
M A N N I N G

Milan Curcic
Foreword by Damian Rouson

Building efficient parallel applications

program foo

implicit none

integer :: a, b, n

real :: x

n = 1, 10

do n = 1, 10

call add(a, n)

end program foo

The main program can declare
data, have executable code,
as well as invoke other units,
such as functions and
subroutines.

The main program is the
fundamental Fortran unit.
It is the only unit that can
be invoked as an executable
from the operating system.

function sum(a, b)

integer, intent(in) :: a, b

integer :: sum

sum = a + b

end function sum

subroutine add(a, b)

integer, intent(in out) :: a

integer, intent(in) :: b

a = a + b

print , ‘a = ‘, a∗

end subroutine add

Functions can take any number
of input arguments, but always
return only one result.

Like programs, functions
can also declare data and
have executable code.
Unlike programs, they
can only be invoked in
expressions; for example,
total = 2 * sum(3, 5).

Subroutines receive input
arguments, modify them
in-place, and return any
number of output arguments.
Subroutines can only be
invoked with a statement;call
for example, .call add(a, 3)

Use functions for side
effect-free calculations.

Use subroutines when you need
to modify input arguments in
place, or write data to screen
or external files.

The intent attribute determines
whether an input argument can
be modified in-place ()in out
or not (in).

end do

An overview of a Fortran program, function, and subroutine

Modern Fortran
BUILDING EFFICIENT PARALLEL APPLICATIONS

MILAN CURCIC

FOREWORD BY DAMIAN ROUSON

M A N N I N G

SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2020 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Development editor: Lesley Trites
Technical development editor: Michiel Trimpe

Manning Publications Co. Review editor: Aleksandar Dragosavljević
20 Baldwin Road Production editor: Lori Weidert
PO Box 761 Copy editor: Frances Buran
Shelter Island, NY 11964 Proofreader: Melody Dolab

Technical proofreader: Maurizio Tomasi
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617295287
Printed in the United States of America

www.manning.com

contents
foreword xi
preface xiii
acknowledgments xiv
about this book xvi
about the author xxii
about the cover illustration xxiii

PART 1 GETTING STARTED WITH MODERN FORTRAN........1

1 Introducing Fortran 3
1.1 What is Fortran? 4
1.2 Fortran features 6
1.3 Why learn Fortran? 8
1.4 Advantages and disadvantages 10

Side-by-side comparison with Python 10

1.5 Parallel Fortran, illustrated 12
1.6 What will you learn in this book? 13
1.7 Think parallel! 14

Copying an array from one processor to another 17
iii

CONTENTSiv
1.8 Running example: A parallel tsunami simulator 22
Why tsunami simulator? 22 ■ Shallow water equations 23
What we want our app to do 24

1.9 Further reading 25

2 Getting started: Minimal working app 26
2.1 Compiling and running your first program 27
2.2 Simulating the motion of an object 28

What should our app do? 29 ■ What is advection? 30

2.3 Implementing the minimal working app 31
Implementation strategy 32 ■ Defining the main program 33
Declaring and initializing variables 34 ■ Numeric data types 35
Declaring the data to use in our app 37 ■ Branching with an if
block 40 ■ Using a do loop to iterate 42 ■ Setting the initial
water height values 44 ■ Predicting the movement of the
object 45 ■ Printing results to the screen 47 ■ Putting it
all together 47

2.4 Going forward with the tsunami simulator 51
2.5 Answer key 52

Exercise: Cold front propagation 52

2.6 New Fortran elements, at a glance 52
2.7 Further reading 52

PART 2 CORE ELEMENTS OF FORTRAN55

3 Writing reusable code with functions and subroutines 57
3.1 Toward higher app complexity 58

Refactoring the tsunami simulator 58 ■ Revisiting the cold front
problem 61 ■ An overview of Fortran program units 63

3.2 Don’t repeat yourself, use procedures 65
Your first function 65 ■ Expressing finite difference as a function
in the tsunami simulator 70

3.3 Modifying program state with subroutines 72
Defining and calling a subroutine 72 ■ When do you use a
subroutine over a function? 74 ■ Initializing water height in
the tsunami simulator 75

CONTENTS v
3.4 Writing pure procedures to avoid side effects 76
What is a pure procedure? 76 ■ Some restrictions on pure
procedures 77 ■ Why are pure functions important? 77

3.5 Writing procedures that operate on both scalars
and arrays 77

3.6 Procedures with optional arguments 79
3.7 Tsunami simulator: Putting it all together 81
3.8 Answer key 82

Exercise 1: Modifying state with a subroutine 82 ■ Exercise 2:
Writing an elemental function that operates on both scalars
and arrays 83

3.9 New Fortran elements, at a glance 83
3.10 Further reading 84

4 Organizing your Fortran code using modules 85
4.1 Accessing a module 86

Getting compiler version and options 86 ■ Using portable
data types 89

4.2 Creating your first module 91
The structure of a custom module 92 ■ Defining a module 93
Compiling Fortran modules 95 ■ Controlling access to variables
and procedures 97 ■ Putting it all together in the tsunami
simulator 98

4.3 Toward realistic wave simulations 99
A brief look at the physics 101 ■ Updating the finite difference
calculation 102 ■ Renaming imported entities to avoid name
conflict 104 ■ The complete code 105

4.4 Answer key 107
Exercise 1: Using portable type kinds in the tsunami simulator 107
Exercise 2: Defining the set_gaussian subroutine in a module 107

4.5 New Fortran elements, at a glance 108
4.6 Further reading 108

5 Analyzing time series data with arrays 110
5.1 Analyzing stock prices with Fortran arrays 111

Objectives for this exercise 111 ■ About the data 112
Getting the data and code 114

CONTENTSvi
5.2 Finding the best and worst performing stocks 114
Declaring arrays 116 ■ Array constructors 118 ■ Reading stock
data from files 121 ■ Allocating arrays of a certain size or
range 122 ■ Allocating an array from another array 123
Automatic allocation on assignment 123 ■ Cleaning up after
use 124 ■ Checking for allocation status 126 ■ Catching
allocation and deallocation errors 126 ■ Implementing the CSV
reader subroutine 127 ■ Indexing and slicing arrays 129

5.3 Identifying risky stocks 132
5.4 Finding good times to buy and sell 135
5.5 Answer key 139

Exercise 1: Convenience (de)allocator subroutines 139 ■ Exercise 2:
Reversing an array 140 ■ Exercise 3: Calculating moving average
and standard deviation 140

5.6 New Fortran elements, at a glance 141
5.7 Further reading 141

6 Reading, writing, and formatting your data 143
6.1 Your first I/O: Input from the keyboard and

output to the screen 144
The simplest I/O 144 ■ Reading and writing multiple variables at
once 147 ■ Standard input, output, and error 148

6.2 Formatting numbers and text 151
Designing the aircraft dashboard 151 ■ Formatting strings,
broken down 152 ■ Format statements in legacy Fortran
code 157

6.3 Writing to files on disk: A minimal note-taking app 157
Opening a file and writing to it 158 ■ Opening a file 159
Writing to a file 161 ■ Appending to a file 162 ■ Opening
files in read-only or write-only mode 163 ■ Checking whether
a file exists 164 ■ Error handling and closing the file 167

6.4 Answer key 168
Exercise: Redirect stdout and stderr to files 168

6.5 New Fortran elements, at a glance 169

CONTENTS vii
PART 3 ADVANCED FORTRAN USE171

7 Going parallel with Fortran coarrays 173
7.1 Why write parallel programs? 174
7.2 Processing real-world weather buoy data 175

About the data 176 ■ Getting the data and code 178
Objectives 178 ■ Serial implementation of the program 179

7.3 Parallel processing with images and coarrays 181
Fortran images 182 ■ Getting information about the images 183
Telling images what to do 184 ■ Gathering all data to a single
image 186

7.4 Coarrays and synchronization, explained 187
Declaring coarrays 188 ■ Allocating dynamic coarrays 188
Sending and receiving data 189 ■ Controlling the order of
image execution 191

7.5 Toward the parallel tsunami simulator 192
Implementation strategy 192 ■ Finding the indices of neighbor
images 194 ■ Allocating the coarrays 195 ■ The main
time loop 196

7.6 Answer key 199
Exercise 1: Finding the array subranges on each image 199
Exercise 2: Writing a function that returns the indices
of neighbor images 200

7.7 New Fortran elements, at a glance 201
7.8 Further reading 201

8 Working with abstract data using derived types 202
8.1 Recasting the tsunami simulator with derived types 203
8.2 Defining, declaring, and initializing derived types 206

Defining a derived type 209 ■ Instantiating a derived type 210
Accessing derived type components 212 ■ Positional vs. keyword
arguments in derived type constructors 212 ■ Providing default
values for derived type components 214 ■ Writing a custom type
constructor 215 ■ Custom type constructor for the Field type 218

8.3 Binding procedures to a derived type 220
Your first type-bound method 220 ■ Type-bound methods for the
Field type 221 ■ Controlling access to type components and
methods 222 ■ Bringing it all together 224

CONTENTSviii
8.4 Extending tsunami to two dimensions 224
Going from 1-D to 2-D arrays 225 ■ Updating the equation
set 226 ■ Finite differences in x and y 226 ■ Passing a class
instance to diffx and diffy functions 228 ■ Derived type
implementation of the tsunami solver 229

8.5 Answer key 231
Exercise 1: Working with private components 231 ■ Exercise 2:
Invoking a type-bound method from an array of instances 233
Exercise 3: Computing finite difference in y direction. 233

8.6 New Fortran elements, at a glance 234
8.7 Further reading 235

9 Generic procedures and operators for any data type 236
9.1 Analyzing weather data of different types 237

About the data 238 ■ Objectives 241 ■ Strategy for this
exercise 242

9.2 Type systems and generic procedures 242
Static versus strong typing 242

9.3 Writing your first generic procedure 243
The problem with strong typing 243 ■ Writing the specific
functions 244 ■ Writing the generic interface 247 ■ Results
and complete program 251

9.4 Built-in and custom operators 253
What’s an operator? 253 ■ Things to do with operators 253
Fortran’s built-in operators 255 ■ Operator precedence 257
Writing custom operators 257 ■ Redefining built-in
operators 258

9.5 Generic procedures and operators in the tsunami
simulator 259
Writing user-defined operators for the Field type 259

9.6 Answer key 260
Exercise 1: Specific average function for a derived type 260
Exercise 2: Defining a new string concatenation operator 262

9.7 New Fortran elements, at a glance 263

10 User-defined operators for derived types 264
10.1 Happy Birthday! A countdown app 265

Some basic specification 265 ■ Implementation strategy 266

CONTENTS ix
10.2 Getting user input and current time 266
Your first datetime class 266 ■ Reading user input 267
Getting current date and time 271

10.3 Calculating the difference between two times 272
Modeling a time interval 273 ■ Implementing a custom
subtraction operator 273 ■ Time difference algorithm 275
The complete program 280

10.4 Overriding operators in the tsunami simulator 282
A refresher on the Field class 283 ■ Implementing the arithmetic
for the Field class 284 ■ Synchronizing parallel images on
assignment 286

10.5 Answer key 288
Exercise 1: Validating user input 288 ■ Exercise 2: Leap year in
the Gregorian calendar 289 ■ Exercise 3: Implementing the
addition for the Field type 289

10.6 New Fortran elements, at a glance 290

PART 4 THE FINAL STRETCH ..291

11 Interoperability with C: Exposing your app to the web 293
11.1 Interfacing C: Writing a minimal TCP client and

server 294
Introducing networking to Fortran 295 ■ Installing libdill 297

11.2 TCP server program: Receiving network
connections 297
IP address data structures 299 ■ Initializing the IP address
structure 301 ■ Checking IP address values 306 ■ Intermezzo:
Matching compatible C and Fortran data types 308 ■ Creating a
socket and listening for connections 310 ■ Accepting incoming
connections to a socket 311 ■ Sending a TCP message to the
client 312 ■ Closing a connection 315

11.3 TCP client program: Connecting to a remote server 317
Connecting to a remote socket 317 ■ Receiving a message 319
The complete client program 321

11.4 Some interesting mixed Fortran-C projects 322
11.5 Answer key 322

Exercise 1: The Fortran interface to ipaddr_port 322 ■ Exercise 2:
Fortran interfaces to suffix_detach and tcp_close 323

CONTENTSx
11.6 New Fortran elements, at a glance 324
11.7 Further reading 324

12 Advanced parallelism with teams, events, and collectives 326
12.1 From coarrays to teams, events, and collectives 327
12.2 Grouping images into teams with common tasks 328

Teams in the tsunami simulator 329 ■ Forming new teams 331
Changing execution between teams 332 ■ Synchronizing teams
and exchanging data 335

12.3 Posting and waiting for events 338
A push notification example 339 ■ Posting an event 341
Waiting for an event 341 ■ Counting event posts 342

12.4 Distributed computing using collectives 343
Computing the minimum and maximum of distributed arrays 343
Collective subroutines syntax 345 ■ Broadcasting values to
other images 346

12.5 Answer key 347
Exercise 1: Hunters and gatherers 347 ■ Exercise 2: Tsunami time
step logging using events 350 ■ Exercise 3: Calculating the global
mean of water height 351

12.6 New Fortran elements, at a glance 353
12.7 Further reading 353

appendix A Setting up the Fortran development environment 355
appendix B From calculus to code 361
appendix C Concluding remarks 366

index 381

foreword
I was immediately excited to find out that Milan Curcic would be writing a modern
Fortran book. Almost weekly, I meet people who express surprise that Fortran
remains in use more than 60 years after its creation, so any signs of new life in a lan-
guage so often written off as dead or dying are cause for celebration. I usually
explain that Fortran has its strongest footholds in fields that embraced computing
early. I go on to tell them that they almost certainly use the results of Fortran pro-
grams daily when checking weather forecasts. What makes Milan’s work intriguing is
the extent to which it connects established domains, where Fortran has long held
sway, and emerging domains, where Fortran is rare. This book grew out of the
unique perspective Milan brings from having been involved in bridging the divides
that prevent many disciplines from writing Fortran and prevent most Fortran pro-
grammers from exploiting programming paradigms that have come into widespread
use in other languages.

 To Milan’s credit, the book focuses on teaching Fortran programming rather than
promoting the intriguing software libraries and applications to which he has contrib-
uted. The lucky reader who follows the links to his work and that of others will gain
more than just an understanding of Fortran programming. Such a reader will embark
on a journey that connects numerical weather prediction, a subject as old as comput-
ing, and cloud computing, a twenty-first-century innovation. Such a reader will also
discover how to incorporate aspects of functional programming, a paradigm around
which whole languages have been built, in Fortran, the language that’s the ultimate
ancestor of all high-level programming languages. And such a reader will be exposed
xi

FOREWORDxii
to neural networks, a subject undergoing explosive growth and impacting technolo-
gies as disparate as autonomous driving and cancer diagnosis.

 Milan has led or contributed to popular software in each of these areas, and some
of the packages grew out of this book or vice versa. Cloudrun (https://cloudrun.co), a
service he develops with others, for example, pioneered numerical weather prediction
software-as-a-service (SaaS) using cloud computing platforms. The open source func-
tional-fortran library (http://mng.bz/vxy1) provides utilities supporting a program-
ming paradigm that hasn’t penetrated the Fortran world as much as I would like. The
open source Fortran Standard Library (https://github.com/fortran-lang/stdlib) aims
to put Fortran on more even standing with other languages that benefit from large
libraries considered part of the language. His neural-fortran (https://github.com/
modern-fortran/neural-fortran), which grew out of his work on one chapter of this
book, demonstrates the application of Fortran’s scalable parallel programming model
in a domain dominated by languages that lack built-in parallel programming models
able to exploit distributed-memory platforms. Collectively, these projects are used by
hundreds of developers worldwide, and the interplay between his work on this book
and work on these projects informs and inspires the book’s coverage of the language.

 For the reader seeking proof of life for modern Fortran, Milan’s work provides
ample evidence of the language’s ongoing role in technological modernity. This book
is one of the more vibrant buds growing out of his work, and the interested reader will
learn the features of the language that have proven useful in the aforementioned
broad portfolio of Milan’s projects.

—DAMIAN ROUSON,
PhD, P.E. President, Sourcery Institute, Oakland, California, USA

https://cloudrun.co
http://mng.bz/vxy1
https://github.com/fortran-lang/stdlib
https://github.com/modern-fortran/neural-fortran
https://github.com/modern-fortran/neural-fortran

preface
When Mike Stephens from Manning first reached out to me in the summer of 2017,
he wrote, “We saw some of your forum posts and GitHub repositories; would you con-
sider writing a Fortran book with Manning?” Writing a book had never crossed my
mind, nor did I believe I was cut out for the job. I closed my eyes and took a leap of
faith. “Of course, I’d love to! Where do I send a proposal?” By the end of the summer,
we had a contract and a tentative table of contents in place. Two development editors,
two technical editors, four peer reviews, three chapter rewrites, two hurricanes, and
almost three years later, we have the finished book.

 Welcome to Modern Fortran: Building Efficient Parallel Applications! If you’re holding
this book, chances are you either want to learn Fortran programming for school or
work, or you’re an experienced Fortran programmer looking to brush up on the latest
developments in the language. Either way, you’ve come to the right place. If you’re
just starting to learn, my goal with this book is to give you a straightforward, hands-on,
practical approach to Fortran programming. If you have prior experience with the
language, I want this to be a handy survival guide in the Fortran world. Forgot how to
write functions that operate on both scalars and arrays? Wondering how to write your
program for parallel execution? Practical projects and exercises with solutions are
here to show you how.

 I’m happy to have the opportunity to share with you what I’ve learned over the
past 14 years. Thank you in advance for trusting me with your time and money.
Modern Fortran is my way of giving back to dozens of you who taught me and helped
me along the way. I hope you use this book to teach the next generation of Fortran
programmers.
xiii

acknowledgments
It takes a village to make a great book. Mike Stephens was the acquisitions editor—he
brought me on board and helped work out the table of contents, as well as getting clear
on who this book is for. My development editors, Kristen Watterson and Lesley Trites,
guided me along the way and diligently pushed me forward. Kristen worked with me on
the initial drafts of nine of the chapters; then Lesley took over for the remainder and
putting it all together. Technical editors Michiel Trimpe and Alain Couniot made sure
to point out any mistakes in the code and confusing paragraphs that didn’t make sense.
Bert Bates chimed in on occasion to help me pull out the concrete from the abstract.
Maurizio Tomasi was the technical proofreader and made sure that all the code in the
book works as advertised. Melody Dolab was the final proofreader and Lori Weidert was
the production editor. Also, the rest of the Manning staff who worked with me: Candace
Gillhoolley, Ana Romac, Rejhana Markanovic, Aleksandar Dragosavljević, Matko Hrvatin,
and others. Thank you all—I’ve learned a lot from you.

 I also want to thank all of the reviewers: Anders Johansson, Anton Menshov,
Bridger Howell, David Celements, Davide Cadamuro, Fredric Ragnar, Jan Pieter
Herweijer, Jose San Leandro, Joseph Ian Walker, Kanak Kshetri, Ken W. Alger, Konrad
Hinsen, Kyle Mandli, Leonardo Costa Prauchner, Lottie Greenwood, Luis Moux-
Domínguez, Marcio Nicolau, Martin Beer, Matthew Emmett, Maurizio Tomasi,
Michael Jensen, Michal Konrad Owsiak, Mikkel Arentoft, Ondřej Čertík, Patrick
Seewald, Richard Fieldsend, Ryan B. Harvey, Srdjan Santic, Stefano Borini, Tiziano
Müller, Tom Gueth, Valmiky Arquissandas, and Vincent Zaballa. Your suggestions
helped make this a better book.
xiv

ACKNOWLEDGMENTS xv
 Arjen Markus provided thorough reviews and suggestions on every chapter as they
became available in the Manning Early Access Program. Izaak Beekman, Jacob Williams,
Marcus Van Lier-Walqui, and Steve Lionel provided helpful comments on early drafts
of the book. Damian Rouson and his own books were an inspiration, and he encour-
aged me further along the way. Michael Hirsch helped with continuous integration of
some of the GitHub repositories associated with the book. Finally, all my readers who
trusted me and bought the book while still in the works—you helped me to keep at it
and finish the job.

 Last but not least, to my wife, family, and friends who supported me and were
proud of me—I couldn’t have done it without your love and help.

about this book
Modern Fortran aims to fill a glaring gap in the existing Fortran literature: a book that
teaches modern Fortran through practical, hands-on examples, with extra attention
on parallel programming and the latest developments in the language. This is a book
for scientists and engineers who want to solve the challenging computational prob-
lems of tomorrow using mature, highly performant, easy-to-use technology. If you
don’t have a clue about Fortran and want to work on a Fortran project (new or exist-
ing), I believe this book is the easiest and fastest way to get you up to speed.

 Modern Fortran isn’t a complete reference on all features of the language. Instead,
it’s a straightforward and hands-on practical course on Fortran programming, cover-
ing the most essential features you’re likely to use in your work. I also intend this to be
a useful reference text for solving practical everyday problems in science and engi-
neering. Examples in this book range from the more general, like a note-taking app
and working with dates and times; to the specialized, such as stock price and weather
data analysis; to the more sophisticated, such as parallel tsunami simulation. You’ll
find many examples and solutions to problems that are typically not covered by other
books on Fortran.

