, 162, 168, 170, 171, 213, 221,
223, 224, 231, 232, 234–242,
246–249, 251, 252, 255–259,
261–263

adaptive, 37, 79, 244
MPM code

open-source, 175, 178, 205, 207, 213
MPM particle, 162–164, 168, 170–172,

224–227
MPM scheme, 47–49, 52, 156
MPM3D, 9, 103, 104, 120
MPM3D-F90, 103–106, 108–110, 113,

115–118, 121, 123, 137, 139, 141,
156, 215, 216

MUSL, 48, 51–53, 56, 68, 104, 112, 116,
122, 123, 135, 137

N
Nodal equations, 95, 232, 248
Nodal force, 44, 53, 57, 98, 130, 132, 133,

149, 153, 156, 157, 170, 171, 225
Nodal mass, 127, 135, 170, 171
Nodal velocity

trial grid, 64
updated grid, 48, 57

Node
hanging, 83–86
transition, 170–172

Normal velocity, 59, 61, 62, 91
Null material, 104, 108, 215–218
Numerical fracture, 9, 78, 81, 237, 244

P
ParaView, 104, 109, 110
Partial differential equations, see PDEs
Particle characteristic function, 69, 71–74,

76
Particle density, 50, 51, 137
Particle domain, 74–76
Particle mass, 38, 49, 67, 116, 215
Particle position, 5, 115, 128, 133–135,

170
Particle quadrature, 39, 56–58, 76, 162
Particle velocity, 16, 27–29, 34, 35, 42,

47, 48, 51, 115, 166, 226
ParticleData

module, 115, 116, 119
modules, 115, 119, 120

PDEs, 25
Penetration, 1, 7, 63, 64, 66, 82, 113, 164,

231, 241, 258, 261
Perforation, 7, 237, 238, 240, 241
PIC (Particle-In-Cell) method, 4–6
Plastic corrector step, 183, 184, 190, 191
Plastic flow, 180, 181, 190, 200, 201
Plastic loading, 180, 181, 184
Plastic strain, 107, 179, 184, 186, 191,

192, 239
Plastic strain rate, 180, 181, 183, 195, 199
Plasticity

perfect, 104, 107, 194
Poisson’s ratio, 107, 215, 217
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Polynomial EOS, linear, 104, 209, 210,
216

Position vector, 12–14, 16, 66, 75, 165
Pressure, 6, 27, 28, 30–32, 34, 36, 46,

89–91, 93, 108, 137, 138, 156,
175–178, 196, 198, 205–212, 217,
218, 237, 247

hydrostatic, 89, 93, 190, 213, 214
Pressure Poisson equation, 90, 91
Product

gaseous, 32, 33, 205–208, 210

R
Rankine–Hugoniot equations, 27, 28, 30,

32
Rayleigh line, 28, 29, 33, 34, 36
RC, 156, 161, 241, 242
Rebar element, 157–160
Rebar node, 157–160
Reference configuration, 11–13, 15,

143–145
Reinforced concrete, see RC
Relative velocity, 17
Representative volume element, see RVE
Residual velocities, 140, 161, 172, 237,

240, 242
Rigid body rotations, 17, 19, 154
Rotation, 15, 17, 19
RVE, 257, 259

S
SBES, 1, 6, 143
Search

global, 163–165
local, 163, 165

Shape function, 8, 39, 68, 75–77, 83, 85,
86, 118, 119, 125, 127, 129, 134,
136, 143, 147, 148, 150, 165, 170,
225

Shear stress
effective, 198, 200, 201

Shear wave, 87, 88, 90
Shock front, 27–30, 32, 206
Shock Hugoniot, 29, 33

Shock velocity, 28, 29, 32
Shock wave, 27, 28, 30–32, 205
Simulation

multiscale, 6, 229, 251
Simulation-based engineering science, see

SBES
Slope, 28, 33, 34, 141, 200, 261, 262

soil, 113, 141
SMD, 252, 253
SMD flowchart, 252, 253, 255
SMD method, 252–255
Smoothed molecular dynamics, see SMD
Smoothed particle hydrodynamics, see

SPH
Solution process, 1, 2, 41, 56–58, 79, 187
Sound speed, 35, 46, 47, 108, 116, 208,

209, 216, 218
SPH, 3, 7–9, 208, 236
Sphere, 81, 110, 111, 113, 120
Spin tensor, 17, 19, 20, 23, 40, 126, 159,

176
State variable, 42, 104, 169, 207, 224, 248

internal, 37, 180, 181, 215
Steel bar, 157, 161, 162
Strain, 37, 54, 78, 79, 145, 151, 153, 169,

179, 195, 223
Strain energy norm, 85, 87
Strain rate

effective plastic, 189, 194, 195
Strain rate effects, 194, 195, 258
Strength model, 175, 176, 215, 217, 218
Stress, 20, 26, 37, 40, 47, 50, 51, 68, 78,

89, 115, 129, 137, 153, 155, 160,
169, 175, 181, 186, 189, 192, 194,
196, 198, 204, 217, 218, 223, 232,
248, 259, 260

effective, 189, 191, 193, 196, 217, 218
principal, 197, 198, 214, 235

Stress distribution, 54, 55, 259
Stress intensity factor, 232, 235
Stress rate, 160, 176

objective, 19, 20, 176, 180
Stress state, 4, 18, 47, 48, 52, 183, 205,

218
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Stress update, 57, 109, 112, 151, 175,
216, 218

Stress wave, 45, 55
Stress–strain curve, 179, 256, 257
System of simultaneous equations, 93, 95

T
Tangent stiffness matrix, 96–98
Tecplot, 104, 105, 109, 110, 120, 121
Temperature, 23, 32, 78, 175, 177, 194,

195, 205–207, 217, 237
Tensile instability, 8, 9
Time integration

explicit, 31, 41, 43, 89, 109, 145, 176
Time step

total number of, 139, 141, 241, 252,
262

Time step safety factor, 109, 139, 141
Total number of particles, 63, 106, 110
Trial stress point, 200, 201

U
Unit vector, 12, 165, 235
Unity

partition of, 69, 70, 74
Update-stress-first, see USF
Update-stress-last, see USL
USF, 47–50, 52, 53, 103, 104, 116, 122,

123, 126

USL, 47, 48, 51–53, 68, 103, 104, 116,
123, 137

V
Variable

internal, 182, 184, 186, 189, 191, 192
Velocity, 13, 27, 35, 40–44, 52, 60, 68, 87,

90, 95, 133, 134, 139, 140, 146,
149, 153, 156, 158–160, 172, 173,
205, 206, 239, 244, 248, 260

Velocity field, 14, 52, 59, 89, 93, 116,
171, 172

Velocity gradient, 16, 53, 176
Velocity vectors

element nodal, 153, 154
Viscosity, 30, 205, 207
Von Neumann spike, 34–36

W
WCMPM, 88–90, 93, 94
Weakly compressible material point

method, see WCMPM

Y
Young’s modulus, 107, 140, 215

Z
ZND detonation model, 35
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