 Also, unlike most other Fortran books, this one gives extra attention to parallel
programming. As of the 2008 release, Fortran is a natively parallel programming lan-
guage, and the recent 2018 release only brings more to the table. In particular, this
book will show you how to write parallel Fortran programs using coarrays, teams,
events, and collectives, without relying on external libraries such as the Message Pass-
ing Interface.
xvi

ABOUT THIS BOOK xvii
 However, parallel programming is an advanced topic, and most chapters in the
book focus on gently introducing nonparallel language concepts. There’s only so much
material that we could fit in a single book, so important topics such as parallel algo-
rithms and scaling aren’t covered. Message Passing Interface, OpenMP, and OpenACC,
while all important technologies in their own right, were simply out of scope for this
book. Ditto for debugging, preprocessors, and working with legacy code. I’ll provide
references for further reading where appropriate.

Who should read this book
This book is primarily for readers who are new to Fortran and want to learn it. It will
also be useful to experienced Fortran programmers who want to brush up on the lat-
est in Fortran development through fun exercises. Whether you’ve had any contact
with Fortran or not, I assume you have at least some experience programming and
understand the basic concepts of source code, variables, and functions. Perhaps
you’re a proficient Fortran programmer looking to step up your parallel program-
ming game. Maybe your company is embedding a large Fortran simulation codebase
into the existing software stack, and the project fell into your lap. Whatever your story
is, I believe you’ll learn something new from this book.

 I believe the following professions will benefit most from this book:

■ Students and researchers in science or engineering, especially disciplines that
involve computational fluid dynamics

■ Meteorologists, oceanographers, and climate scientists, especially those who
work on numerical prediction problems

■ Data analysis professionals, such as data engineers and data scientists
■ Machine learning researchers and practitioners
■ Quantitative finance analysts
■ High-performance computing system administrators
■ Teachers and instructors in any of the above disciplines or anybody else curious

about programming languages and computation in general.

A bit of Fortran history
Fortran is a compiled, statically typed, general-purpose programming language. It was
developed by John Backus and his team at IBM, with the first release in 1957 for the
IBM 704 computer. Originally called FORTRAN (FORmula TRANslation), it allowed
programmers to write programs more easily compared to writing machine instructions
of the era. Fortran was one of the first high-level programming languages in history and
is the oldest language still in active use and development today. In that sense, Fortran
was the very beginning of the modern computing that we practice today.

 The language has since evolved through more than a dozen revisions and several
ISO standards. Fortran remains the dominant language of high-performance com-
puting (HPC), where many interconnected processors work together to solve huge
problems. Fortran 2018 is the most recent iteration of the language. The next revision,

ABOUT THIS BOOKxviii
with the current working name Fortran 202x, is in development and expected to
come out in the next few years.

 Today, Fortran is the leading programming language used in many areas of physi-
cal science and engineering. These include computational fluid dynamics, numerical
weather prediction, climate science, aerodynamics, astrophysics and so on. Fortran is also
used to benchmark the world’s fastest and largest supercomputers (https://top500.org).
Many universities still teach Fortran programming in science and engineering tracks
because Fortran remains relevant in those industries. With the explosion of internet
and mobile technologies over the past 20 years, it’s evident that the Fortran ecosystem
has fallen into the shadows, at least from the point of view of mainstream computing.
However, its relevance never lessened on an absolute scale. In fact, Fortran compilers,
Fortran libraries, and its open source community are stronger than ever. Fortran is the
only standardized language with a native parallel programming model, expressed using
an intuitive array-like syntax. With the current trend toward many-core architectures, it’s
safe to say that Fortran will be relevant for many years to come.

How this book is organized: a roadmap
Modern Fortran is organized in four parts and twelve chapters:

■ Part 1—Getting started with modern Fortran
– Chapter 1 will give you a taste of Fortran and what kind of problems it

solves best.
– Chapter 2 will guide you through a basic, yet complete Fortran program.

■ Part 2—Core elements of Fortran
– Chapter 3 will teach you to use procedures to simplify and reuse your For-

tran program.
– Chapter 4 explains how to organize your procedures and variables in modules.
– Chapter 5 covers arrays and whole-array arithmetic.
– Chapter 6 tackles input and output, and formatting numerical data as text.

■ Part 3—Advanced Fortran use
– Chapter 7 will show you how to use images and coarrays for parallel

programming.
– Chapter 8 covers derived types for working with abstract and complex data

structures.
– Chapter 9 explains how to write generic procedures that can work on argu-

ments of any data type.
– Chapter 10 covers user-defined operators for derived types.

■ Part 4—The final stretch
– Chapter 11 will teach you how to interface with existing C libraries from

Fortran.
– Chapter 12 covers advanced parallel programming concepts: teams, events,

and collectives.

https://top500.org

ABOUT THIS BOOK xix
Part 1 will give you a taste of Fortran. Work through this part if you’re new to Fortran.
Even if you have some Fortran experience, if you’d like to work through the running
example (a tsunami simulator), it’s introduced in chapter 2. At the end of part 1,
you’ll be able to write, compile, and run basic working Fortran programs.

 In part 2, I cover the core elements of the language: procedures (functions and
subroutines), modules, arrays, and I/O. These are the features that you’ll find in most
Fortran projects and that are essential for writing clean, organized, and reusable code.
At the end of part 2, you’ll be able to write more complex Fortran programs and
libraries to solve real problems. You can start here if you’re proficient with one or
more other programming languages. After working through this part, and with some
practical experience, you’ll be a functional and independent Fortran programmer.

 Part 3 introduces parallel programming with coarrays (chapter 7), as well as derived
types (chapter 8), generic procedures (chapter 9), and custom operators (chapter
10). Here, you’ll write your first parallel program, model complex data structures with
classes, and write generic procedures that can work with any data type. This part
depends on concepts introduced in part 2. Become familiar with those concepts first.
After you work through part 3, you’ll be able to understand, reuse, and extend most
of the existing Fortran code in the wild, as well as write innovative parallel Fortran
solutions. This is the heaviest part of the book—approach it with patience and an
open mind.

 Finally, part 4 covers specialty topics: interfacing C code from Fortran (chapter 11)
and advanced parallel features that were most recently added to the language—teams,
events, and collectives (chapter 12). The former is important if you’ll use Fortran for
systems programming, networking, interfacing with instruments, or reusing existing C
libraries for any task. The latter is the cutting edge of parallel programming in For-
tran. I recommend working through these chapters only after you’re familiar with the
concepts covered in parts 2 and 3.

 When it came to deciding on the order in which to organize different chapters
and topics, we found that there’s no obvious answer. Depending on your experience
and interest, you may find that some more basic topics may be covered later in the
book. If that’s the case, feel free to skip ahead and come back at a later time. Just
like any new creation, this book is an experiment. Choose your own adventure, and
do what feels good.

About the code
This book develops quite a bit of source code, mostly organized in one large running
example (tsunami simulator) and several miniprojects. All of the code in this book is
organized in Git repositories at https://github.com/modern-fortran. The tsunami
simulator and the miniprojects each have their own GitHub repository, so you can
explore and tinker with them independently from one another. Miscellaneous exam-
ples and source code listings that don’t belong to any single project are organized in
the “listings” repository at https://github.com/modern-fortran/listings. I maintain these

https://github.com/modern-fortran
https://github.com/modern-fortran/listings

ABOUT THIS BOOKxx
as active projects, so if you spot any issues or have a question about the code, feel free
to open an issue in the appropriate repository.

 Although all the code is available to download, I recommend that you type out the
source code by hand as you work through this book. Doing this will get you accus-
tomed to Fortran’s syntax and help you develop muscle memory. However, if you still
want to just download the code and run it, you of course can. If you’re familiar with
Git, the easiest way to get the code is to git clone each project repository from the
command line. If you don’t have Git or don’t want to use it, just download the zip
archive of the source code from the repository page. The README file in each proj-
ect will instruct you on how to build it.

 This book contains many examples of source code in numbered listings, in code
snippets, and inline with normal text. In all cases, except code annotations, source
code is formatted in a fixed-width font like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. Additionally, comments in the source code have often been removed from the
listings when the code is described in the text. Code annotations accompany many of
the listings, highlighting important concepts.

Requirements
To work through this book, you’ll need a computer, ideally with Linux or macOS. If
you work with Windows 10, you may already have access to the Windows Subsystem for
Linux, which provides a native Linux environment, and I recommend using that. If
you’re on an older version of Windows, I suggest setting up a Linux Virtual Machine
on your system. The advantage of Linux operating systems is that they’re designed for
software development. I worked with both Ubuntu 18.10 (desktop) and Fedora 28
(laptop) while writing this book. They’re both great for Fortran development.

 You’ll also need working knowledge of a text editor with syntax highlighting to
read and write source code, as well as knowing how to use the Linux/UNIX command
line to compile programs. I’m a minimalist when it comes to text editors and prefer
Vim (Vi IMproved). If you like more sophisticated editors like Sublime, Atom, or VS
Code, those are fine as well. After all, an editor is just a tool. Pick one that gets out of
your way of doing actual work. You’ll find more info on text editors in appendix A.

Get involved
If you like Fortran, and this book inspires you to do more, consider joining the For-
tran open source community and/or the Standard Committees:

■ Fortran home on the internet: https://fortran-lang.org
■ Fortran home on GitHub: https://github.com/fortran-lang
■ Fortran Standard Library: https://github.com/fortran-lang/stdlib
■ Fortran Package Manager: https://github.com/fortran-lang/fpm

https://github.com/fortran-lang
https://github.com/fortran-lang/stdlib
https://github.com/fortran-lang/fpm
https://fortran-lang.org

ABOUT THIS BOOK xxi
■ Proposals for the Fortran Standard Committee: https://github.com/j3-fortran/
fortran_proposals

■ US Fortran Standards Committee: https://j3-fortran.org
■ International Fortran Standards Committee: https://wg5-fortran.org

The community is friendly and open to all newcomers with goodwill. We need help—
join us!

liveBook discussion forum
Purchase of Modern Fortran: Building Efficient Parallel Applications includes free access to
a private web forum run by Manning Publications, where you can make comments
about the book, ask technical questions, and receive help from the author and other
users. To access the forum, go to https://livebook.manning.com/#!/book/modern-
fortran/discussion. You can also learn more about Manning’s forums and the rules of
conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take place.
It’s not a commitment to any specific amount of participation on the part of the
author, whose contribution to the forum remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions lest his interest stray! The forum
and the archives of previous discussions will be accessible from the publisher’s website
as long as the book is in print.

https://github.com/j3-fortran/fortran_proposals
https://github.com/j3-fortran/fortran_proposals
https://j3-fortran.org
https://wg5-fortran.org
https://livebook.manning.com/#!/book/modern-fortran/discussion
https://livebook.manning.com/#!/book/modern-fortran/discussion
https://livebook.manning.com/#!/discussion

about the author
MILAN CURCIC is a meteorologist and oceanographer. He studies ocean waves and tur-
bulence and their importance for numerical weather and ocean prediction at the Uni-
versity of Miami. He’s also working on enabling numerical weather prediction in the
scalable compute cloud. A Fortran programmer since 2006, he has worked with teams
from the United States Navy and NASA on developing and improving Earth system
prediction models. He has authored several open source Fortran libraries and collab-
orates with the Fortran Standards Committee on developing the next Fortran release,
as well as its standard library.

 Milan lives with his wife, Evelyn, and son, Nolan, in Boca Raton, Florida. You can
stay up to date and get in touch with him at https://milancurcic.com.
xxii

https://milancurcic.com

about the cover illustration
The figure on the cover of Modern Fortran: Building Efficient Parallel Applications is cap-
tioned “Ingrienne,” which refers to a woman from the historical geographic area of
Ingria, located along the southern shore of the Gulf of Finland. The illustration is
taken from a collection of dress costumes from various countries by Jacques Grasset
de Saint-Sauveur (1757–1810), titled Costumes Civils Actuels de Tous les Peuples Connus,
published in France in 1788. Each illustration is finely drawn and colored by hand.
The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how cul-
turally apart the world’s towns and regions were just 200 years ago. Isolated from each
other, people spoke different dialects and languages. In the streets or in the country-
side, it was easy to identify where they lived and what their trade or station in life was
just by their dress.

 The way we dress has changed since then, and the diversity by region, so rich at the
time, has faded away. It’s now hard to tell apart the inhabitants of different continents,
let alone different towns, regions, or countries. Perhaps we’ve traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

 At a time when it’s hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.
xxiii

Part 1

Getting started with
Modern Fortran

In this part, you’ll get a taste of Fortran and a gentle introduction into the
language.

 In chapter 1, we’ll discuss the design and features of Fortran, and the kinds
of problems for which Fortran is suitable. You’ll learn why parallel programming
is important and when you should use it.

 In chapter 2, we’ll build a minimal working example of the tsunami simula-
tor that we’ll be working on throughout the book. This example will give you a
taste of the Fortran essentials: variable declaration, data types, arrays, loops, and
branches.

 If you’re new to Fortran, this is the place to start. At the end of this part of the
book, you’ll be able to write simple yet useful Fortran programs. More impor-
tantly, you’ll be ready to learn about Fortran essentials in more depth.

Introducing Fortran
This is a book about Fortran, one of the first high-level programming languages
in history. It will teach you the language by guiding you step-by-step through
the development of a fully featured, parallel physics simulation app. Notice the
emphasis on parallel. Parallel programming allows you to break your problem down
into pieces and let multiple processors each work on only part of the problem,
thus reaching the solution in less time. By the end, you’ll be able to recognize
problems that can be parallelized, and use modern Fortran techniques to solve
them.

 This book is not a comprehensive reference manual for every Fortran feature—
I’ve omitted significant parts of the language on purpose. Instead, I focus on the
most practical features that you’d use to build a real-world Fortran application. As
we work on our app chapter by chapter, we’ll apply modern Fortran features and
software design techniques to make our app robust, portable, and easy to use and

This chapter covers
 What is Fortran and why learn it?

 Fortran’s strengths and weaknesses

 Thinking in parallel

 Building a parallel simulation app from scratch
3

4 CHAPTER 1 Introducing Fortran
extend. This isn’t just a book about Fortran; it’s a book about building robust, parallel
software using modern Fortran.

1.1 What is Fortran?

I don’t know what the language of the year 2000 will look like, but I know it will be
called Fortran.

 —Tony Hoare, winner of the 1980 Turing Award

Fortran is a general-purpose, parallel programming language that excels in scientific
and engineering applications. Originally called FORTRAN (FORmula TRANslation)
in 1957, it has evolved over decades to become a robust, mature, and high perfomance-
oriented programming language. Today, Fortran keeps churning under the hood of
many systems that we take for granted:

 Numerical weather, ocean, and surf prediction
 Climate science and prediction
 Computational fluid dynamics software used in mechanical and civil engineering
 Aerodynamics solvers for designing cars, airplanes, and spacecraft
 Fast linear algebra libraries used by machine learning frameworks
 Benchmarking the fastest supercomputers in the world (https://top500.org)

Here’s a specific example. In my work, I develop numerical models of weather, ocean
surface waves, and deep ocean circulation. Talking about it over the years, I found
that most people didn’t know where weather forecasts came from. They had the idea
that meteorologists would get together and draw a chart of what the weather would be
like tomorrow, next week, or a month from now. This is only partly true. In reality, we
use sophisticated numerical models that crunch a huge amount of numbers on com-
puters the size of a warehouse. These models simulate the atmosphere to create an
educated guess about what the weather will be like in the future. Meteorologists use
the output of these models to create a meaningful weather map, like the one shown in
figure 1.1. This map shows just a sliver of all the data that this model produces. The
output size of a weather forecast like this is counted in hundreds of gigabytes.

 The most powerful Fortran applications run in parallel on hundreds or thousands of
CPUs. Development of the Fortran language and its libraries has been largely driven by
the need to solve extremely large computational problems in physics, engineering, and
biomedicine. To access even more computational power than what the most powerful
single computer at the time could offer, in the late 20th century we started connecting
many computers with high-bandwidth networks and let them each work on a piece of
the problem. The result is the supercomputer, a massive computer made up of thousands
of commodity CPUs (figure 1.2). Supercomputers are similar to modern server farms
hosted by Google or Amazon, except that the network infrastructure in supercomput-
ers is designed to maximize bandwidth and minimize latency between the servers
themselves, rather than between them and the outside world. As a result, the CPUs in

https://top500.org

5What is Fortran?
40

35

30

25

20

15

40

35

30

25

20

15

10

5

0

–100 –95 –90 –85 –80

Longitude

–75 –70 –65 –60

L
a

ti
tu

d
e

Figure 1.1 A forecast of Hurricane Irma on September 10, 2017, computed by an
operational weather prediction model written in Fortran. Shading and barbs show surface
wind speed in meters per second, and contours are isolines of sea-level pressure. A
typical weather forecast is computed in parallel using hundreds or thousands of CPUs.
(Data provided by the NOAA National Center for Environmental Prediction [NCEP])

Figure 1.2 The MareNostrum 4 supercomputer at the Barcelona Supercomputing Center.
The computer is housed inside the Torre Girona Chapel in Barcelona, Catalonia, Spain. A high-
speed network connects all of the cabinets to each another. With 153,216 Intel Xeon cores,
MareNostrum 4 is the fastest supercomputer in Spain, and the 37th fastest in the world as of
June 2020. (https://www.top500.org/lists/2020/06). It’s used for many scientific applications,
from astrophysics and materials physics, to climate and atmospheric dust transport prediction,
to biomedicine. (Image source: https://www.bsc.es/marenostrum/marenostrum)

https://www.top500.org/lists/2020/06
https://www.bsc.es/marenostrum/marenostrum

6 CHAPTER 1 Introducing Fortran
a supercomputer act like one giant processor with distributed-memory access that’s
nearly as fast as local memory access. To this day, Fortran remains the dominant lan-
guage used for such massive-scale parallel computations.

1.2 Fortran features
This is not your parents’ Fortran.

 —Damian Rouson

In the context of programming languages, Fortran is all of the following:

 Compiled—You’ll write whole programs and pass them to the compiler before exe-
cuting them. This is in contrast to interpreted programming languages like Python
or JavaScript, which are parsed and executed line by line. Although this makes
writing programs a bit more tedious, it allows the compiler to generate efficient
executable code. In typical use cases, it’s not uncommon for Fortran programs to
be one or two orders of magnitude faster than equivalent Python programs.

 Statically typed—In Fortran, you’ll declare all variables with a type, and they’ll
remain of that type until the end of the program:

real :: pi
pi = 3.141592

You’ll also need to explicitly declare the variables before their use, which is
known as manifest typing. Finally, Fortran employs so-called strong typing, which
means that the compiler will raise an error if a procedure is invoked with an
argument of the wrong type. While static typing helps the compiler to generate
efficient programs, manifest and strong typing enforce good programming
hygiene and make Fortran a safe language. I find it’s easier to write correct For-
tran programs than Python or Javascript, which come with many hidden caveats
and “gotchas.”

 Multiparadigm—You can write Fortran programs in several different paradigms,
or styles: imperative, procedural, object-oriented, and even functional. Some par-
adigms are more appropriate than others, depending on the problem you’re
trying to solve. We’ll explore different paradigms as we develop code through-
out the book.

What is a compiler?
A compiler is a computer program that reads source code written in one pro-
gramming language and translates it to equivalent code in another program-
ming language. In our case, a Fortran compiler will read Fortran source code
and generate appropriate assembly code and machine (binary) instructions.

pi must be declared
before use.

pi remains a “real” number
until the program halts.

7Fortran features
 Parallel—Fortran is also a parallel language. Parallelism is the capability to split
the computational problem between processes that communicate through a
network. Parallel processes can be running on the same processing core (thread-
based parallelism), on different cores that share RAM (shared-memory paral-
lelism), or distributed across the network (distributed-memory parallelism).
Computers working together on the same parallel program can be physically
located in the same cabinet, across the room from each other, or across the
world. Fortran’s main parallel structure is a coarray, which allows you to express
parallel algorithms and remote data exchange without any external libraries.
Coarrays allow you to access remote memory just like you’d access elements of
an array, as shown in the following listing.

program hello_coarrays

implicit none

integer :: a[*]
integer :: i

a = this_image()

if (this_image() == 1) then
do i = 1, num_images()

print *, 'Value on image', i, 'is', a[i]
end do

end if

end program hello_coarrays

The Fortran standard doesn’t dictate how the data exchange is implemented
under the hood; it merely specifies the syntax and the expected behavior. This
allows the compiler developers to use the best approach available on any spe-
cific hardware. Given a capable compiler and libraries, a Fortran programmer
can write code that runs on conventional CPUs or general-purpose GPUs alike.
Listing 1.1 is meant for illustration; however, if you’d like to compile and run it,
do so after following the instructions in Appendix A to set up your Fortran
development environment.

 Mature—In 2016, we celebrated 60 years since the birth of Fortran. The lan-
guage has evolved through several revisions of the standard:
– FORTRAN 66, also known as FORTRAN IV (ANSI, 1966)
– FORTRAN 77 (ANSI, 1978)
– Fortran 90 (ISO/IEC, 1991; ANSI, 1992)
– Fortran 95 (ISO/IEC, 1997)

Listing 1.1 Example data exchange between parallel images

Each image declares a local
copy of an integer “a.”

Each image assigns its
number (1, 2, 3, etc.) to “a.”

Only image 1 will
enter this if block.

Iterates from 1 to the
total number of images

For each remote image,
image 1 will get the value
of “a” on that image and
print it to the screen.

8 CHAPTER 1 Introducing Fortran
– Fortran 2003 (ISO/IEC, 2004)
– Fortran 2008 (ISO/IEC, 2010)
– Fortran 2018 (ISO/IEC, 2018)
Fortran development and implementation in compilers have been heavily sup-
ported by the industry: IBM, Cray, Intel, NAG, NVIDIA, and others. There has
also been significant open source development, most notably free compilers—
gfortran (https://gcc.gnu.org/wiki/GFortran), Flang (https://github.com/flang-
compiler/flang), and LFortran (https://lfortran.org)—as well as other com-
munity projects (https://fortran-lang.org/community). Thanks to Fortran’s
dominance in the early days of computer science, today we have a vast set of
robust and mature libraries that are the computational backbone of many appli-
cations. With mature compilers and a large legacy code base, Fortran remains
the language of choice for many new software projects for which computational
efficiency and parallel execution are key.

 Easy to learn—Believe it or not, Fortran is quite easy to learn. This was my expe-
rience and that of many of my colleagues. It’s easy to learn partly due to its strict
type system, which allows the compiler to keep the programmer in check and
warn them at compile time when they make a mistake. Although verbose, the
syntax is clean and easy to read. However, like every other programming lan-
guage or skill in general, Fortran is difficult to master. This is one of the reasons
why I chose to write this book.

1.3 Why learn Fortran?
There were programs here that had been written five thousand years ago, before
Humankind ever left Earth. The wonder of it—the horror of it, Sura said—was that
unlike the useless wrecks of Canberra’s past, these programs still worked! And via a
million million circuitous threads of inheritance, many of the oldest programs still ran in
the bowels of the Qeng Ho system.

 —Vernor Vinge, A Deepness in the Sky

Since the early 1990s, we’ve seen an explosion of new programming languages and
frameworks, mainly driven by the widespread use of the internet and, later, mobile
devices. C++ took over computer science departments, Java has been revered in the
enterprise, JavaScript redefined the modern web, R became the mother tongue of
statisticians, and Python took the machine learning world by storm. Where does For-
tran fit in all this? Through steady revisions of the language, Fortran has maintained a
solid footing in its niche domain, high-performance computing (HPC). Its computa-
tional efficiency is still unparalleled, with only C and C++ coming close. Unlike C and
C++, Fortran has been designed for array-oriented calculations, and is, in my opinion,
significantly easier to learn and program. A more recent strong argument for Fortran
has come about through its native support for parallel programming.

https://gcc.gnu.org/wiki/GFortran
https://github.com/flang-compiler/flang
https://github.com/flang-compiler/flang
https://lfortran.org
https://fortran-lang.org/community

9Why learn Fortran?
Despite being a decades-old technology, Fortran has several attractive features that
make it indispensable, even compared to more recent languages:

 Array-oriented—Fortran provides whole-array arithmetic and operations, which
greatly simplify element-wise operations. Consider the task of multiplying two
two-dimensional arrays:

do j = 1, jm
do i = 1, im

c(i,j) = a(i,j) * b(i,j)
end do

end do

With Fortran’s whole-array arithmetic, you write

c = a * b

This is not only more expressive and readable code, it also hints to the compiler
that it can choose the optimal way to perform the operation. Arrays lend them-
selves well to CPU architectures and computer memory because they’re contig-
uous sequences of numbers, and thus mirror the physical layout of the memory.
Fortran compilers are capable of generating extremely efficient machine code,
thanks to the assumptions that they can safely make.

 The only parallel language developed by a standards committee (ISO)—The Fortran
standards committee ensures that the development of Fortran goes in the direc-
tion that supports its target audience: computational scientists and engineers.

 Mature libraries for science, engineering, and math—Fortran started in the 1950s as
the programming language for science, engineering, and mathematics. Decades
later, we have a rich legacy of robust and trusted libraries for linear algebra,
numerical differentiation and integration, and other mathematical problems.
These libraries have been used and tested by generations of programmers, to
the point that they are guaranteed to be almost bug-free.

 Growing general-purpose library ecosystem—In the past decade, Fortran has also
seen a growing ecosystem of general-purpose libraries: text parsing and manip-
ulation, I/O libraries for many data formats, working with dates and times, col-
lections and data structures, and so on. Any programming language is as

What is high-performance computing?
High-performance computing (HPC) is the practice of combining computer resources
to solve computational problems that would otherwise not be possible with a single
desktop computer. HPC systems typically aggregate hundreds or thousands of serv-
ers and connect them with fast networks. Most HPC systems today run some flavor
of Linux OS.

10 CHAPTER 1 Introducing Fortran
powerful as its libraries, and the growing number of Fortran libraries make it
more useful today than ever before.

 Unmatched performance—Compiled Fortran programs are as close to the metal as
it gets with high-level programming languages. This is thanks to both its array-
oriented design and mature compilers that continuously improve at optimizing
code. If you’re working on a problem that does math on large arrays, few other
languages come close to Fortran’s performance.

In summary, learn Fortran if you need to implement efficient and parallel numerical
operations on large multidimensional arrays.

1.4 Advantages and disadvantages
Many Fortran features give it both an advantage and a disadvantage. For example, it’s
all of the following:

 A domain-specific language—Despite being technically a general-purpose language,
Fortran is very much a domain-specific language, in the sense that it has been
designed for science, engineering, and math applications. If your problem
involves some arithmetic on large and structured arrays, Fortran will shine. If
you want to write a web browser or low-level device drivers, Fortran is not the
right tool for the task.

 A niche language—Fortran is extremely important to a relatively small number of
people: scientists and engineers in select disciplines. As a consequence, it may
be difficult to find as many tutorials or blogs about Fortran as there are for
more mainstream languages.

 A statically and strongly typed language—As I mentioned earlier, this makes For-
tran a very safe language to program in and helps compilers generate efficient
executables. On the flip side, it makes it less flexible and more verbose, and
thus not the ideal language for rapid prototyping.

The comparison of Fortran to Python that follows will help you better understand its
advantages and disadvantages in the general-purpose programming context.

1.4.1 Side-by-side comparison with Python

How does modern Fortran compare to a more recent general-purpose programming
language? Python has had the most rapidly growing ecosystem in the past few years for
data analysis and light number crunching (http://mng.bz/XP71). It’s used by many
Fortran programmers for postprocessing of model output and data analysis. In fact,
Python is my second favorite programming language. Because of the application
domain overlap between Fortran and Python, it’s useful to summarize key differences
between the two, as shown in table 1.1. If you’re a Python programmer, this summary
will give you an idea of what you can and can’t do with Fortran.

http://mng.bz/XP71

11Advantages and disadvantages
From table 1.1, a few key differences between Fortran and Python stand out. First, For-
tran is compiled and statically typed, while Python is interpreted and dynamically
typed. This makes Fortran more verbose and slower to program but allows the com-
piler to generate fast binary code. This is a blessing and a curse: Fortran isn’t designed
for rapid prototyping, but can produce robust and efficient programs. Second, For-
tran is a natively parallel programming language, with syntax that allows you to write
parallel code that’s independent of whether it will run on shared or distributed mem-
ory computers. In contrast, distributed parallel programming in Python is possible
only with external libraries, and is overall more difficult to do. Finally, Fortran is a
smaller language that focuses on efficient computation over large multidimensional

Table 1.1 Comparison between Fortran and Python (CPython specifically)

Language Fortran Python

First appeared 1957 1991

Latest release Fortran 2018 3.8.5 (2020)

International standard ISO/IEC No

Implementation language C, Fortran, Assembly
(compiler-dependent)

C

Compiled vs. interpreted Compiled Interpreted

Typing discipline Static, strong Dynamic, strong

Parallel Shared and distributed
memory

Shared memory only

Multidimensional arrays Yes, up to 15 dimensions Third-party library only (numpy)

Built-in types character, complex,
integer, logical, real

bool, bytearray, bytes, complex,
dict, ellipsis, float, frozenset,
int, list, set, str, tuple

Constants Yes No

Classes Yes Yes

Generic programming Limited Yes

Pure functions Yes No

Higher order functions Limited Yes

Anonymous functions No Yes

Interoperability with other
languages

C (limited) C

OS interface Limited Yes

Exception handling Limited Yes

12 CHAPTER 1 Introducing Fortran
arrays of a few different numeric data types. On the other side, Python has a much
broader arsenal of data structures, algorithms, and general-purpose utilities built in.

 In summary, whereas Python is akin to a comprehensive and flexible toolbox, For-
tran is like a highly specialized power tool. Fortran thus isn’t well suited for writing
device drivers, video games, or web browsers. However, if you need to solve a large
numerical problem that can be distributed across multiple computers, Fortran is the
ideal language for you.

1.5 Parallel Fortran, illustrated
I’ll illustrate the kind of problem where Fortran really shines. Let’s call this example
“Summer ends on old Ralph’s farm.”

 Farmer Ralph has two sons and two daughters, and a big farm. It’s the end of the
summer and about time to cut the grass and make hay for the cattle to eat. But the pas-
ture is big, and old Ralph is weak. His children, however, are young and strong. If they
all work hard and as a team, they could get it done in a day. They agree to split the
work between themselves in four equal parts. Each of Ralph’s children grabs a scythe
and a fork and heads to their part of the pasture. They work hard, cutting grass row by
row. Every hour or so, they meet at the edges to sharpen their tools and chat about how
it’s going. The work is going well, and almost all of the grass is cut by mid-afternoon.
Near the end of the day, they collect the hay into bales and take them to the barn. Old
Ralph is happy that he has strong and hard-working children, but even more so that
they make such a great team! Working together, they completed work that would take
four times as long if only one of them was working.

 Now you must be thinking, what the heck does old Ralph’s farm have to do with
parallel Fortran programming? More than meets the eye, I can tell you! Old Ralph
and his big pasture are an analogy to a slow computer and a big compute problem.
Just like Ralph asked his children to help him with the chores, in a typical parallel
problem we’ll divide the computational domain, or input data, into equal pieces and
distribute them between CPUs. Recall that his children cut the grass row by row—
some of the most efficient and expressive aspects of Fortran code are the whole-array
operations and arithmetic. Periodically, they met at the edges to sharpen their tools
and have a chat. In many real-world apps, you’ll instruct the parallel processes to
exchange data, and this is true for most of the parallel examples that I’ll guide you
through in this book. Finally, each parallel process asynchronously writes its data to
disk, like taking the hay bales to the barn. I illustrate this pattern in figure 1.3.

 Much like farmer Ralph, Fortran is old. This is by no means a bad thing! It’s a
mature, robust, and dependable language that isn’t going anywhere. Although it does
have some quirks of an old programming language, it’s been improved over decades
by generations of computer scientists and programmers, and has been battle-tested in
countless applications where performance is critical. The ease of parallel program-
ming with Fortran is key for high-performance apps, which is why I made it a central
theme of this book.

13What will you learn in this book?
1.6 What will you learn in this book?
This book will teach you how to write modern, efficient, and parallel Fortran pro-
grams. Working through each chapter, we’ll build from scratch a fully functional, par-
allel, fluid dynamics solver with a specific application to tsunami prediction. If you
work through the book, you’ll come out with three distinct skill sets:

 You’ll be fluent with most modern Fortran features. This is a unique and
desired skill in a robust, multibillion-dollar market that is HPC.

 You’ll be able to recognize problems that are parallel in nature. You’ll think
parallel-first, and parallel solutions to problems will seem intuitive. In contrast,
a serial solution to a parallel problem will become an edge-case scenario.

 You’ll get a grasp on good software design, writing reusable code, and sharing
your project with the online community. You’ll also be able to adapt existing
Fortran libraries in your project and contribute back. This will not only make
your project useful to others, but can open doors in terms of career and learn-
ing opportunities. It did for me!

CPU 1 CPU 2

CPU 4CPU 3

?

CPU 1 CPU 2

CPU 4CPU 3

CPU 1 CPU 2

CPU 4CPU 3

1. Big compute problem

4. Store the data to disk.

2. Divide the work
into smaller pieces.

3. Exchange data between
CPUs when needed.

Figure 1.3 Parallel programming patterns: divide the problem, exchange data,
compute, and store the results to disk

14 CHAPTER 1 Introducing Fortran
While I’m not expecting you to have prior Fortran experience, I assume you have at
least some programming experience in a language like Python, R, MATLAB, or C. We
won’t go into detail about what is a program, a variable, a data type, source code, or
computer memory, and I’ll assume that you have an idea about these concepts. Occa-
sionally, we’ll touch on elements of calculus, although it’s not crucial that you’re
familiar with it. We’ll also work quite a bit in the terminal (compiling and running
programs), so I assume you’re at least comfortable navigating the command line.
Whatever the case, to help ensure clarity, any Fortran concept in this book will be
taught from scratch.

 Given the theme of the book, I expect it will be ideal for several audiences, such as
the following:

 Undergraduate and graduate students in physical science, engineering, or applied
math, especially with a focus on fluid dynamics

 Instructors and researchers in the above fields
 Meteorologists, oceanographers, and other fluid dynamicists working in the

industry
 Serial Fortran programmers who want to step up their parallel game
 HPC system administrators

If you fit in one of the above categories, you may already know that Fortran’s main sell-
ing point is its ease of programming efficient and parallel programs for large super-
computers. This has kept it as the dominant HPC language of physical sciences and
engineering. Although this book will teach you Fortran from the ground up, I will also
take the unconventional approach and teach it in the context of parallel program-
ming from the get-go. Rather than gaining just another technical skill as an after-
thought, you’ll learn how to think parallel. You’ll recognize ways you can distribute the
workload and memory to arrive at the solution more efficiently. With parallel think-
ing, you’ll come out with two critical advantages:

1 You’ll be able to solve problems in less time.
2 You’ll be able to solve problems that can’t fit onto a single computer.

While the first is at least a nice-to-have, the second is essential. Some problems simply
can’t be solved without parallel programming. The next section will give you a gentle
introduction and an example of parallel programming.

1.7 Think parallel!
For over a decade prophets have voiced the contention that the organization of a single
computer has reached its limits and that truly significant advances can be made only by
interconnection of a multiplicity of computers in such a manner as to permit cooperative
solution.

 —Gene Amdahl (computer architect) in 1967

Parallel programming is only becoming more important with time. Although still
positive, the rate of semiconductor density increase, as described by Moore’s law, is

15Think parallel!
limited. Traditionally we went past this limit by placing more processing cores on a
single die. Even the processors in most smartphones today are multicore. Beyond the
shared-memory computer, we’ve connected many machines into networks, and made
them talk to each other to solve huge computational problems. Your weather forecast
this morning was computed on hundreds or thousands of parallel processors. Due to
the practical limits of Moore’s law and the current tendency toward many-core archi-
tectures, there’s a sense of urgency to teach programming parallel-first.

All parallel problems fall into two categories:

1 Embarrassingly parallel—And by this, I mean “embarrassingly easy”—it’s a good
thing! These problems can be distributed across processors with little to no
effort (figure 1.4, left). Any function f(x) that operates element-wise on an
array x without need for communication between elements is embarrassingly
parallel. Because the domain decomposition of embarrassingly parallel prob-
lems is trivial, modern compilers can often autoparallelize such code. Examples
include rendering graphics, serving static websites, or processing a large num-
ber of independent data records.

2 Nonembarrassingly parallel—Any parallel problem with interdependency between
processes requires communication and synchronization (figure 1.4, right). Most
partial differential equation solvers are nonembarrassingly parallel. The relative
amount of communication versus computation dictates how well a parallel
problem can scale. The objective for most physical solvers is thus to minimize
communication and maximize computation. Examples are weather prediction,
molecular dynamics, and any other physical process that’s described by partial
differential equations. This class of parallel problems is more difficult and, in
my opinion, more interesting!

What is Moore’s law?
Gordon Moore, cofounder of Intel, noticed in 1965 that the number of transistors
in a CPU was doubling each year. He later revised this trend to doubling every two
years. Nevertheless, the rate of increase is exponential and closely related to a
continuous decrease in the cost of computers. A computer you buy today for
$1,000 is about twice as powerful as one you could buy for the same amount two
years ago.

Similarly, when you buy a new smartphone, the OS and the apps run smoothly and
quickly. What happens two years later? As the apps update and bloat with new fea-
tures, they demand increasingly more CPU power and memory. As the hardware in
your phone stays the same, eventually the apps slow down to a crawl.

16 CHAPTER 1 Introducing Fortran
Because our application domain deals mainly with nonembarrassingly parallel prob-
lems, we’ll focus on implementing parallel data communication in a clean, expressive,
and minimal way. This will involve both distributing the input data among processors
(downward dashed arrows in figure 1.4) and communicating data between them (hor-
izontal dashed arrow in figure 1.4).

 Parallel Fortran programming in the past has been done either using the OpenMP
directives for shared-memory computers only, or with the Message Passing Interface (MPI)
for both shared and distributed memory computers. Differences between shared-
memory (SM) and distributed-memory (DM) systems are illustrated in figure 1.5. The
main advantage of SM systems is very low latency in communication between pro-
cesses. However, there’s a limit to the number of processing cores you can have in an
SM system. Since OpenMP was designed for SM parallel programming exclusively,
we’ll focus on MPI for our specific example.

Why is it called embarrassingly parallel?
It refers to overabundance, as in an embarrassment of riches. It’s the kind of problem
that you want to have. The term is attributed to Cleve Moler, inventor of MATLAB and
one of the authors of EISPACK and LINPACK, Fortran libraries for numerical comput-
ing. LINPACK is still used to benchmark the fastest supercomputers in the world.

Output y y= (1, y2)

Embarassingly parallel

Input

CPU 1

Output

x1

y1

Nonembarassingly parallel

CPU 2

x2

y2

Input

CPU 1 CPU 2

x x= (1, x2)

Figure 1.4 An embarrassingly parallel problem (left) versus a
nonembarrassingly parallel problem (right). In both cases, the CPUs
receive input (x1, x2) and process it to produce output (y1, y2).
In an embarrassingly parallel problem, x1 and x2 can be processed
independently of each other. Furthermore, both input and output
data are local in memory to each CPU, indicated by solid arrows. In
a nonembarrassingly parallel problem, input data is not always local
in memory to each CPU and has to be distributed through the
network, indicated by dashed arrows. In addition, there may be data
interdependency between CPUs during the computation step, which
requires synchronization (horizontal dashed arrow).

17Think parallel!
1.7.1 Copying an array from one processor to another

In most scientific and engineering parallel applications, there’s data dependency
between processes. Typically, a two-dimensional array is decomposed into tiles like a
chessboard, and the workload of each tile is assigned to a processor. Each tile has its
own data in memory that’s local to its processor. To illustrate the simplest case of par-
allel programming in a real-world scenario, let’s take the following meteorological sit-
uation for example. Suppose that the data consists of two variables: wind and air

OpenMP versus MPI
OpenMP is a set of directives that allows the programmer to indicate to the compiler
the sections of code that are to be parallelized. OpenMP is implemented by most For-
tran compilers and doesn’t require external libraries. However, OpenMP is limited to
shared-memory machines.

Message Passing Interface (MPI) is a standardized specification for portable mes-
sage passing (copying data) between arbitrary remote processes. This means that
MPI can be used for multithreading on a single core, multicore processing on a
shared-memory machine, or distributed-memory programming across networks. MPI
implementations typically provide interfaces for C, C++, and Fortran. MPI is often
described as the assembly language of parallel programming, illustrating the fact that
most MPI operations are low-level.

Although still ubiquitous in HPC, OpenMP and MPI are specific approaches to parallel
computing that can be more elegantly expressed with coarrays. This book will focus
on coarrays exclusively for parallel programming.

Shared memory Distributed memory

Network

CPU 1

CPU 1 CPU 2

CPU 3 CPU 4

CPU 2

CPU 3 CPU 4

RAM

Figure 1.5 A shared-memory system (left) versus a distributed-
memory system (right). In a shared-memory system, processors have
access to common memory (RAM). In a distributed-memory system,
each processor has its own memory, and they exchange data through
a network, indicated by dashed lines. The distributed-memory system is
most commonly composed of multicore shared-memory systems.

18 CHAPTER 1 Introducing Fortran
temperature. Wind is blowing from one tile with a lower temperature (cold tile) toward
another tile with a higher temperature (warm tile). If we were to solve how the tempera-
ture evolves over time, the warm tile would need to know what temperature is coming in
with the wind from the cold tile. Because this is not known a priori (remember that the
data is local to each tile), we need to copy the data from the cold tile into the memory
that belongs to the warm tile. On the lowest level, this is done by explicitly copying the
data from one processor to another. When the copy is finished, the processors can con-
tinue with the remaining computations. Copying one or more values from one process
to another is the most common operation done in parallel programming (figure 1.6).

Let’s focus on just this one operation. Our goal is to do the following:

1 Initialize array on each process—[1, 2, 3, 4, 5] on CPU 1 and all zeros on
CPU 2.

2 Copy values of array from CPU 1 to CPU 2.
3 Print the new values of array on CPU 2. These should be [1, 2, 3, 4, 5].

I’ll show you two example solutions to this problem. One is the traditional approach
using an external library like MPI. Unless you’re a somewhat experienced Fortran
programmer, don’t try to understand every detail in this example. I merely want to
demonstrate how complicated and verbose it is. Then, I’ll show you the solution using
coarrays. In contrast to MPI, coarrays use an array indexing-like syntax to copy remote
data between parallel processes.

MPI: THE TRADITIONAL WAY TO DO PARALLEL PROGRAMMING

As noted before, MPI is often described as the assembly language of parallel program-
ming, and, indeed, that was its developers’ original intention. MPI was meant to be
implemented by compiler developers to enable natively parallel programming lan-
guages. Over the past three decades, however, application developers have been faster
at adopting MPI directly in their programs, and it has become, for better or worse, a
de facto standard tool for parallel programming in Fortran, C, and C++. As a result,
most HPC applications today rely on low-level MPI calls.

Array

CPU 2

000 0 0

Array

CPU 1

321 4 5

Figure 1.6 An illustration of a remote array copy between two CPUs.
Numbers inside the boxes indicate initial array values. Our goal is to copy
values of array from CPU 1 to CPU 2.

19Think parallel!

Ini

Init
ar
s
p

Wait
fo

pro

R
w

m

 The following Fortran program sends data from one process to another using MPI.

program array_copy_mpi

use mpi
implicit none

integer :: ierr, nproc, procsize, request
integer :: stat(mpi_status_size)

integer :: array(5) = 0
integer, parameter :: sender = 0, receiver = 1

call mpi_init(ierr)
call mpi_comm_rank(mpi_comm_world, nproc, ierr)
call mpi_comm_size(mpi_comm_world, procsize, ierr)

if (procsize /= 2) then
call mpi_finalize(ierr)
stop 'Error: This program must be run &

on 2 parallel processes'
end if

if (nproc == sender) array = [1, 2, 3, 4, 5]

print '(a,i1,a,5(4x,i2))', 'array on proc ', nproc, &
' before copy:', array

call mpi_barrier(mpi_comm_world, ierr)

if (nproc == sender) then
call mpi_isend(array, size(array), mpi_int, &

receiver, 1, mpi_comm_world, request, ierr)
else if (nproc == receiver) then

call mpi_irecv(array, size(array), mpi_int, &
sender, 1, mpi_comm_world, request, ierr)

call mpi_wait(request, stat, ierr)
end if

print '(a,i1,a,5(4x,i2))', 'array on proc ', nproc, &
' after copy: ', array

call mpi_finalize(ierr)

end program array_copy_mpi

Running this program on two processors outputs the following:

array on proc 0 before copy: 1 2 3 4 5
array on proc 1 before copy: 0 0 0 0 0
array on proc 0 after copy: 1 2 3 4 5
array on proc 1 after copy: 1 2 3 4 5

Listing 1.2 Copying an array from one process to another using MPI

Accesses MPI subroutines and
the mpi_comm_world global
variable from a module

tializes
MPI

Which processor
number am I?

How many processes
are there?

Shuts down MPI and
stops the program if
we’re not running
on two processors

ializes
ray on
ending
rocess

Prints text to screen
with specific formatting

s here
r both
cesses

Sender posts a
nonblocking send

Receiver posts a
nonblocking receive

eceiver
aits for

the
essage

Finalizes MPI at the
end of the program

20 CHAPTER 1 Introducing Fortran
This confirms that our program did what we wanted: copied the array from process 0
to process 1.

ENTER FORTRAN COARRAYS

Coarrays are the main data structure for native parallel programming in Fortran.
Originally developed by Robert Numrich and John Reid in the 1990s as an exten-
sion for the Cray Fortran compiler, coarrays have been introduced into the standard
starting with the 2008 release. Coarrays are much like arrays, as the name implies,
except that their elements are distributed along the axis of parallel processes
(cores or threads). As such, they provide an intuitive way to copy data between
remote processes.

 The following listing shows the coarray version of our array copy example.

program array_copy_caf

implicit none

integer :: array(5)[*] = 0
integer, parameter :: sender = 1, receiver = 2

if (num_images() /= 2) &
stop 'Error: This program must be run on 2 parallel processes'

if (this_image() == sender) array = [1, 2, 3, 4, 5]

print '(a,i2,a,5(4x,i2))', 'array on proc ', this_image(), &
' before copy:', array

sync all

if (this_image() == receiver) &
array(:) = array(:)[sender]

print '(a,i1,a,5(4x,i2))', 'array on proc ', this_image(), &
' after copy: ', array

end program array_copy_caf

Compiling and running the examples
Don’t worry about building and running these examples yourself for now. At the start
of the next chapter, I’ll ask you to set up the complete compute environment for work-
ing with examples in this book, including this example. If you prefer, you can follow
the instructions in appendix A now instead of waiting.

Listing 1.3 Copying an array from one process to another using coarrays

Declares and initializes
an integer coarray

Throws an error if
we’re not running
on two processes

Initializes
array in
sender

Waits here for all images;
equivalent to mpi_barrier()

Nonblocking copy from sending
image to receiving image

21Think parallel!
The output of the program is the same as in the MPI variant:

array on proc 1 before copy: 1 2 3 4 5
array on proc 2 before copy: 0 0 0 0 0
array on proc 1 after copy: 1 2 3 4 5
array on proc 2 after copy: 1 2 3 4 5

These two programs are thus semantically the same. Let’s look at the key differences
in the code:

 The number of lines of code (LOC) dropped from 27 in the MPI example to 14
in the coarray example. That’s almost a factor of 2 decrease. However, if we look
specifically for MPI-related boilerplate code, we can count 15 lines of such code.
Compare this to two lines of code related to coarrays! As debugging time is
roughly proportional to the LOC, we see how coarrays can be more cost-effective
for developing parallel Fortran apps.

 The core of the data copy in the MPI example is quite verbose for such a simple
operation

if (nproc == 0) then
call mpi_isend(array, size(array), mpi_int, receiver, 1, &

mpi_comm_world, request, ierr)
else if (nproc == 1) then

call mpi_irecv(array, size(array), mpi_int, sender, 1, &
mpi_comm_world, request, ierr)

call mpi_wait(request, stat, ierr)
end if

compared to the intuitive array-indexing and assignment syntax of coarrays:

if (this_image() == receiver) array(:) = array(:)[sender]

 Finally, MPI needs to be initialized and finalized using mpi_init() and mpi_
finalize() subroutines. Coarrays need no such code. This one is a minor but
welcome improvement.

As we saw in this example, both MPI and coarrays can be used effectively to copy data
between parallel processes. However, MPI code is low-level and verbose, and would
soon become tedious and error-prone as your app grows in size and complexity. Coar-
rays offer an intuitive syntax analogous to the array operations. Furthermore, with
MPI, you tell the compiler what to do; with coarrays, you tell the compiler what you

Parallel process indexing
Did you notice that our parallel processes were indexed 0 and 1 in the MPI example
and 1 and 2 in the coarray example? MPI is implemented in C, in which array indices
begin at 0. In contrast, coarray images start at 1 by default.

22 CHAPTER 1 Introducing Fortran
want, and let it decide how best to do it. This lifts a big load of responsibility off your
shoulders and lets you focus on your application. I hope this convinces you that For-
tran coarrays are the way to go for expressive and intuitive data copy between paral-
lel processes.

1.8 Running example: A parallel tsunami simulator
Learning happens by doing rather than reading, especially when we’re immersed in a
longer project. Lessons in this book are thus framed around developing your own,
minimal and yet complete, tsunami simulator.

1.8.1 Why tsunami simulator?

A tsunami is a sequence of long water waves that are triggered by a displacement in a
large body of water. This typically occurs because of earthquakes, underwater volca-
noes, or landslides. Once generated, a tsunami propagates radially outward across
the ocean surface. It grows in height and steepness as it enters shallow waters. A tsu-
nami simulator is a good running example for this book because tsunamis are the
following:

A partitioned global address space language
Fortran is a partitioned global address space (PGAS) language. In a nutshell, PGAS
abstracts the distributed-memory space and allows you to do the following:

 View the memory layout as a shared-memory space—This will give you a tre-
mendous boost in productivity and ease of programming when designing par-
allel algorithms. When performing data copy, you won’t need to translate or
transform array indices from one image to another. Memory that belongs to
remote images will appear as local, and you’ll be able to express your algo-
rithms in such a way.

 Exploit the locality of reference—You can design and code your parallel algo-
rithms without foresight about whether a subsection of memory is local to the
current image or not. If it is, the compiler will use that information to its advan-
tage. If not, the most efficient data copy pattern available will be performed.

PGAS allows you to use one image to initiate a data copy between two remote images:

if (this_image() == 1) array(:)[7] = array(:)[8]

The if statement ensures that the assignment executes only on image 1. However,
the indices inside the square brackets refer to images 7 and 8. Image 1 will thus
asynchronously request an array copy from image 8 to image 7. From our point of
view, the indices inside the square brackets can be treated just like any other array
elements that are local in memory. In practice, these images could be mapped to dif-
ferent cores on the same shared-memory computer, across the server room, or even
around the world.

23Running example: A parallel tsunami simulator
 Fun—Speaking strictly as a scientist here! A tsunami is a process that’s fun to
watch and play with in a numerical sandbox.

 Dangerous—Tsunamis are a great threat to low-lying and heavily populated
coastal areas. There’s a need to better understand and predict them.

 Simple math—They can be simulated using a minimal set of equations—shallow
water equations (SWEs). This will help us not get bogged down by the math and
focus on implementation instead.

 Parallelizable—They involve a physical process that’s suitable for teaching paral-
lel programming, especially considering that it’s a nonembarrassingly parallel
problem. To make it work, we’ll carefully design data copy patterns between
images.

To simulate tsunamis, we’ll write a solver for the shallow water system of equations.

1.8.2 Shallow water equations

Shallow water equations are a simple system of equations derived from Navier-Stokes
equations. They are also known as the Saint-Venant equations, after the French
engineer and mathematician A. J. C. Barre de Saint-Venant, who derived them in
pursuit of his interest in hydraulic engineering and open-channel flows. SWEs are
powerful because they can reproduce many observed motions in the atmosphere
and the ocean:

 Large-scale weather, such as cyclones and anticyclones
 Western boundary currents, such as the Gulf Stream in the Atlantic and the

Kuroshio in the Pacific
 Long gravity waves, such as tsunamis and tidal bores
 Watershed from rainfall and snow melt over land
 Wind-generated (surf) waves
 Ripples in a pond

This system consists of only a few terms, as shown in figure 1.7.

Velocity
tendency

Water height
tendency

Pressure
gradient

Water height
divergence

Advection

Figure 1.7 Shallow water equations. The top equation is
the momentum (velocity) conservation law, and the bottom
is the mass (water level) conservation law. u is the 2-d
velocity vector, g is the gravitational acceleration, h is the
water elevation, H is the unperturbed water depth, and t is
time. The “nabla” symbol (upside-down triangle) is a vector
differentiation operator.

24 CHAPTER 1 Introducing Fortran
What’s the physical interpretation of this system? The top equation states that where
there’s slope along the water surface, water will accelerate and move toward a region
of lower water level because of the pressure gradient. The advection term is nonlinear
and causes chaotic behavior in fluids (turbulence). The bottom equation states that
where there’s convergence (water coming together), the water level will increase. This
is because water has to go somewhere, and it’s why we also call it conservation of mass.
Similarly, if water is diverging, its level will decrease in response.

Shallow water equations are dear to me because I first learned Fortran programming
by modeling these equations in my undergraduate meteorology program at the Uni-
versity of Belgrade. In a way, I go back to my roots as I write this book. Despite my For-
tran code looking (and working) much differently now than back then, I still find this
example an ideal case study for teaching parallel Fortran programming. I hope you
enjoy the process as much as I did.

1.8.3 What we want our app to do

Let’s narrow down on the specification for our tsunami simulator:

 Parallel—The model will scale to hundreds of processors with nothing but pure
Fortran code. This is not only important for speeding up the program and
reducing compute time, but also for enabling very large simulations that other-
wise wouldn’t fit into the memory of a single computer. With most modern lap-
tops having at least four cores, you should be able to enjoy the fruits of your
(parallel programming) labor.

 Extensible—Physics terms can be easily formulated and added to the solver. This
is important for the general usability of the model. If we can design our compu-
tational kernel in the form of reusable classes and functions, we can easily add
new physics terms as functional, parallel operators, following the approach by
Damian Rouson (http://mng.bz/vxPq). This way, the technical implementa-
tion is abstracted inside these functions, and on a high level we’d program our
equations much like we’d write them on a blackboard.

 Software library—This will provide a reusable set of classes and functions that can
be used to build other parallel models.

 Documented—All software should be useful, and no user should have to guess
what the author of the program intended. We’ll write and document our app in
such way that the code can be easily read and understood.

Comfortable with math?
If you’re experienced with calculus and partial differential equations, great! There’s
more for you in appendix B. Otherwise, don’t worry! This book won’t dwell on math
much more than this; it will focus on programming.

http://mng.bz/vxPq

25Summary
 Discoverable online—Writing a program just for yourself is great for learning and
discovery. However, software becomes truly useful when you can share it with
others to solve their problems. The tsunami simulator and other projects devel-
oped in this book are all online at https://github.com/modern-fortran. Feel
free to explore them and poke around, and we’ll dive together into the details
as we work through this book.

By working through this book chapter by chapter, you’ll gain the experience of develop-
ing a fully featured parallel app from scratch. If it’s your first software project, I hope it
excites your inner software developer and inspires you to go make something on your
own. We’ll start the next chapter by setting up the development environment so that
you can compile and run the minimal working version of the tsunami simulator.

1.9 Further reading
 Fortran website: https://fortran-lang.org
 The history of Fortran on Wikipedia: https://en.wikipedia.org/wiki/Fortran
 Partitioned global address space: http://mng.bz/4A6g
 Companion blog to this book: https://medium.com/modern-fortran

Summary
 Fortran is the oldest high-level programming language still in use today.
 It’s the dominant language used for many applications in science and engi-

neering.
 Fortran isn’t suitable for programming video games or web browsers but excels

at numerical, parallel computation over large multidimensional arrays.
 It’s the only standardized natively parallel programming language.
 Coarrays provide a cleaner and more expressive syntax for parallel data exchange

compared to traditional Message Passing Interface (MPI) programming.
 Fortran compilers and libraries are mature and battle-tested.

Visualizing tsunami output
As we build and run our simulator, we’ll mostly look at raw numbers and time step
counts that it logs to the terminal. However, it’s both helpful and satisfying to be able
to visualize the output of the model. We’ll do so every time we add a new piece to
the simulator, which makes the solution different and more interesting. I provide
Python scripts in the GitHub repository of the project so you can visualize the output
yourself. Although it’s possible to create high-quality graphics directly from Fortran,
it’s not as easy to do as it is with Python.

https://github.com/modern-fortran
https://en.wikipedia.org/wiki/Fortran
http://mng.bz/4A6g
https://medium.com/modern-fortran
https://fortran-lang.org

Getting started:
Minimal working app
In this chapter, we’ll implement the minimal working version of the tsunami simu-
lator. For simplicity, we’ll start by simulating the movement of water in space due to
background flow, without changing its shape. This problem is sufficiently complex
to introduce basic elements of Fortran: numeric data types, declaration, arithmetic
expressions and assignment, and control flow. Once we successfully simulate the
movement of an object in this chapter, we’ll refactor the code to add other physics
processes in chapters 3 and 4, which will allow the simulated water to flow more
realistically. Implementing the other processes will be easier because we’ll be able
to reuse much of the code that we’ll write in this chapter.

 We’ll start off by compiling, linking, and running your first Fortran program.
Then I’ll introduce the physical problem that we want to solve and show you how
to express it in the form of a computer program. We’ll then dive into the essential
elements of Fortran: data types, declaration, arithmetic, and control flow. At the

This chapter covers
 Compiling and running your first Fortran program

 Data types, declaration, arithmetic, and
control flow

 Building and running your first simulation app
26

27Compiling and running your first program
end of the chapter, you’ll have the working knowledge to write basic, yet useful, For-
tran programs.

2.1 Compiling and running your first program
Let’s start by creating, compiling, and running your first Fortran program. I assume
you’ve already installed the GNU Fortran compiler (gfortran) on your system. If you
haven’t yet, follow the directions in appendix A to get yourself set up.

 When you have the compiler installed, test it by compiling and running your first
Fortran program, as shown in the following listing.

program hello
print *, 'Hello world!'

end program hello

This program does only one thing—it prints a short greeting message to the terminal—
as is common for the first example in most programming books. Let’s save it in a file
called hello.f90. Compiling is as simple as passing the source file to the compiler and,
optionally, specifying the name of the output (-o) executable:

gfortran hello.f90 -o hello

If you don’t specify the name of the output file with -o, the name of the executable
defaults to a.out.

 Running the program produces the expected output:

./hello
Hello world!

That’s it—you wrote and compiled your first Fortran program! Let’s take a look at
what happens here under the hood. Building a program typically involves two steps:

1 Compiling—The compiler parses the source code in a high-level language (here,
Fortran) and outputs a corresponding set of machine instructions. In our case,
gfortran will read a Fortran source file with a .f90 suffix and output a corre-
sponding binary object file with a .o suffix. Other suffixes for source files, like
.f, .f03, or .f08, are acceptable by most compilers; however, I recommend
sticking with .f90 for consistency.

2 Linking—Binary object files (.o), which are the result of the compilation step,
aren’t executable on their own. The linker, typically invoked by the compiler
under the hood, puts binary object files together into one or more executable
programs.

Listing 2.1 Your first Fortran program: hello.f90

Begins the program
and gives it a name

Prints a short greeting
to the terminal

Ends the program

Runs the program by entering
the executable name

The output of the
program in the terminal

28 CHAPTER 2 Getting started: Minimal working app
To build our first program, we issued only one command, gfortran hello.f90 -o
hello, meaning there weren’t two separate steps for compiling and linking. This is
sufficient when the whole program is contained in a single file, and compiling and
linking steps are combined together in one command. That command is equivalent to
the following listing.

gfortran -c hello.f90
gfortran hello.o -o hello

In this snippet, the compiler option -c means compile only, do not link. This procedure
is necessary whenever we need to compile multiple source files before linking them
into a single program. As your app or library grows in size, you’ll find that splitting it
into multiple files will make it easier to organize and further develop.

 I illustrate the build sequence in figure 2.1.

The GNU Fortran compiler can take many other options that control language rules,
warning messages, optimization, and debugging. I encourage you to go ahead and
skim through the manual. You can access it by typing man gfortran on the command
line. If the manual pages aren’t available on your system, you can always access the
most recent documentation for gfortran at https://gcc.gnu.org/onlinedocs/gfortran.

2.2 Simulating the motion of an object
Near the end of the previous chapter, I introduced the shallow water system of equa-
tions, which we’ll work to solve over the course of this book to produce a realistic sim-
ulation of a tsunami. Here we’ll start implementing the simulator from scratch, both
in terms of the source code and the physics that we’ll simulate with it. The first process

Listing 2.2 Compilation and linking as separate steps

Compiles only, no linking

Links the object
to an executable

hello.f90

hello.o

hello

Linking stepgfortran hello.o -o hello

gfortran -c hello.f90 Compiling step

Source code

Binary object

Binary executable

Figure 2.1 Compiling and linking steps
that take the input source code and
generate binary object and executable
files. The source file, hello.f90, is passed
to the compiler, which outputs a binary
object file, hello.o. The object file is then
passed to the linker, which outputs a
binary executable file, hello. The linker is
implicitly included in the compiler
command (gfortran).

https://gcc.gnu.org/onlinedocs/gfortran

29Simulating the motion of an object
that we’ll simulate is the motion of an object due to background flow. In physics, we
call this linear advection. Advection means movement through space, and the linear
property implies that the background flow is independent from the shape and posi-
tion of the object. Don’t worry if you’re not a math or physics whiz and this sounds
daunting! In the following subsections, I’ll illustrate how advection works and show
how you can calculate it without having to understand all the math behind it.

In the next subsection, I’ll state the problem and set some requirements for our app.
Then, I’ll guide you through an illustrative example of advection and show how you
can calculate it yourself without writing any code. Finally, we’ll work together to imple-
ment the first version of our app in the remainder of this chapter.

2.2.1 What should our app do?

At this stage, we’ll simulate only the movement of an object (or fluid) due to back-
ground flow. This will provide the foundation for other physical processes that we’ll
add to the solver in later chapters. Simulating only one process for now will guide the
design of our program structure and its elements: declaration and initialization of
data, iterating the simulation forward in time, and writing the results to the terminal.
I sketched the result that we expect in figure 2.2.

From calculus to code
If you want to delve deeper into the math behind this problem, head over to appendix
B. There, I explain the gradient, which is the key concept behind advection, and how
to express it in computer code using finite differences. This step is important, as it
forms the foundation to express all other terms in the shallow water equations. Oth-
erwise, if you want to skip the math and jump straight to programming, carry on!

Moving an object forward in space

H
e
ig

h
t

Initial time Future time

Distance

Background flow

Figure 2.2 Advecting an object in space from left to right. The initial state is on
the left. The object is advected from left to right by a background flow and after
some time arrives at its final position on the right.

30 CHAPTER 2 Getting started: Minimal working app
Note that the advected object can be any quantity, such as water height, temperature,
or concentration of a pollutant. For now, we’ll just refer to it as the object for simplicity.
The shape of the object is also arbitrary—it can be any continuous or discontinuous
function. I chose a smooth bulge for convenience. At the initial time, the object is
located near the left edge of the domain. Our goal is to simulate the movement of the
object due to background flow and record the state of the object at some future time.
Internally, our app will need to perform the following steps:

1 Initialize—Define the data structure that will keep the state of the object in com-
puter memory, and initialize its value.

2 Simulate—This step will calculate how the position of the object will change
over time. At this stage, we expect it only to move from left to right, without
change in shape. The simulation is done over many discrete time steps and
makes up for most of the compute time spent by the program.

3 Output—At each time step, we’ll record the state of the object so that we can
visualize it with an external program.

As you can guess, the core of our program will revolve around the simulation step.
How do we go about simulating the movement of the object? Before writing any code,
we need to understand how advection works.

2.2.2 What is advection?

Wikipedia defines advection as “the transport of a substance or quantity by bulk
motion.” Advection is a fundamental process in physics, engineering, and earth sci-
ences. It governs how a solid object or a fluid moves in space because of background
flow. When a swimmer is swimming against the current, they’re advected by the cur-
rent, and their speed relative to the ground is lower than if there were no current at
all. Advection is also why we find Saharan dust in the atmosphere over the Carib-
bean, Brazil, or northern Europe, or why garbage patches converge in the middle of
ocean basins.

 I mentioned earlier that in this chapter we’ll deal only with linear advection. The
word linear here means that the background flow can be assumed to be constant, and
not changing because of interactions with the advected object itself. As shown in fig-
ure 2.2, the object is moving with constant speed that’s independent from the object
itself. In other words, the shape and position of the object do not influence the back-
ground flow. In the real world, however, this is almost never the case! Nonlinear advec-
tion of velocity is what creates turbulence. Small vortices in a stream, occasional bumps
on commercial flights, and marbled texture that we see in photographs of Jupiter’s
atmosphere are all examples of turbulence caused by nonlinear advection on differ-
ent spatial scales. We’ll save the nonlinear advection for chapter 4; here, we’ll focus
only on the linear part.

 To better understand how advection works, consider a cold front moving across the
southeast United States (figure 2.3). A cold front is a large-scale weather phenomenon

31Implementing the minimal working app
associated with mid-latitude cyclones. It typically moves from northwest to southeast in
the Northern Hemisphere (southwest to northeast in the Southern Hemisphere) and
brings cool and dry air in its wake. Where I live in South Florida, passages of cold fronts
are eagerly anticipated because they bring refreshingly cool and dry air from the north.

 Now I have a little exercise for you. Consider the following:

 The temperature is 12 °C in Atlanta and 24 °C in Miami.
 The distance between Atlanta and Miami is 960 kilometers.
 The front is moving toward Miami at a constant speed of 20 kilometers per

hour (km/h).

Assume there are no other processes at play, and the change of temperature is uni-
form in space:

1 What is the temperature gradient between Atlanta and Miami? Gradient is the
difference of a quantity (here, temperature) between two locations, divided
by the distance between them. In this case, the temperature gradient has units
of °C/km.

2 How many hours will it take for the temperature in Miami to fall to 12 °C?
3 Finally, what will the temperature in Miami be after 24 hours? How did you

arrive at this result?

Try to solve this problem with pen and paper. After you’ve worked through the exer-
cise, you’ll have solved the linear advection equation, even if you didn’t realize it. The
advection equation predicts the change of any quantity due to the spatial gradient of
that quantity and the background flow. We’ll do the exact same calculation to predict
the motion of the object in our simulator. You can find the solution to this exercise in
the “Answer key” section near the end of this chapter.

2.3 Implementing the minimal working app
Having set the problem to solve, we’ll soon be able to dive into Fortran coding. But
first we’ll go over the implementation strategy (you should always have one) in the
next subsection. Then, we’ll go over the core elements of the language and apply
them to implement the first version of the tsunami simulator.

Atlanta

12 °C
Miami

Warm

Cold

18 °C

24 °C

Figure 2.3 An illustration of a cold front moving from
Atlanta toward Miami. Curved lines are contours of
constant temperature. The dashed arrow shows the
direction of front propagation.

32 CHAPTER 2 Getting started: Minimal working app
2.3.1 Implementation strategy

Before we do any coding, it will be helpful to sketch out our tentative strategy for
implementing the first version of our app:

1 Define the main program. This will define the program name and scope. The main
program unit provides a skeleton to hold the declaration of data and the exe-
cutable code, such as arithmetic, loops, and so on.

2 Declare and initialize variables and constants. We need to declare all variables and
constants that we intend to use in our program:
– Integer counters i and n, for space and time, respectively, and correspond-

ing loop dimensions grid_size and num_time_steps. The spatial dimension
size, grid_size, will determine the length of the arrays, whereas the time
dimension size, num_time_steps, will determine for how many iterations
we’ll calculate the solution.

– Physical constants for background flow speed, c, time step, dt, and grid spac-
ing, dx.

– Arrays with real values for water height, h, and its finite difference, dh, such
that dh(i) = h(i) - h(i-1) for each i. The array dh is necessary for comput-
ing the solution without keeping multiple time levels in memory.

3 Calculate the equation solution for a set number of time steps. This step consists of
three distinct parts:
– Loop for a set number of time steps (num_time_steps).
– At each step, calculate the new value for water height, h, based on the value

from the previous time step.
– Because our domain is limited in size (grid_size), we need to define the

boundary conditions. What happens to the object when it reaches the far
right edge of the domain (figure 2.4)?

What happens when the object leaves the domain?

H
e
ig

h
t

Initial time Future time

Distance

Background flow ?

Figure 2.4 Boundary conditions determine what happens to the object when it
reaches an edge of the domain. Should it just leave? Reflect back into the domain
like a ball bouncing off a wall? Or perhaps cycle and reappear on the left side?

33Implementing the minimal working app
We have a few choices here. The object could be absorbed by the boundary and
completely leave the domain without a trace, or it could be reflected back into
the domain like a ball bouncing off a wall. Another option is a periodic (or
cyclical) boundary condition that connects the right and left edges of the
domain. In this case, the object would pass through on the right and reappear
on the left. This is a common choice in global atmosphere and ocean predic-
tion because of how our planet is represented in the computational domain. If
you go far enough east, you end up in the west! For this reason, we’ll imple-
ment the periodic boundary condition in our app.

4 Print the solution to the terminal at each step. To start, we don’t need fancy or spe-
cially formatted output. Let’s just output our solution in a default text format to
the screen. If we want to store the output in a file for analysis or plotting, we can
easily direct the output into a file.

Sound good? Let’s dive in and tackle these one at a time.

2.3.2 Defining the main program

The main program is the fundamental program unit in Fortran. It allows you to
assign a name to your program and defines the program scope, as shown in the fol-
lowing listing.

program tsunami
end program tsunami

Assigning a name to a program doesn’t do anything in practice, but it can help you
stay organized when you start working with dozens of different programs.

 Compiling and linking a main program source file results in an executable file that
you can invoke from the host operating system (see figure 2.1). You can’t invoke a
main program from other program units.

Listing 2.3 Defining the program unit and scope

What other program units are there?
Here, I give you a sneak peek of what’s coming in chapters 3 and 4. Different program
units can together form an executable program or a nonexecutable library:

 Main program—Top-level unit that can be invoked only from the operating
system

 Function—An executable subprogram that is invoked from expressions and
always returns a single result

 Subroutine—An executable subprogram that can modify multiple arguments
in-place but can’t be used in expressions

Begins the new program
and gives it a name

Ends the program

34 CHAPTER 2 Getting started: Minimal working app
The program statement is not mandatory. It can be useful to omit it for short test pro-
grams. However, it’s good practice to include it and pair it with a matching end program
statement. Technically, end is the only required statement for any Fortran program.
That statement also makes the shortest possible, though useless, Fortran program.

TIP Always pair the program statement with a matching end program statement.

2.3.3 Declaring and initializing variables

Explicit is better than implicit.

 —Tim Peters

The first part of any program unit is the declaration section. Fortran employs a static,
manifest, strong typing system:

 Static—Every variable has a data type at compile time, and that type remains the
same throughout the life of the program.

 Manifest—All variables must be explicitly declared in the declaration section
before their use. An exception and caveat is implicit typing, described in the sidebar.

 Strong—Variables must be type-compatible when they’re passed between a pro-
gram and functions or subroutines.

(continued)

 Module—A nonexecutable collection of variable, function, and subroutine
definitions

 Submodule—Extends an existing module and is used for defining variable
and procedure definitions that only that module can access; useful for more
complex apps and libraries

For now, we can work with only the main program. We’ll dive deep into functions and
subroutines in chapter 3, and modules in chapter 4.

Implicit typing
Fortran has a historical feature called implicit typing, which allows variable types to be
inferred by the compiler based on the first letter of the variable. Yes, you read that right.

Implicit typing comes from the early days of Fortran (ahem, FORTRAN), before type
declarations were introduced to the language. Any variable that began with I, J, K, L,
M, or N was an integer, and it was a real (floating point) otherwise. FORTRAN 66 intro-
duced data types, and FORTRAN 77 introduced the IMPLICIT statement to override
the default implicit typing rules. It wasn’t until Fortran 90 that the language allowed
completely disabling the implicit typing behavior by using the statement implicit
none before the declaration.

The implicit none statement will instruct the compiler to report an error if you try
to use a variable that hasn’t been declared. Always use implicit none!

35Implementing the minimal working app
Intrinsic types are defined by the language standard and are immediately available for
use. Fortran has three numeric types:

 integer—Whole numbers, such as 42 or -17
 real—Floating point numbers, such as 3.141 or 1.82e4
 complex—A pair of numbers: one for the real part and one for the imaginary

part of the complex number; for example, (0.12, -1.33)

Numeric types also come in different kinds. A Fortran kind refers to the memory size
that’s reserved for a variable. It determines the permissible range of values and, in the
case of real and complex numbers, the precision. In general, higher integer kinds
allow a wider range of values. Higher real and complex kinds yield a higher allowed
range and a higher precision of values. You’ll learn more about numeric type kinds in
chapter 4.

 Besides the numerical intrinsic types, Fortran also has the logical type to repre-
sent Boolean (true or false) states and character for text data. These five intrinsic
types (integer, real, complex, logical, and character) are the basis for all variables
in Fortran programs. You also can use them to create compound types of any com-
plexity, called derived types, which are analogous to struct in C and class in Python.
We’ll dive deep into derived types in chapter 8.

TIP Always use implicit none. This statement enforces explicit declaration
of all variables, which both serves as documentation for the programmer and
allows the compiler to find and report type errors for you.

2.3.4 Numeric data types

Fortran provides three numerical data types out of the box: integer, real, and complex.

INTEGER NUMBERS

The integer is the simplest numeric type in Fortran. Here are some examples of inte-
ger literals:

0 1 42 100 -500 +1234567

You declare one or more integers like this:

integer :: i, n

This statement instructs the compiler to reserve the space in memory for integer vari-
ables i and n. It’s made of the type statement (integer) on the left, double colons
(::) in the middle, and a list of variables separated by commas.

 General rules for integers:

 Integers are always signed—they can be both negative and positive, as well as
zero.

 They have a limited range that’s determined by their type kind. Larger type
kinds result in a wider range.

36 CHAPTER 2 Getting started: Minimal working app
 Exceeding the permissible range of a variable results in an overflow. In that
event, the value of the variable will wrap around its range limits.

 The default integer size in memory isn’t defined by the Fortran standard and is
system dependent. However, on most systems, the default integer size is 4 bytes.

REAL NUMBERS

Real numbers, also known as floating-point numbers, describe any number that has a
value along a continuous (nondiscrete) axis. Here are some examples of real numbers:

0.0 1.000 42. 3.14159256 -5e2 +1.234567e5

The first four of these are intuitive enough—the decimal point separates the whole
part of the number on the left and the fractional part of the number on the right. The
last two may seem strange, as they’re written using exponential notation. They consist of
an integer or real number on the left side of the character e, and an integer on its
right side that denotes the decimal exponent. -5e2 thus corresponds to –5 × 102, and
+1.234567e5 corresponds to 1.234567 × 105. For positive numbers, the unary plus
symbol is optional. We’ll talk more about formatting real numbers in chapter 6.

We declare real numbers using the keyword real:

real :: x

This declaration statement is analogous to the one for integers, except for the type
and variable names.

COMPLEX NUMBERS

A complex number is simply a pair of real numbers, one for the real component and
one for the imaginary component. They’re declared and initialized like this:

complex :: c = (1.1, 0.8)

The complex intrinsic type was introduced into Fortran to make arithmetic with com-
plex numbers easier to program. Depending on your application, you’ll either use
them often or not at all.

Be mindful about the decimal point!
When writing literal constants, there’s a fine line between what the compiler will
understand as an integer or a real. A single period after the number makes the dif-
ference. For example, 42 is an integer, but 42. is a real. This is the same behavior
as in C or Python.

37Implementing the minimal working app
2.3.5 Declaring the data to use in our app

Now that you have an idea of how to declare a variable of a specific numeric type, let’s
declare some variables, constants, and arrays that we’ll use in the tsunami simulator.

DECLARING VARIABLES

What kinds of variables will we need? As a reminder, based on our implementation
strategy in section 2.3.1, we’ll need the following:

 Spatial array size, grid_size, and number of time steps, num_time_steps
 Physical constants, such as time step, dt, grid size, dx, and background flow

speed, c
 One-dimensional arrays to carry the values of water height, h, and its difference

in space, dh
 An integer index, i, to reference individual array elements, h(i), and another

to loop through time, n

Since we need to first specify grid_size before we declare the array h, let’s first
declare scalar variables and constants, and declare the arrays afterward, as shown in
the following listing.

program tsunami

implicit none

integer :: i, n
integer :: grid_size
integer :: num_time_steps

real :: dt ! time step [s]
real :: dx ! grid spacing [m]
real :: c ! phase speed [m/s]

grid_size = 100
num_time_steps = 100

dt = 1.
dx = 1.
c = 1.

end program tsunami

The declaration section begins with implicit none and ends immediately before the
first executable line of code (grid_size = 100). All declarations are done in one
place, at the beginning of the program.

Listing 2.4 Declaring and initializing integer and real variables

Enforces
explicit typing

Integer
declarations

Real (floating point)
declarations

Initializes
integers

Initializes
reals

38 CHAPTER 2 Getting started: Minimal working app
For variables that won’t change value for the duration of the program, it’s useful to
declare them as constants. This allows the compiler to better optimize the code and
prevents you from accidentally changing the value of a constant. We’ll declare con-
stants in the next section.

 Our program won’t do much for now, as we only have the data declarations in it.
However, feel free to tweak it, recompile it, and, even better, try to break it! See if the
compiler complains.

DECLARING CONSTANTS

Some of the variables will be constant, and Fortran allows you to declare them as such
explicitly. Doing so will help you write correct code by triggering a compiler error if
you try to change the value of a constant, and will help the compiler optimize the
code. You can declare a constant (also known as immutable) using the parameter attri-
bute, as shown in the following listing.

integer, parameter :: grid_size = 100
integer, parameter :: num_time_steps = 100

real, parameter :: dt = 1, dx = 1, c = 1

Using the parameter attribute requires us to initialize the variable on the same line.

TIP If the value of a variable is known at compile time and won’t change for
the duration of the program, declare it as a parameter.

DECLARING ARRAYS

Arrays are among Fortran’s most powerful features. They have several useful properties:

 Contiguous—Array elements are contiguous in memory. Indexing them and
performing element-wise arithmetic on arrays is extremely efficient on modern
processors.

Commenting the code
Fortran comments begin with an exclamation mark (!). They can start at the beginning
of the line, or they can follow any valid statement.

Ideally, your code should be clear enough that it doesn’t need any comments. How-
ever, this is often not possible, and most programs need at least some comments.
Use your best judgment. If the intent isn’t obvious from the code itself, describe it in
comments.

Finally, having no comment is always better than having an inaccurate or outdated
comment.

Listing 2.5 Declaring and initializing constants

Declares grid size as a
constant parameter

Ditto for the number
of time steps in the
simulation

Time step in seconds (s), grid spacing in meters (m),
and background flow speed in meters per second (m/s)

39Implementing the minimal working app
 Multidimensional—The Fortran standard allows up to 15 dimensions for arrays.
In contrast, in C you have to emulate multiple dimensions by defining arrays
of arrays.

 Static or dynamic—Fortran arrays can be static, with dimensions set at compile
time, or dynamic, with dimensions set at runtime.

 Whole-array arithmetic—You can use the usual scalar arithmetic operators and
mathematical functions with arrays as well.

 Column-major indexing—Fortran arrays use column-major indexing, like MAT-
LAB or R, and unlike C or Python, which are row-major. The first (leftmost)
index thus varies fastest. For example, a(1,1), a(2,1), a(3,1), and so on, are
consecutive elements of array a. Keep this in mind when you loop over ele-
ments of a multidimensional array.

Having declared the integer grid size as a parameter, we can use it to set the size
of the array, h, that holds the water height values. You can declare a fixed-length
(static) real array using the dimension attribute, and an integer parameter for the
array size:

real, dimension(grid_size) :: h

The argument to dimension is the integer length of the array—in our case, the param-
eter grid_size.

As I mentioned earlier, one of Fortran’s strengths is its intrinsic support for multidi-
mensional arrays. You can define an array of up to 15 dimensions by specifying it in
the declaration statement, for example:

real, dimension(10, 5, 2) :: h

Here, h is declared as a three-dimensional array, with a total of 100 elements (10 * 5 * 2).

Shorthand syntax for declaring arrays
You can declare arrays in an even shorter form by omitting the dimension attribute
and specifying the array length in parentheses immediately after the array name:

real :: h(grid_size)

Whether you use the dimension attribute or the more concise form is completely up
to you. However, to conserve space in code listings, I’ll use the shorthand syntax
throughout this book.

Declares h as a real array with the
number of elements equal to grid_size

40 CHAPTER 2 Getting started: Minimal working app
For now, we need two arrays in our app—one for water height, h, and another for its
finite difference, dh:

real :: h(grid_size), dh(grid_size)

Now that we have our data structures declared and ready for action, let’s see what we
can do with them.

2.3.6 Branching with an if block

One of the key elements of almost every computer program is taking different execu-
tion paths (branches) depending on some criterion. Take, for example, a program
that parses a bank account registration form for a customer. If one of the input fields
isn’t entered correctly, such as a Social Security number having letters or a name hav-
ing numbers, the program should alert the user and ask for correct input rather than
proceeding. You can define this program behavior using an if block. In our tsunami
simulator, for now we’ll use an if block to check the values of the input grid and phys-
ics parameters, as shown in the following listing.

if (grid_size <= 0) stop 'grid_size must be > 0'
if (dt <= 0) stop 'time step dt must be > 0'
if (dx <= 0) stop 'grid spacing dx must be > 0'
if (c <= 0) stop 'background flow speed c must be > 0'

Here, we check the values of the parameters to make sure the program can carry out
a meaningful simulation. Specifically, we need a grid with at least one element,
although this won’t make for a particularly interesting simulation. We also need time
step, grid spacing, and background flow speed to all have positive values. The condi-
tions are stated in parentheses, immediately after if. On the right side, we specify the
statement to be executed if the condition in parentheses evaluates as true. In this case,
we use the stop statement to abort the program execution and print a helpful mes-
sage for the user.

How about dynamic arrays?
You may have noticed that in both array declarations, we used integer literals to set
the size and shape of the array. However, what if our array dimensions are not known
until runtime? Fortran provides excellent support for dynamic arrays, also known as
allocatable arrays. When you declare an allocatable array, you only specify the rank
(number of dimensions) of the array in the declaration, not the size of the dimen-
sions. Once the size is known, the allocate statement is used to allocate the array
with specified dimensions. Allocatable arrays can also be reallocated dynamically any
number of times. You’ll see more on allocatable arrays in chapter 5, where we’ll put
them to good use in our app.

Listing 2.6 Checking for values of input parameters

41Implementing the minimal working app
 This is only the simplest kind of use case for an if statement. Here’s its general
syntax:

if (condition) ...

You can use a more verbose if block if you need to execute multiple statements on a
condition, as shown in the following listing.

if (condition) then
...

end if

So far, the statements inside this if block execute only on a condition that evaluates as
true, and nothing happens otherwise. If we need our program to do something in
either case, we can use a more general if/else/end if block, as shown in the follow-
ing listing.

if (condition) then
...

else
...

end if

Unlike the single-liner if and the if/end if block, this one allows for two branches of
execution: one if condition is true, and another if it’s false. It’s also possible to test for
multiple specific conditions in a single if block, as shown in the following listing.

if (condition) then
...

else if (other_condition) then
...

else
...

end if

The conditions are expressions of the logical type. The comparison operators, like
the ones we used to check the values of the input parameters, work just like the com-
parison operators in general arithmetic we learned in elementary school. There are a
few other edge cases and logical operators that I’ll put on the back burner for now,
and that we’ll explore later as we encounter them.

 In summary, we have a few different forms of an if-block:

1 if single-liner—Useful for simple checks and statements that fit on a single line;
for example, zeroing a variable if negative: if (a < 0) a = 0

Listing 2.7 General syntax of an if block with one condition and one branch

Listing 2.8 General syntax of an if block with one condition and two branches

Listing 2.9 The most general syntax of an if block

This branch will execute
if condition is true.

This branch will execute
if condition is true.

This branch will
execute otherwise.

You can have as many
of these as you want.

42 CHAPTER 2 Getting started: Minimal working app
2 if/end if—A more verbose form of the single-line if; useful when you have a
single condition but multiple statements to execute

3 if/else/end if—Allows executing a statement for either the true or false value
of the condition

4 if/else if/else/end if—Like if/else/end if, but allows checking the val-
ues of multiple specific conditions

That’s all you need to know about branching for now. We’ll apply these more complex
if blocks in the following chapters.

2.3.7 Using a do loop to iterate

We need to implement looping in our app to do two things:

1 Loop over array elements to set initial values of water height and calculate the
solution at the next time step.

2 Loop for a number of time steps to iterate the numerical solution forward
in time.

The main construct for looping or iterating in Fortran is the do loop:

do n = start, end
...

end do

Here, n is the integer index that changes value with each iteration. In the first itera-
tion, n equals start. When the program reaches the end do line, n is incremented by
one. Internally, the program then checks if n is larger than end. If yes, the program
breaks out of the loop and proceeds to the code that follows the loop. Otherwise, the
control is returned to the beginning of the loop and another iteration is done. The
process repeats until the program exits the loop.

 By default, do loops increment the counter by one. However, you can specify a cus-
tom integer increment immediately after the end index:

do n = start, end, increment
...

end do

In this case, the loop begins with n equal to start and is incremented by the value of
increment with each iteration.

 There are several rules to remember when coding do loops:

 The loop index (n) must be an integer variable (not a parameter).
 start, end, and increment must be integers of either sign. They can be vari-

ables, parameters, or expressions that evaluate to integer values.

Increment n from
start to end.

Code inside the loop will execute
end - start + 1 times.

Increment n from start
to end by increment.

Code inside the do loop will execute
(end - start) / increment + 1 times.

43Implementing the minimal working app
 If start equals end, the loop body will execute only once.
 If start is greater than end and increment is positive, the loop body will not

execute.
 If start is less than end and increment is negative, the loop body will not execute.
 A bare do statement without the counter and start and end indices is an

infinite do loop that has to be broken out of by other means, such as the exit
statement.

 Loops can be nested (loops inside loops).
 Loops can be named. This is useful for nested loops where you want to associate

an end do with its matching do, as shown in the following listing.

outer_loop: do j = 1, jm
inner_loop: do i = 1, im

print *, 'i, j = ', i, j
end do inner_loop

end do outer_loop

Although naming loops may at first seem unnecessarily verbose, the names
become useful in larger programs with multiple levels of nesting. Furthermore,
you can use loop names to break out of a specific do loop from any level using
the exit statement.

Finally, the general syntax form of a do loop is shown in figure 2.5.

In the figure, expr1, expr2, and expr3 are start and end indices (inclusive), and the
increment, respectively. name can be any given name.

Listing 2.10 Using names with nested do loops

Begins a named outer
loop (slower varying)

Begins a named inner
loop (faster varying)

This could be any code
that we want to iterate.

Closing the inner loop

Closing the outer loop

[name:] do [var = expr1, expr2[, expr3]]

end do [name]

Optionally, give
your loop a name.

Code to iterate
goes here.

Counter EndStart Increment

Figure 2.5 General syntax of a Fortran do loop. Optional syntax elements
are in square brackets.

44 CHAPTER 2 Getting started: Minimal working app
2.3.8 Setting the initial water height values

Before iterating the solution forward in time, we need to specify the initial state of the
water height. In other words, we need to set the initial values of the array h. A com-
mon choice in toy models like ours is a Gaussian (bell) shape (figure 2.6).

This is a well-defined, smooth function that we can calculate using the exponential, as
shown in the following listing.

integer, parameter :: icenter = 25
real, parameter :: decay = 0.02

do i = 1, grid_size
h(i) = exp(-decay * (i - icenter)**2)

end do

Here, we have the first practical use of the following:

 A do-loop to iterate over array elements. Since we’ve declared h as an array of
size grid_size, this loop will iterate over all elements of the array.

 Arithmetic operators -, *, and ** (power).
 An intrinsic mathematical function exp (exponential). This and other intrinsic

math functions are readily available to use in Fortran programs and don’t need
to be imported in any special way.

 Arithmetic assignment (=) of the result of the expression on the right side to
the variable on the left side. The value of the left side is updated only after the
whole expression on the right side has been evaluated.

Listing 2.11 Initializing the water height with a Gaussian shape

Initial state, (, 0)h x

H
e
ig

h
t

Spatial grid index

1.00

0.00

100755025

0.25

0.50

0.75

Figure 2.6 Initial values of water height

Central index and decay
factor of the shape

Loops over all elements,
from index 1 to grid_size

Calculates the value and assigns it
to each element of the array

45Implementing the minimal working app
Parameters icenter and decay control the position and width of the water height per-
turbation, respectively. The integer icenter is the array index at which the perturba-
tion is centered. For example, when i equals icenter, the exponent argument
reduces to zero, and h(i) equals 1. The real parameter decay determines the rate of
exponential decay. Larger values yield a thinner perturbation.

2.3.9 Predicting the movement of the object

We initialized the values of water height and are ready to get to the core of our simula-
tion—iterating forward in time and calculating the solution at each time step. This
consists of two steps:

1 Calculate the spatial difference of water height (dh), including the periodic
boundary condition.

2 Use dh to calculate the new values of water height h.

The following listing provides the core of the solver.

time_loop: do n = 1, num_time_steps

dh(1) = h(1) - h(grid_size)

do i = 2, grid_size
dh(i) = h(i) - h(i-1)

end do

do i = 1, grid_size
h(i) = h(i) - c * dh(i) / dx * dt

end do

end do time_loop

The outer loop, what we call time_loop, increments the integer n from 1 to num_
time_steps. Although we’re not using n anywhere inside the body of the loop, we use
this loop to repeat the body for num_time_steps times. Inside the time_loop, we per-
form two calculations:

Can our array assignment be done in parallel?
Recall our discussion of embarrassingly parallel problems in the previous chapter.
We said that a problem is embarrassingly parallel if there’s no data dependency
between individual iterations. Take a look at our expression for the initial value of h.
Could we distribute this workload among multiple processors?

Begin the practice of asking that question for every computational problem, formula,
or equation that you encounter. Over time, you’ll find more opportunity to distribute
the computation, or at least mark sections of the code that are safe for the compiler
to vectorize. Fortran offers a special do loop for this purpose, called do concurrent.
It guarantees to the compiler that there’s no dependency between individual itera-
tions and that they can be executed out of order, as we’ll see in the next subsection.

Listing 2.12 Iterating the solution forward in time

Iterates over num_time_steps
time steps

Applies the periodic boundary
condition on the left

Calculates the finite
difference of h in space

Evaluates h at the
next time step

46 CHAPTER 2 Getting started: Minimal working app
1 We calculate the difference of h in space and store it in the array dh. We do this
in two separate steps:
a We calculate the value of dh(1), which corresponds to the element on the left

edge of the domain. Because we’re applying periodic (cyclic) boundary condi-
tions, dh(1) depends on the value of h from the right edge of the domain.

b We loop over the remaining elements (from 2 to grid_size) and set dh(i)
to the difference of h in space (h(i) - h(i-1)).

2 Once we have the array dh computed, we use it to compute the new value of h
and update it. Here we don’t need to store the value of h for every time step,
and we overwrite the old values with new ones.

Fortran follows the same operator precedence rules as general arithmetic:

 Exponentiation (**) is evaluated first.
 Multiplication (*) and division (/) are evaluated second.
 Addition (+) and subtraction (-) are evaluated last.
 Finally, the precedence can be overridden with parentheses.

Furthermore, Fortran operations of equal precedence are evaluated left to right. For
example, this expression

h(i) = h(i) - c * dh(i) / dx * dt

is equivalent to this one:

h(i) = h(i) - (((c * dh(i)) / dx) * dt)

A few pages back, I asked you if it’s possible to parallelize this loop in a trivial way:

do i = 1, grid_size
h(i) = exp(-decay * (i - icenter)**2)

end do

What you should look for is whether any iteration depends on data calculated in any
other iteration. Here, the right side depends only on the loop counter i and parame-
ters decay and icenter, whereas the variable on the left side (h(i)) is not used on
the right side. Could every iteration be carried out in any order without changing the
final result? If yes, the computation can be easily parallelized.

 The first step is to inform the compiler that this section of the code can be exe-
cuted in any order it finds most optimal. Fortran 2008 introduced the do concurrent
construct for this purpose. This construct uses a slightly modified syntax, as shown in
the following listing.

do concurrent (i = 1:grid_size)
h(i) = exp(-decay * (i - icenter)**2)

end do

Listing 2.13 Using do concurrent for embarrassingly parallel calculations

47Implementing the minimal working app
Here, we use a (i = 1:grid_size) syntax instead of i = 1, grid_size. We’ll cover this
in more detail in chapter 6, but for now we’ll use this syntax to promote all our paral-
lelizable loops to do concurrent.

Inside of time_loop, can you find any other loops that could be expressed using do
concurrent? If yes, use the modified syntax to rewrite them as do concurrent loops.

2.3.10 Printing results to the screen

We now have the time loop that iterates the solver for exactly num_time_steps time
steps. The last remaining step in this chapter is to print the results to screen. The sim-
plest approach is to print the results to the terminal, from where we can redirect the
output to a file for later use, such as plotting. For this, you can use the print state-
ment, which you already encountered in chapter 1:

print *, n, h

print is the simplest output statement in Fortran. The * symbol that’s placed immedi-
ately after print signifies default formatting, which tells the compiler to use any for-
mat for the data it finds convenient. In most cases, the default format will be
reasonable. As noted, here we’re printing the values of n (integer scalar) and h (real
array with 100 elements) to the screen. This statement will thus output exactly 101 val-
ues to the terminal in a single line.

 We’ll explore Fortran input/output in more detail in chapter 6. For now, print *
is all we need.

2.3.11 Putting it all together

Finally, we’ve gotten to the exciting part: taking the pieces that we’ve learned and putting
them together into a complete and working program. We’ll first look at the solution of
our program, visualized with a Python script, and then go through the complete code.

What do concurrent is and what it isn’t
What does do concurrent do exactly? It’s a promise from programmer to compiler
that the code inside the loop can be safely vectorized or parallelized. In practice, a
good compiler would do this using a system threading library or SIMD machine
instructions if available.

do concurrent by no means guarantees that the loop will run in parallel! In cases
such as short loops with simple computations, the compiler may determine that
serial execution would be more efficient. We’ll study explicit, distributed-memory par-
allelism with coarrays in chapter 7. For now, we use do concurrent as a note for
both ourselves and the compiler that some regions of the code are safe to parallelize.

Prints values n and h to the
terminal using default formatting

48 CHAPTER 2 Getting started: Minimal working app
THE RESULT

The numerical solution of our simple app is shown in figure 2.7. From top to bottom,
each panel shows the state of water height at increments of 25 time steps. The top
panel corresponds to the initial condition, as in figure 2.6. The position of the water

Time step 0

H
e
ig

h
t

1.00

0.00

0.25

0.50

0.75

Time step 25

H
e
ig

h
t

1.00

0.00

0.25

0.50

0.75

Time step 50

H
e
ig

h
t

1.00

0.00

0.25

0.50

0.75

Time step 75

H
e
ig

h
t

Spatial grid index

1.00

0.00

100755025

0.25

0.50

0.75

Figure 2.7 Predicting the linear advection of an object, with periodic boundary
conditions. The water height perturbation is advected from left to right with a
constant speed of 1 m/s. When the water reaches the boundary on the right, it
reenters the domain from the left.

49Implementing the minimal working app

B
the
height peak in each panel is consistent with the configuration of the physical parame-
ters of the simulation: background flow speed (c = 1), grid spacing (dx = 1), and time
step (dt = 1). In the bottom panel, we can see the water height peak moving out on
the right and reentering on the left. This confirms that our periodic boundary condi-
tion works as intended.

 Although Fortran is great for high-performance numerical work, it’s less elegant
for graphics and visualization of data. For brevity and simplicity, I use Python scripts
for visualization of the tsunami results. You can find the visualization code in the tsu-
nami repository on GitHub (https://github.com/modern-fortran/tsunami), along-
side the Fortran source code in each chapter directory.

COMPLETE CODE

The complete code for the first version of our tsunami simulator is given in the follow-
ing listing.

program tsunami

implicit none

integer :: i, n

integer, parameter :: grid_size = 100
integer, parameter :: num_time_steps = 100

real, parameter :: dt = 1 ! time step [s]
real, parameter :: dx = 1 ! grid spacing [m]
real, parameter :: c = 1 ! background flow speed [m/s]

real :: h(grid_size), dh(grid_size)

integer, parameter :: icenter = 25
real, parameter :: decay = 0.02

if (grid_size <= 0) stop 'grid_size must be > 0'
if (dt <= 0) stop 'time step dt must be > 0'
if (dx <= 0) stop 'grid spacing dx must be > 0'
if (c <= 0) stop 'background flow speed c must be > 0'

do concurrent(i = 1:grid_size)
h(i) = exp(-decay * (i - icenter)**2)

end do

print *, 0, h

time_loop: do n = 1, num_time_steps

dh(1) = h(1) - h(grid_size)

Listing 2.14 Complete code of the minimal working tsunami simulator

Beginning of
the program

Enforces explicit
declaration of variables

Declaration
of data

Checks input
parameter values
and aborts if invalid

Loops over array elements
and initializes values

Writes the initial water
height values to the terminal

egins
 time
loop

Applies the periodic
boundary condition at the
left edge of the domain

https://github.com/modern-fortran/tsunami

50 CHAPTER 2 Getting started: Minimal working app

Comp

prog
do concurrent (i = 2:grid_size)
dh(i) = h(i) - h(i-1)

end do

do concurrent (i = 1:grid_size)
h(i) = h(i) - c * dh(i) / dx * dt

end do

print *, n, h

end do time_loop

end program tsunami

With only 30 lines of code, this is a useful little solver! If you compile and run this pro-
gram, you’ll get a long series of numbers as text output on the screen, as shown in the
following listing.

0 9.92950936E-06 2.54193492E-05 6.25215471E-05 ...
1 0.00000000 9.92950845E-06 2.54193510E-05 ...
2 0.00000000 0.00000000 9.92950845E-06 ...
...

Although it may look like nonsense, these are our predicted water height values (in
meters). However, the output is long and will flood your terminal window. You’ll be
able to explore the output more easily if you redirect it to a file, as the following listing
demonstrates.

cd src/ch02
gfortran tsunami.f90 -o tsunami
./tsunami > tsunami_output.txt
python3 plot_height_multipanel.py tsunami_output.txt

Alternatively, the source code repository on GitHub also comes with a Makefile to
streamline the build process, and you can type make ch02 from the top-level directory.
This also assumes that you’ve set up the Python virtual environment following the
instructions in the README.md file in the repository.

Listing 2.15 Text output of the current version of the tsunami simulator

Listing 2.16 Building, running, and visualizing the output from the tsunami simulator

Calculates the finite difference
of water height in space

Integrates the solution
forward; this is the
core of our solver

Prints current values
to the terminal

Initial water height output

Output after
first time
step

Output after second time step

Enters the source
code directory

iles
the

ram

Runs the program
and redirects the
output into a
text file

Visualizes the
output and
writes it to
an image file

51Going forward with the tsunami simulator
 Go ahead and play with it. Some ideas that come to mind:

 Tweak the initial conditions, perhaps by changing the shape and position of the
initial perturbation. For example, you can change the values of the decay and
icenter parameters, or use a different function when initializing the h array.
Try a sine wave (intrinsic function sin).

 Change the grid size and number of time steps parameters.

Remember that Fortran is a compiled language. Every time you change the code,
you’ll need to recompile it before running it.

2.4 Going forward with the tsunami simulator
Looking back at this chapter and what we’ve made so far, it’s helpful to summarize
what we don’t have yet and how we’ll get there in the second part of the book:

 In chapter 3, you’ll learn about functions and subroutines, and refactor some of
the calculations in our simulator as reusable procedures.

 In chapter 4, you’ll use Fortran modules to reorganize our app, and you’ll
implement more realistic physics.

 In chapter 5, you’ll learn all about arrays and whole-array arithmetic.
 In chapter 6, we’ll dive deeper into input and output, and you’ll learn how to

output your data in a portable way, format it, and write it to files on disk.

Beyond that, in part 3 of this book we’ll explore parallel computing with coarrays, as
well as advanced data structures and procedures.

A note on abstractions
As we work through this book, we’ll come across new layers of abstraction in each
chapter. Here, an abstraction is a programming mechanism that aims to black-box
the internal implementation away from the programmer. For example, in the next
chapter, functions and subroutines are an abstraction over explicit, imperative code.
In chapter 8, you’ll learn about derived types, which can contain any number of vari-
ables and procedures attached to them, and this is yet another layer of abstraction.

Each layer of abstraction introduces a benefit and a cost. The benefit usually boils
down to having to write less boilerplate code, especially when programming repet-
itive tasks. The cost is that abstractions hide not only the implementation details,
but also meaning and side effects if they’re not used conservatively and with care.
I’ll warn you each time we come across a new abstraction in this book. Consider
each abstraction carefully, and use them only if the benefits outweigh the per-
ceived costs.

52 CHAPTER 2 Getting started: Minimal working app
2.5 Answer key
This section contains the solution to the exercise in this chapter. Skip ahead if you
haven’t worked through the exercise yet.

2.5.1 Exercise: Cold front propagation

1 What is the temperature gradient between Atlanta and Miami? Here, the gradi-
ent will be the difference in temperature between the two locations, divided by
the distance between them. The answer is thus 24 °C minus 12 °C, divided by
960 km: 0.0125 °C/km.

2 How many hours will it take for the temperature in Miami to reach 12 °C? Let’s
first get the rate of cooling in Miami. The front is moving with the speed of 20
km/h, and we know that the gradient is 0.0125 °C/km. The cooling rate is then
20 km/h times 0.0125 °C/km: 0.25 °C/hour. The Miami temperature starts at
24 °C, so it will reach 12 °C in 24 °C minus 12 °C, divided by the cooling rate
0.25 °C/hour. The result is 48 hours.

3 What will be the temperature in Miami after 24 hours? We know that the Miami
temperature starts at 24 °C and that its cooling rate is 0.25 °C/hour. The answer
is then 24 °C - 0.25 °C/hour times 24 hours. The result is 18 °C.

2.6 New Fortran elements, at a glance
 program/end program statements to define a main program
 Intrinsic numeric types integer, real, and complex
 dimension attribute to declare an array
 Arithmetic operators +, -, *, /, and **, and assignment =
 if statement and if blocks for branching
 stop statement to abort the program and print a message to the terminal
 do/end do construct to iterate over any executable section of the code
 do concurrent to mark embarrassingly parallel sections of the code
 print * statement as the simplest way to print text and variable values to the

terminal

2.7 Further reading
 GNU Fortran compiler documentation: https://gcc.gnu.org/onlinedocs/gfortran
 Wikipedia article on advection: https://en.wikipedia.org/wiki/Advection
 Wikipedia article on finite differences: https://en.wikipedia.org/wiki/Finite_

difference

https://gcc.gnu.org/onlinedocs/gfortran
https://en.wikipedia.org/wiki/Advection
https://en.wikipedia.org/wiki/Finite_difference
https://en.wikipedia.org/wiki/Finite_difference
https://en.wikipedia.org/wiki/Finite_difference

53Summary
Summary
 Building an executable Fortran program consists of the compilation and link-

ing steps.
 There are five program units in Fortran: main program, function, subroutine,

module, and submodule.
 A program begins with a program statement and ends with an end program

statement.
 In every program, we first declare the data, and executable code comes after.
 Use implicit none at the top of your declarative code to enforce explicit decla-

ration of all variables.
 There are five built-in data types in Fortran: integer, real, complex, character,

and logical.
 if blocks are used to test for conditions and take different execution branches

depending on their values.
 Use the stop statement to abort the program immediately and print a helpful

message to the terminal.
 do loops are used to iterate over sections of the code a specified number of times.
 Start, end, and increment values of a do loop counter can have any integer value.
 Fortran’s arithmetic rules are the same as those we learn in school: exponentia-

tion is evaluated first, then multiplication and division are evaluated, and finally
addition and subtraction go last; this order can be overruled with parentheses.

 print * is an easy way to print the values of any variable or literal constant to
the terminal.

Part 2

Core elements of Fortran

This part covers the core elements of Fortran: procedures, modules, arrays,
and I/O.

 In chapter 3, you’ll learn the most important things to know about functions
and subroutines (collectively called procedures). They’ll allow you to abstract
away any piece of code that you need to run many times. Functions and subrou-
tines are fundamental building blocks that will allow you to write reusable, com-
posable, and complex (but not complicated) code. You’ll apply this knowledge
to refactor the tsunami simulator we started in chapter 2.

 In chapter 4, you’ll learn about modules and how to use them to organize
your data and procedures in reusable and portable components.

 Chapter 5 covers arrays, the fundamental Fortran data structure. You’ll learn
how to declare, initialize, and use arrays, as well as how to leverage whole-array
arithmetic to greatly simplify your code. You’ll use arrays for the analysis of stock
price time series.

 Finally, chapter 6 covers I/O. You’ll learn how to read and write data from
the standard input, output, and error streams, as well as how to read from and
write to files on disk. You’ll also learn how to format numerical data as text.
You’ll practice these skills by writing a minimal note-taking app for the com-
mand line.

 After you’ve worked through this part of the book, and with some practice,
you’ll be a functional and independent Fortran programmer. You’ll be able to
write Fortran programs and libraries from scratch to solve real-world problems.

Writing reusable code
with functions

and subroutines
In the previous chapter, you learned about the core elements of Fortran: declara-
tion of scalar and array variables, do loops to iterate parts of the code a desired
number of times, and arithmetic expressions and assignments. We used them to
write a simple simulator that predicts the motion of an object in space and time
due to background flow. As we learn new Fortran features, we’ll continuously
expand and improve our app to produce more realistic simulations. This chapter
introduces functions and subroutines, which will help us manage the complexity of
our growing app.

 This chapter is all about scaling a growing app while maintaining simplicity
through code reuse. Our minimal working app has so far been organized as a sin-
gle program, with a number of statements that the program executes top to bottom.

This chapter covers
 What procedures are and why we use them

 How procedures break down into two kinds:
functions and subroutines

 Writing procedures that don’t cause side effects

 Writing procedures that work on both scalars
and arrays
57

58 CHAPTER 3 Writing reusable code with functions and subroutines
This is the imperative style of programming—you’re telling the computer what to do,
one statement after another. This approach worked well because we tackled a rela-
tively simple problem. However, we’ll now prepare for a more realistic fluid dynamics
simulation, which will require more moving parts and complexity.

 This is where functions and subroutines, collectively called procedures, come in.
They’ll allow us to define self-contained and reusable nuggets of code that we can
invoke whenever needed and using different input data. Procedures are the funda-
mental building blocks that we’ll reuse over and over as we work our way through
this book.

3.1 Toward higher app complexity
Simple is better than complex. Complex is better than complicated.

—Tim Peters, The Zen of Python

Although a mantra of Python, the opening quote applies well to Fortran and pro-
gramming in general. We always aim for simple, whenever possible. This is especially
true in software design, where we often deal with increasingly complex systems. Sim-
ple is easy to read, understand, and explain to our friends and colleagues. However,
it’s a challenge to maintain simplicity as we build an app, a library, or a framework.
The more features we add and corner cases we handle, the more bloated our app
seems, and we worry that the project will spin out of control. It inevitably becomes
more complex. Does that also mean it has to become more complicated?

 I don’t have a traditional computer science background. I first learned to program
so I could solve physics problems, much like the one we worked on in the previous
chapter. Programming for me was more a tool to accomplish a given task than an art
in itself. Some of my programs could easily grow to thousands of lines of code, consist-
ing of inscrutable reads and writes to binary files, multiply-nested loops, and endless
lists of imperative expressions and assignments. No function calls, no code reuse.
Abstracting data with object-oriented classes and methods? Forget about it! It was a
programmer’s nightmare.

 Over time, I learned about Fortran features designed specifically to make pro-
gramming easier. For example, rather than repeating the same calculation on differ-
ent data, you can write it as a function and call it many times with different inputs. You
can use modules, introduced by the Fortran 90 standard, to define variables and pro-
cedures, which can then be accessed from elsewhere in the program or library. Carefully
put together, these elements will make your life easier, whether you prefer an object-
oriented, functional, or plain procedural programming approach to your problem.

3.1.1 Refactoring the tsunami simulator

In the previous chapter, we made the first working version of what will become a real-
istic water wave simulator. Contained in a single program, it included data declaration
and initialization, arithmetic expressions and assignment to calculate the solution, a
do loop to advance the solution forward in time, and a print statement to output the

59Toward higher app complexity
results to screen. With 26 lines of code, this is a simple program that does simple
things: it initializes the water height, simulates its movement forward due to back-
ground flow, and writes its state to the screen at each time step (figure 3.1).

In this chapter, we’ll refactor the simulator to use a set of common building blocks,
such as the finite difference calculation that I introduced in chapter 2. This will allow
us to more easily expand the simulator in the following chapters as we move toward a
more realistic water wave motion. Recall the core of our solver from the previous
chapter, shown in the following listing.

time_loop: do n = 1, num_time_steps

dh(1) = h(1) - h(grid_size)

do concurrent (i = 2:grid_size)
dh(i) = h(i) - h(i-1)

end do

do concurrent (i = 1:grid_size)
h(i) = h(i) - c * dh(i) / dx * dt

end do

end do time_loop

The body of the main loop (time_loop) consists of two steps: calculating the differ-
ence of water height h in space, and using that difference to predict and store its new
value at the next time step. This solves for only one equation for water height, which
features one physics term, namely the linear advection.

Listing 3.1 Time integration loop from the minimal working tsunami simulator

Moving an object forward in space

H
e
ig

h
t

Initial time Future time

Distance

Background flow

Figure 3.1 Advecting a Gaussian shape in space from left to right. We worked
on this problem in the previous chapter.

Iterates for
num_time_steps
time steps

Calculates the difference on the left boundary

Calculates the
difference in the
rest of the domain

Computes and stores
the value of h at the
next time step

60 CHAPTER 3 Writing reusable code with functions and subroutines
 To add more terms and another equation, we’ll define a new array, u, for the water
velocity and add any calculations inside time_loop to make the solver complete. With-
out assuming anything about what the equations or the code should look like, fig-
ure 3.2 illustrates the tentative update of our app.

The key operations we were doing to simulate the evolution of water height—
initialization, calculating the change in time, and solving the equation—we’d now be
doing for both water height and velocity. It looks like our program would at least dou-
ble in size if we added code to solve for another variable. Furthermore, if we added
more terms to each of the equations, our program would grow further. It’s clear that
our program will inevitably become difficult to work with if we keep piling more and
more code on top of it.

 In the previous chapter, you learned that most of the computational work in fluid
dynamics boils down to approximating partial derivatives with a discrete form that can
be expressed as code. Finite differences, which we used to calculate the gradient of
the water surface to predict its movement due to advection, are what we’ll use for all
the other terms in the tsunami simulator. Since we’ll spend most of the time (human
and computer time!) on these terms, we should find a way to abstract this low-level cal-
culation and make it reusable from the main solver loop. This is where Fortran proce-
dures and modules come in (figure 3.3).

 In this new framework, we define the reusable data and functions inside the mod-
ule. The module is then accessed from the main program with the use statement.
We’ll first refactor our minimal working app to compute the finite difference in a
function, while exactly reproducing the existing results. Then, in the next chapter,
we’ll define our new custom module to host our functions, and we’ll expand our app
to produce more realistic simulations.

program tsunami

Declare data

Initialize height

do n = 1, nm

Compute terms for height

do i = 1, im

Solve for height

end do

Write output to screen

end do

end program tsunami

Minimal working app

program tsunami

Declare data

Initialize velocity

Initialize height

do n = 1, nm

Compute terms for velocity

do i = 1, im

Solve for velocity

end do

Compute terms for height

do i = 1, im

Solve for height

end do

Write output to screen

end do

end program tsunami

Expanded app

Figure 3.2 Expanding the
minimal working app to a
more realistic simulator

61Toward higher app complexity
3.1.2 Revisiting the cold front problem

In the previous chapter (section 2.2.2), I introduced the example of a cold front to
illustrate the concepts of temperature gradient (change in space) and tendency (change
in time). There, I asked you to calculate the change of temperature in Miami, consid-
ering the temperatures in Atlanta and Miami, the distance between them, and the
speed of the front (figure 3.4).

What would the program that solves this problem look like? For simplicity, let’s assume
the same initial parameters as in the example:

 The temperature is 12 °C in Atlanta, and 24 °C in Miami.
 The distance between Atlanta and Miami is 960 kilometers.
 The front is moving toward Miami at a constant speed of 20 km/h.

The compiled program should yield

Temperature after 24.0000000 hours is 18.0000000 degrees.

program tsunami

use mod_diff

Declare data

Initialize height

do n = 1, nm

Solve for height

Write output to screen

end do

end program tsunami

Main program

module mod_diff

Declare data

contains

function diff(u)

...

end function diff

end module mod_diff

Module and functions

Tsunami app

Figure 3.3 Using a module and a function to reuse and simplify code.
Module mod_diff, which defines the difference function diff, is
accessed from the main program with the use statement (top arrow).
Through use association, the function diff can be used within the
scope of the main program (bottom arrow).

Atlanta

12 °C
Miami

Warm

Cold

18 °C

24 °C

Figure 3.4 An illustration of a cold front moving from
Atlanta toward Miami. Curved lines are contours of
constant temperature. The dashed arrow shows the
direction of front propagation. We used this example in
the previous chapter to illustrate the concept of spatial
gradients and advection.

62 CHAPTER 3 Writing reusable code with functions and subroutines

Co

s

If you worked through the exercise of building the minimal working app in the previous
chapter, then you have all the ingredients to solve this problem: defining the program
unit, declaring and initializing data, basic arithmetic expression and assignment, and
printing to screen. The following listing provides the complete code.

program cold_front

implicit none

real :: temp1 = 12, temp2 = 24
real :: dx = 960, c = 20, dt = 24
real :: res ! result in deg. C

res = temp2 - c * (temp2 - temp1) / dx * dt

print *, 'Temperature after ', dt, &
'hours is ', res, 'degrees'

end program cold_front

We first declared and initialized all the input parameters:

1 Origin and destination temperatures, temp1 and temp2, respectively
2 Distance in kilometers, dx
3 Front speed in kilometers per hour, c
4 Time interval in hours, dt
5 The variable res to store the result in

The calculation itself fits into a single expression and assignment.
 This program works well if you need to do the calculation once or twice. However,

what if the exercise required you to calculate the temperature for multiple different val-
ues of input parameters, be it temp1, temp2, dx, c, or dt? You can see where I’m going
with this. Specifically, I could ask you to calculate the solution in the case of temp1 being
0 °C, another solution for a front speed of 28 km/h, or the solution after 36 hours. How
would you solve this problem? You could compute the first solution, then reinitialize
variables and compute another solution, and so on. However, this would soon become
quite tedious and result in repetition of code. More problematically, how would you
implement a solution that had to work with a continuous stream of input parameters in
real time, such as those measured at real-world weather stations?

Listing 3.2 Solving for temperature due to passage of a cold front

Experiment a bit
Try plugging in different values for input parameters and rerunning the program.
(You’ll have to recompile it as well.) Do the results look reasonable? Also, can you
find a value of any input parameter that breaks the program? Try it!

All declarations
will be explicit.

Declares and initializes
the variables

The variable to
store the result in

mputes
the

olution

Writes the
solution to screen

63Toward higher app complexity
3.1.3 An overview of Fortran program units

When I introduced program as the main Fortran program unit in the previous chapter, I
also mentioned a few others: functions, subroutines, and modules. Functions and sub-
routines, which are the focus of this chapter, are both kinds of procedures. A procedure
is a miniprogram that can be called any number of times from the main program, or
from another procedure. Like the main program, procedures have executable code, the
code that does things. Figure 3.5 illustrates functions and subroutines.

Each of these units has different properties and a unique purpose:

 Main program—Every Fortran application must have one, and only one, main
program. The main program can contain declarative and executable code, as
well as definitions of procedures. The main program is the only program unit
that you can invoke as its own executable program.

program foo

implicit none

integer :: a, b, n

real :: x

n = 1, 10

do n = 1, 10

call add(a, n)

end program foo

The main program can declare
data, have executable code,
as well as invoke other units,
such as functions and
subroutines.

The main program is the
fundamental Fortran unit.
It is the only unit that can
be invoked as an executable
from the operating system.

function sum(a, b)

integer, intent(in) :: a, b

integer :: sum

sum = a + b

end function sum

subroutine add(a, b)

integer, intent(in out) :: a

integer, intent(in) :: b

a = a + b

print , ‘a = ‘, a∗

end subroutine add

Functions can take any number
of input arguments, but always
return only one result.

Like programs, functions
can also declare data and
have executable code.
Unlike programs, they
can only be invoked in
expressions; for example,
total = 2 * sum(3, 5).

Subroutines receive input
arguments, modify them
in-place, and return any
number of output arguments.
Subroutines can only be
invoked with a statement;call
for example, .call add(a, 3)

Use functions for side
effect-free calculations.

Use subroutines when you need
to modify input arguments in
place, or write data to screen
or external files.

The intent attribute determines
whether an input argument can
be modified in-place ()in out
or not (in).

end do

Figure 3.5 Overview of a function and a subroutine, and how they’re invoked from the main program

64 CHAPTER 3 Writing reusable code with functions and subroutines
 Function—A function is a kind of procedure. Like the main program, it can contain
declarative and executable code, but you can’t invoke it on its own, and you can
only call it from the main program or another procedure. A function always returns
only one variable as a result and can only be invoked in expressions. Functions are
thus best suited for minimal computational tasks that don’t cause side effects.

 Subroutine—A subroutine is another kind of procedure. In many respects, it’s
similar to a function, with two notable differences:
a You can’t use a subroutine in expressions, and you have to call it using a ded-

icated call statement.
b A subroutine can return any number of results in the argument list. Subrou-

tines are better suited for work that modifies program state or has other side
effects, such as input or output.

For short and simple applications, using only the main program does the job. Once
you start repeating code, it may be time to define it in a function and call it from the
main program. Functions are powerful because you can use them in expressions, and
they’re especially well suited for writing pure, side effect-free code. Subroutines are
appropriate when side effects are inevitable—for example, for I/O or when working
with shared, globally accessible data. Figure 3.6 illustrates how you can define and call
functions and subroutines in the main program.

program foo

implicit none

integer :: a, n

a = 0

do n = 1, 10

call add(a, n)

end do

total = 2 * sum(a, 5)

contains

function sum(a, b)

...

end function sum

subroutine add(a, b)

...

end subroutine add

end program foo

foo. f90

We invoke the
function inside
the expression to
calculate the total.

A main program can
“contain” function and
subroutine definitions.
They are automatically
available for use in the
main program. This works
well for smaller apps.

Here, we call the add
subroutine on each
iteration and modify
variable in-place.a

Compile it like this: gfortran foo.f90 -o foo

Figure 3.6 Defining and accessing an external function and subroutine in the main program

65Don’t repeat yourself, use procedures
Overall, these are general rules of thumb as best practice, and not hard rules. You’ll
discover the best way to use functions and subroutines yourself by applying them
in practice.

3.2 Don’t repeat yourself, use procedures
Like I mentioned earlier, procedures allow you to define snippets of code as their own
self-contained units of functionality. You can then use them and reuse them as much
as you need, by passing different values of input parameters and getting the results
back. They’re similar to the main program, in that they can include any declarative
and executable code. Unlike the main program, you have to call a procedure from a
parent program or another procedure. In other words, you can’t just compile a proce-
dure on its own and run it from the command line. Procedures give you the power to
define some piece of functionality once, then reuse it as many times as you need by
invoking that procedure.

 As a general rule of thumb, we’ll write any reusable code as functions and resort to
subroutines only when we must. This simple principle will help us write simpler pro-
grams that are easier to understand and debug.

TIP If you find yourself writing the same piece of code more than a few times,
consider making it a procedure.

3.2.1 Your first function

Let’s jump straight into it and write our first custom function. We’ll take our cold
front program from listing 3.2 and rewrite it to delegate the temperature calculation
to an external function. This will allow us to easily compute the solution for a series of
different input values. Specifically, we’ll iterate over several values of time interval dt,
ranging from 6 to 48 hours at 6-hourly increments, while holding the other input
parameters constant. This will tell us how the temperature in Miami drops over time
as the cold front moves through:

Temperature after 6.00000000 hours is 22.5000000 degrees.
Temperature after 12.0000000 hours is 21.0000000 degrees.
Temperature after 18.0000000 hours is 19.5000000 degrees.
Temperature after 24.0000000 hours is 18.0000000 degrees.
Temperature after 30.0000000 hours is 16.5000000 degrees.
Temperature after 36.0000000 hours is 15.0000000 degrees.
Temperature after 42.0000000 hours is 13.5000000 degrees.
Temperature after 48.0000000 hours is 12.0000000 degrees.

I’ll first go over the complete program, as shown in the following listing, and then go
more in-depth into the function definition syntax and its rules.

66 CHAPTER 3 Writing reusable code with functions and subroutines

Pr

arg
program cold_front

implicit none
integer :: n
real :: nhours

do n = 6, 48, 6
nhours = real(n)
print *, 'Temperature after ', &

nhours, ' hours is ', &
cold_front_temperature(12., 24., 20., 960., nhours), ' degrees.'

end do

contains

real function cold_front_temperature(&
temp1, temp2, c, dx, dt) result(res)
real, intent(in) :: temp1, temp2, c, dx, dt
res = temp2 - c * (temp2 - temp1) / dx * dt

end function cold_front_temperature

end program cold_front

In this program, we loop over several values of time interval in hours. Inside the loop,
we invoke the cold_front_temperature function, using four input arguments that
have fixed values, with the fifth input argument being the time interval that varies.
The function is invoked on the right side of the print statement, so the result is
broadcast directly to the screen. Finally, the function is defined in a special section at
the end of the program, marked by the contains statement. In summary, we have
three new language elements in this program: how the function is defined, where it’s
defined, and how it’s called from the main program. I’ll explain how each element
works, one at a time.

DEFINING A FUNCTION

For brevity, I’ll go over the function definition by using a simpler example, such as cal-
culating the sum of two integers, as shown in the following listing.

function sum(a, b)
integer, intent(in) :: a
integer, intent(in) :: b
integer :: sum

Listing 3.3 Calculating the cold front temperature using an external function

Listing 3.4 A function that returns a sum of two integers

Explicit declarations apply to the
whole program scope, including
the contained function.

Time interval that we pass to
the function as a real number

Loops from 6 to 48 hours
with a 6-hourly increment

Converts the integer counter
to a real number of hoursints the

function
result

Separates the program code
and the function definition

Specifies function type,
name, and arguments

Inputs
uments Computes the

function result
Closes the

function scope

Specifies the name of the
function and input arguments

Declares input arguments
and specifies intent

Declares the function result

67Don’t repeat yourself, use procedures
sum = a + b
end function sum

Let’s break this down. We open the function body with a function statement and
specify its name. This is analogous to defining a main program, except for one import-
ant difference. With a function, we also list all the arguments in parentheses, immedi-
ately following the function name. Like the program statement, the function statement
must have a matching end function statement.

 Next, we declare the arguments much like we did for the main program, except
that here we also have an additional attribute, intent(in). This attribute indicates to
the compiler—and to the programmer reading the code—what the intent of the argu-
ment is. Here, intent(in) means that the variables a and b are to be provided by the
calling program or procedure, and their values won’t change inside this function.

 Like when declaring variables in the main program, you can specify input argu-
ments of the same data type on the same line. Furthermore, you can specify the data
type of the function result immediately in front of the word function, as shown in
the following listing. Notice that we use both of these features in the cold front pro-
gram as well.

integer function sum(a, b)
integer, intent(in) :: a, b
sum = a + b

end function sum

It’s also possible, for convenience, to specify a different name for the function result,
other than the name of the function, using the result attribute, as the following list-
ing demonstrates.

integer function sum(a, b) result(res)
integer, intent(in) :: a, b
res = a + b

end function sum

The advantage to using the result attribute may not be obvious from this example
because the name of the function (sum) is already quite short, but it comes in handy
for longer function names. Note that Fortran comes with an intrinsic (built-in) func-
tion sum that returns the sum of all elements in an input array. Because of this, some
compilers may warn you if you compile this function, and that’s okay. I used the same
name for the example in this section only for convenience.

Listing 3.5 Specifying the data type of the function result in the function statement

Listing 3.6 Specifying the function result as different from the function name

Computes the
function result

 Closes the function scope

We specified the data type
of the function result here.

You can put multiple arguments of the
same type and intent on the same line.

Specifies a different name
for the function result

The function result is now res.

68 CHAPTER 3 Writing reusable code with functions and subroutines
 In listing 3.6, the function returns a single scalar as a result. In general, functions
can return a scalar, an array, or a more complex data structure, but it’s always a sin-
gle entity.

 You may be wondering why I omitted the implicit none statement in the declara-
tion section in listing 3.6. In this case, I did it for brevity, and it wouldn’t do much here
because we use only the input arguments and no other variables in the calculation of
the result. However, I omitted it in the cold_front_temperature function definition
(listing 3.3) as well because the function is defined in the scope of the main program,
and implicit none then propagates into all procedures defined therein.

 As functions always return a single result and can only be invoked from expres-
sions, they’re best suited for minimal bits of functionality. A function that does more
than one thing is harder to understand. What happens when you start chaining multi-
ple function calls in a single expression, as I’ll show you in the next subsection? Well,
you should be able to tell what a function does simply based on its name. You can see
that it’d be difficult to do so if the function was doing many things. When defining a
function, consider the result and the smallest set of inputs required to calculate it. If
your function does only that and no more, congratulations—you’re on a good track
toward clean and maintainable code.

TIP A function should do one and only one thing.

INVOKING THE FUNCTION

A Fortran function is invoked in the same way as in C, Python, or JavaScript. To call the
function sum defined in listing 3.6 and print the result to the screen, you’d simply say

print *, sum(3, 5)

You can also use a function in expressions or output statements, or pass the function
result as an argument to another function. All of the statements in the following list-
ing are valid.

six = 2 * sum(1, 2)
print *, '2 plus 4 equals', sum(2, 4)
six = sum(sum(1, 2), 3)

You can thus chain functions into more complex expressions, which you can use to
write concise and elegant code if used with moderation. In the cold front program in
listing 3.3, we invoked the cold_front_temperature function directly on the print
statement.

Listing 3.7 Examples of invoking an external function

Invokes a function in an
arithmetic expression Invokes a function as part

of an output statement

Passes a function result as an
argument to another function call

69Don’t repeat yourself, use procedures
SPECIFYING THE INTENT OF THE ARGUMENTS

If you look closely at the declaration statements for arguments a and b in listings 3.4 to
3.6, you’ll notice the intent attribute—something that we haven’t used in our pro-
grams so far. This attribute informs the compiler about the semantic purpose of the
arguments, and it can take three different values:

 intent(in)—The argument is an input argument. It will be provided to the
procedure by the calling program or procedure, and its value won’t change
inside the procedure.

 intent(out)—The argument is an output argument. Its value is assigned inside
the procedure and returned back to the calling program or procedure.

 intent(in out)—The argument is an input and output argument. It’s provided
to the procedure by the calling program or procedure, its value can be modi-
fied inside the procedure, and its value is returned to the calling program or
procedure.

Like implicit none, specifying the intent is optional but strongly recommended.
First, an intent specification clearly indicates to the programmer (especially if they’re
not the original author of the code) what the role of each argument is, which helps
with both understanding and debugging the code. Second, specifying intent can help
the compiler raise errors if the actual code is in violation of the intent specification.
For example, if you declare an argument as an intent(in) variable, the compiler
won’t let you use it on the left side of an assignment. Being explicit regarding the
intent of all arguments will help you write transparent and correct programs.

TIP Always specify intent for all arguments.

I mentioned earlier that functions are best suited for calculations that don’t cause side
effects, whereas subroutines are more appropriate when we need to modify variables
in-place. These are best practices, rather than hard rules: Fortran allows intent(in
out) and intent(out) arguments for functions as well as subroutines, which means
that functions could be used to modify variables in-place.

Actual and dummy arguments
The Fortran Standard uses specific terminology to differentiate between arguments
defined inside the procedure and those that are passed in the call. Actual arguments
are the ones that you pass when invoking the procedure. Dummy arguments are the
ones declared in the procedure definition. In the previous example of sum(3, 5),
the integer literals 3 and 5 are the actual arguments, and integers a and b in the func-
tion definition are dummy arguments. Being aware of this distinction and terminology
will prove to be useful later when we tease out more advanced procedure concepts,
as well as if you read Fortran Standard documents or other Fortran books.

70 CHAPTER 3 Writing reusable code with functions and subroutines

Pr
cod

Cal

diff
on t
bo
WHERE TO DEFINE A FUNCTION

Before modules were introduced by the Fortran 90 standard, it was common for func-
tions to be defined in their own file. State-of-the-art linear algebra libraries like BLAS
(Basic Linear Algebra Subprograms, https://www.openblas.net) or LAPACK (Linear
Algebra PACKage, http://www.netlib.org/lapack) are still organized in the one-procedure-
per-file model. For larger programs and libraries, it’s best practice to define functions
in a module and have one module per source file. For short and simple programs, you
can place the function definition within the scope of the main program. As we won’t go
into more details on modules until the next chapter, we’ll define all our procedures in
the main program for now.

 To define a function in the main program, place it near the end of the program,
immediately following the contains statement and before the end program statement.
The contains statement separates the main program code above it from the proce-
dure definitions beneath it, as the following listing demonstrates.

program cold_front
...

contains
...

end program cold_front

This rule will also apply to defining functions in a module, as you’ll learn in the next
chapter.

3.2.2 Expressing finite difference as a function in the tsunami simulator

You now understand how to define a function and how to call it from the main pro-
gram. Finally, we get to the fun part—applying our new knowledge about functions to
refactor our tsunami simulator. Let’s look back at the main time loop in our program,
as reprised in the following listing.

time_loop: do n = 1, num_time_steps

dh(1) = h(1) - h(grid_size)

do concurrent (i = 2:grid_size)
dh(i) = h(i) - h(i-1)

end do

do concurrent (i = 1:grid_size)
h(i) = h(i) - c * dh(i) / dx * dt

end do

end do time_loop

Listing 3.8 Defining a function inside the program scope

Listing 3.9 The time integration loop from the minimal working tsunami simulator

ogram
e goes

here

Marks the end of the program
executable code, and the beginning
of procedure definitions

Put any procedure
definitions here.

Iterates for
num_time_steps
time stepsculates

the
erence
he left

undary

Calculates the
difference in the
rest of the domain

Computes and stores
the value of h at the
next time step

https://www.openblas.net
http://www.netlib.org/lapack

71Don’t repeat yourself, use procedures
At the beginning of this chapter, I mentioned that we’ll use the finite difference calcu-
lation quite a bit as we move toward a more realistic wave simulator. A good first step,
then, may be to replace the following

dh(1) = h(1) - h(grid_size)

do concurrent (i = 2:grid_size)
dh(i) = h(i) - h(i-1)

end do

with a function call like this:

dh = diff(h)

In a nutshell, we’ll pack both the finite difference calculation (dh(i) = h(i) - h(i-1))
and the handling of the boundary condition (dh(1) = h(1) - h(grid_size)) into a
single function diff that we can reuse whenever needed. This will be quite useful
down the road as we add more physics terms to our solver. If coded correctly, the new
program will output exactly the same results as the original version. Our time_loop in
the main program should now look like the following listing.

time_loop: do n = 1, num_time_steps

dh = diff(h)

do concurrent (i = 1:grid_size)
h(i) = h(i) - c * dh(i) / dx * dt

end do

print *, n, h

end do time_loop

And the following listing shows the definition of the diff function.

function diff(x) result(dx)
real, intent(in) :: x(:)
real :: dx(size(x))
integer :: im
im = size(x)
dx(1) = x(1) - x(im)
dx(2:im) = x(2:im) - x(1:im-1)

end function diff

Listing 3.10 Delegating the finite differencing to a function

Listing 3.11 Finite difference calculation expressed as a function

Calculates the difference
in a function

Computes and stores
the new value of h

Write the values
to screen

Assumed-shape real array
as input argument

The result will be a real
array of the same size as x.

Calculates the
boundary value

Calculates the finite difference
for all other elements of x

72 CHAPTER 3 Writing reusable code with functions and subroutines
We’re now calculating the difference in space in the function and are down to only
one do loop inside the main time loop. Before we move on to subroutines, I’ll give you
a sneak peek into one of Fortran’s most powerful features—its array-oriented syntax.
While I only mentioned this briefly in chapter 1 when discussing the strengths and
weaknesses of Fortran, we haven’t had the opportunity yet to cast arithmetic opera-
tions on whole arrays. We’ll go into more depth with everything about arrays in chap-
ter 5, but for now, let’s rewrite the main time loop to greatly simplify it, as the
following listing demonstrates.

time_loop: do n = 1, num_time_steps
h = h - c * diff(h) / dx * dt
print *, n, h

end do time_loop

Now this is pretty sweet! We have a solver that not only fits in a single line of code, but
also appears almost exactly the same as our original math equation. The internal details
of the finite difference calculation are now hidden in the implementation of the func-
tion diff, and here we simply call it to calculate the difference when we need it. Substi-
tuting a whole loop with an array operation is possible because h and diff(h) are of the
same shape (one-dimensional) and size. Notice also that c, dx, and dt are all scalar vari-
ables, and they’re compatible with array operations. Stay tuned for more in chapter 5.

3.3 Modifying program state with subroutines
I mentioned earlier that Fortran has two kinds of procedures: functions and subrou-
tines. Many rules that we covered for functions apply to subroutines as well. They’re
both designed to be reused many times, and both may have input and output argu-
ments. Unlike functions, subroutines can’t be used in expressions and can only be
invoked in a dedicated call statement. They’re more suitable for operations with side
effects, such as modifying variables in-place and I/O. In this section, I’ll show you how
subroutines are different from functions and when you should use them instead.

3.3.1 Defining and calling a subroutine

Let’s see the difference between a subroutine and a function in an example. The fol-
lowing listing defines a subroutine add that’s equivalent to our function sum from the
previous subsection.

subroutine add(a, b, res)
integer, intent(in) :: a, b
integer, intent(out) :: res
res = a + b

end subroutine add

Listing 3.12 Solving the advection equation with a single expression

Listing 3.13 A subroutine that calculates the sum of two integers

Invokes diff(h) directly to
update the new value of h

Writes the values
to screen

Inputs arguments like before

Outputs argument that’s
returned to the caller

73Modifying program state with subroutines
Here, a and b are input arguments—notice the intent(in) attribute just like in the
sum function—and res is the output argument, with the intent(out) attribute. This
subroutine calculates the sum of integers a and b and stores the resulting value into
res. These arguments need to be matched in type by the arguments passed in the call-
ing program or procedure.

 You invoke a subroutine with a call statement:

call add(3, 5, res)

As you can see, it’s impossible to invoke a subroutine from an expression, like we did
with a function, because Fortran requires a dedicated call statement. Another oddity
is that the subroutine itself doesn’t have any value on return, but any result must be
returned as an argument with an intent(out) or intent(in out) attribute. This is
analogous to void-typed functions in C, or any Python function that doesn’t have a
return statement. This is why, as you’ll see in chapter 12, we’ll use subroutines and
not functions to interface void-typed C functions in a portable way.

 It’s also possible to declare arguments as intent(in out), which would make them
both input and output. For an everyday real-world analogy, consider a toaster:

 Your inputs are electric power, a slice of bread, and a setting, such as toasting
time and temperature, and you get a toasted slice of bread as a result.

 The electric power and the toaster setting are intent(in) arguments here—
they’re not modified or returned by the toaster.

 The slice of bread, however, is an intent(in out) argument.
 The bread goes in untoasted, and comes out toasted, warm, and crispy.
 The bread is thus modified in-place by the toaster.

Simulating a toaster is thus more appropriate with a subroutine than a function. Fig-
ure 3.7 illustrates this scenario. type(bread_type) here is an example of a derived
type, which we’ll explore in detail in chapter 8.

 Practice some intent(in out) arguments by modifying a global variable with a
subroutine in the “Exercise 1” sidebar.

Exercise 1: Modifying state with a subroutine
I discussed earlier the use of the intent attribute in the declaration specification of
arguments. You can use the intent(in out) attribute to modify a variable in-place.
Can you rewrite the subroutine add (listing 3.13) such that it adds b to a and returns
a so that its value is updated in the calling program? For example, the expected
behavior should be as shown in listing 3.14.

Calculates the sum of 3 and
5 and stores it into res

74 CHAPTER 3 Writing reusable code with functions and subroutines

program subroutine_example
implicit none
integer :: a
a = 0
call add(a, 1)
print *, a
call add(a, 2)
print *, a

contains
...

end program subroutine_example

You can find the solution to this exercise in the “Answer key” section near the end of
this chapter.

3.3.2 When do you use a subroutine over a function?

Whenever I write a new procedure, I use the rules of thumb shown in figure 3.8 to
decide whether to make it a function or a subroutine.

 This is a simple decision-making process that you can follow. If you know your pro-
cedure will cause side effects, such as I/O or modifying a variable declared outside of
the procedure, use a subroutine. Also, if you need your procedure to return more
than one variable as a result, you have no choice but to use a subroutine. However,
these are all special cases. The general rule from figure 3.8 boils down to always using
a function unless a subroutine is necessary.

Listing 3.14 Invoking a subroutine that modifies an input argument in-place

subroutine toast(bread, power, setting)
type(bread_type), intent() :: breadin out
logical, intent() :: powerin
integer, intent() :: settingin

...
end subroutine toast

Bread is modified
in-place, and is thus
both an input and
output argument.

Power and setting
are input arguments.

Figure 3.7 An illustration of a subroutine that takes an input/output argument

Should print 1
to the screen

Should print 3
to the screen

Define the subroutine
“add” here.

75Modifying program state with subroutines
TIP Always use a function, unless you have to
use a subroutine.

Technically, Fortran allows you to have intent(out)
and intent(in out) arguments in functions. This
kind of function would both return its normal
result and modify one or more of its arguments in
place. This inevitably creates side effects that are
difficult to debug, and it hinders the compiler
from optimizing the program. There’s even a fea-
ture of the language designed to prevent side
effects: pure procedures. In practice, pure proce-
dures allow you to write code that the compiler can
safely optimize, and that potentially can even be
executed out of order.

3.3.3 Initializing water height in the tsunami simulator

Recall the initialization part of our tsunami simulator from listing 2.13, which is repeated
in the following listing for your convenience, where we set the initial conditions.

integer, parameter :: icenter = 25
real, parameter :: decay = 0.02

do concurrent(i = 1:grid_size)
h(i) = exp(-decay * (i - icenter)**2)

end do

The second part of our refactor involves defining the initialization in an external pro-
cedure so that the initial state can be set and changed more easily, by just doing

call set_gaussian(h, icenter, decay)

Now isn’t this much nicer? The algorithm is abstracted away, and if we want to change
the initial parameters, we just change the values that we pass as input arguments. This
subroutine will need to modify h in-place, so we’ll declare it as an intent(in out)
argument, as in the “Exercise 1” sidebar. The following listing provides the complete
subroutine.

subroutine set_gaussian(x, icenter, decay)
real, intent(in out) :: x(:)

Listing 3.15 Initializing the tsunami simulator

Listing 3.16 A subroutine to initialize an array with a Gaussian shape

Do I need

side effects?

When do you use a subroutine

over a function?

No

Do I need more

than one result?

No

Use a function.

Yes

Use a subroutine.

Yes

Figure 3.8 Deciding when to use a
subroutine over a function

The index at which the water
perturbation will be centered The parameter that

governs the width of
the perturbation

Sets the array
values in a loop

One-dimensional array as
input (and output) argument

76 CHAPTER 3 Writing reusable code with functions and subroutines
integer, intent(in) :: icenter
real, intent(in) :: decay
integer :: i
do concurrent(i = 1:size(x))

x(i) = exp(-decay * (i - icenter)**2)
end do

end subroutine set_gaussian

Like the diff function we implemented earlier, we’ll place this subroutine after the
contains statement in the main program.

3.4 Writing pure procedures to avoid side effects
Fortran lets you define a function or a subroutine in a way that prevents side effects.
What exactly do I mean here by side effects? For a concrete example, consider the traf-
fic grid in a major city. Roadwork on a busy road during rush hour will soon slow down
the incoming traffic, causing a traffic jam miles away. This is a side effect of the road-
work; on its own, it’s a local effect, but because it impacts the incoming traffic, it causes
a ripple effect in a remote part of the system. As a result, we get the repair and the
hour-long traffic jam. In contrast, if the roadwork were to be scheduled in the middle
of the night when there’s no or little traffic, its effects would be isolated from the rest
of the system. In that case, we’d only get the repair as intended, without any adverse
side effects.

 A pure procedure allows you to write code that won’t affect the state of the pro-
gram outside of the procedure, aside from the result that it returns. If the code some-
how violates this restriction, the compiler will report an error. Pure procedures are
among my favorite features of Fortran—C doesn’t have them, and neither does Python
or JavaScript. Pure procedures are a pillar of functional programming, and if you
make liberal use of them, you will develop code that’s easier for the compiler to opti-
mize, and easier for you to understand and debug. Let’s see exactly what pure proce-
dures are and how to use them.

3.4.1 What is a pure procedure?

A Fortran procedure is pure when it doesn’t cause any observable side effects, such as
I/O or modifying the value of a variable declared outside of the procedure. To define
a procedure as pure, simply add the pure attribute to its function or subroutine
statement, as shown in the following listing.

pure integer function sum(a, b)
integer, intent(in) :: a, b
sum = a + b

end function sum

You can call a pure function in the same way as any other function, and ditto for
subroutines.

Listing 3.17 Defining a pure, side effect-free function

Input parameters for the
perturbation position and shape

Loops over array elements
and sets their values

The pure attribute
asserts that the function
is free of side effects.

77Writing procedures that operate on both scalars and arrays
3.4.2 Some restrictions on pure procedures

A pure procedure, while advantageous from both program design and compiler opti-
mization perspectives, does come with a number of restrictions:

 If it’s a function, it can’t alter its input arguments. This implies that all dummy
arguments must be declared with the intent(in) attribute.

 It can read global variables (for the main program or module), but it can’t
alter them.

 It can invoke only pure procedures.
 It can’t contain the stop statement—this would stop the execution of the whole

program, and is thus a side effect.

There are several more restrictions on pure procedures that are more situational and
that you’re less likely to encounter. We’ll revisit this topic later in the book as we encoun-
ter these edge cases.

3.4.3 Why are pure functions important?

Including a pure attribute in your function and subroutine statements forces you to
write side effect-free code. This has two principal benefits:

 Side effect-free code is easier to debug. It comes with a guarantee that the code
isn’t changing the state of the program anywhere outside of the procedure, and
any effects are localized.

 It allows the compiler to execute the procedure in the most efficient way. A
good compiler on a multicore system can even execute a pure procedure in
parallel, if that would be more efficient.

TIP Write pure procedures whenever possible.

As I’ll show you later in the book, using the pure attribute can get you a long way
toward functional programming with Fortran.

3.5 Writing procedures that operate on both scalars
and arrays
When a procedure is defined to operate on scalar arguments, it’s relatively straightfor-
ward to make it work with array arguments as well. For example, recall our pure func-
tion sum from the previous subsection:

pure integer function sum(a, b)
integer, intent(in) :: a, b
sum = a + b

end function sum

Invoking this function as, say, sum(3, 5) will evaluate to 8. Is there a way to pass array
arguments to this function such that it returns an array as a result? For example, if we

78 CHAPTER 3 Writing reusable code with functions and subroutines
called sum([1, 2, 3], [2, 3, 4]), we’d get [3, 5, 7] as a result. One approach would
be to declare another function that receives arrays as arguments, and we’d invoke that
function instead. Fortran offers a much more elegant approach to this. You can
declare the procedure as elemental, which automatically allows the scalar dummy
arguments to be treated as arrays, if the arguments passed in are arrays. The result of
the procedure then takes the same shape as the input arrays.

 Consider the following definition:

pure elemental integer function sum(a, b)
integer, intent(in) :: a, b
sum = a + b

end function sum

With the function defined in this way, you can pass an array as an argument to either a
or b, or both. If more than one argument passed is an array, then all the array argu-
ments have to be of the same shape.

 Specifically, you can call the function like this:

print *, sum(3, 5)
print *, sum([1, 2], 3)
print *, sum(1, [2, 3, 4])
print *, sum([1, 2, 3], [2, 3, 4])
print *, sum([1, 2], [2, 3, 4])

These elemental snippets demonstrate different ways you can invoke an elemental
function. If you try to compile the program with the last line in there (sum([1, 2],
[2, 3, 4])), the compiler will raise an error. For example, gfortran reports

sum_function_elemental.f90:9:23:

print *, sum([1, 2], [2, 3, 4])
1

Error: Different shape for elemental procedure at (1) on dimension 1 (3 and 2)

This is an important restriction of elemental procedures to keep in mind. If you pass
multiple arrays as arguments to an elemental procedure, they all have to be of con-
forming shape.

 The cold front function that we worked on earlier in this chapter is the perfect
candidate for an elemental function. Try doing the exercise in the sidebar to redefine
that function with the elemental attribute, and call it by passing arrays to it.

The elemental attribute allows
receiving array arguments in
place of scalars.

Both arguments are
scalars; evaluates to 8.

Only the first argument is an
array; evaluates to [4, 5].

Only the second argument is an
array; evaluates to [3, 4, 5].

Both arguments are arrays;
evaluates to [3, 5, 7].

Arrays are not of the same
shape—this is illegal!

79Procedures with optional arguments
When you use the elemental attribute to define a procedure, it’s automatically
defined as pure, even if pure is not explicitly specified. It is, however, good practice to
specify both attributes for clarity.

3.6 Procedures with optional arguments
Both functions and subroutines can accept optional arguments. These are arguments
that may be omitted by the caller, even if they’re specified in the procedure definition.
To see optional arguments in action, let’s take our subroutine add from listing 3.13
and add an optional debug input parameter, as shown in listing 3.18. If this parameter

Exercise 2: Writing an elemental function that operates on both scalars and
arrays
In subsection 3.2.1 we wrote a function that calculates the cold front temperature
given five real scalar arguments as input (see listing 3.3). In the main program of that
same listing, we used a do loop to iterate over different values of time increment to
invoke the cold front temperature function at different times.

Can you use the elemental feature to redefine that function, and call it from the main
program with an array of times (instead of a do loop)? For example, you could invoke
the function like this:

real :: dt(8)

dt = [6, 12, 18, 24, 30, 36, 42, 48]
cold_front_temperature(12., 24., 20., 960., dt)

As a result, the function should return an array of the same length as dt:

22.5000000 21.0000000 19.5000000 18.0000000
16.5000000 15.0000000 13.5000000 12.0000000

You can find the solution to this exercise in the “Answer key” section near the end
of this chapter.

Impure elemental?
I mentioned that an elemental procedure is automatically promoted to a pure proce-
dure, even if the pure attribute is omitted from the procedure definition. Is the pure
attribute really necessary for elemental properties? Since the Fortran 2008 standard,
you can define the procedure as impure elemental. This feature is specifically
designed to allow elemental behavior for nonpure procedures. In practice, you’d
want to use impure elemental whenever you have a function that operates on both
scalars and arrays but needs functionality that’s not permitted in pure procedures.
These include I/O to and from screen or external files, calling C functions, or exchang-
ing data with other parallel processors.

80 CHAPTER 3 Writing reusable code with functions and subroutines
is passed by the caller as the logical .true. value, we’ll print some debug statements
to the screen, which can be helpful in diagnosing unexpected behavior in more com-
plex programs.

subroutine add(a, b, res, debug)

integer, intent(in) :: a, b
integer, intent(out) :: res
logical, intent(in), optional :: debug

if (present(debug)) then
if (debug) then

print *, 'DEBUG: subroutine add, a = ', a
print *, 'DEBUG: subroutine add, b = ', b

end if
end if

res = a + b

if (present(debug)) then
if (debug) print *, &

'DEBUG: subroutine add, res = ', res
end if

end subroutine add

The new argument to this subroutine, debug, is now declared with the optional attri-
bute. Inside, we need to check whether the argument is passed or not. We do so by
using an if block and present, a built-in function. This function returns .true. if its
argument is present (passed in by the caller), and .false. otherwise. If not present,
an optional argument must not be referenced inside the procedure in any way other
than as an argument to present, or as an optional argument to another procedure.
Because of this restriction, you now understand why I needed to make separate if
tests for the presence of debug and for its value.

 We can now invoke this subroutine in any of the following ways:

call add(3, 5, res)
call add(3, 5, res, .true.)
call add(3, 5, res, debug=.true.)

If invoked with the debug argument set to .true., the subroutine will emit the follow-
ing to the screen:

DEBUG: subroutine add, a = 3
DEBUG: subroutine add, b = 5
DEBUG: subroutine add, res = 8

Although this kind of diagnostic printing may seem like overkill in this simple case, it
can be a lifesaver when your programs become more complex.

Listing 3.18 Example of a subroutine using an optional input argument

Marks the argument
as optional using the
“optional” attribute

If debug is both
present and .true.,
prints helpful
diagnostics to
the screen

81Tsunami simulator: Putting it all together
3.7 Tsunami simulator: Putting it all together
Finally, we get to put together the new function (from subsection 3.2.2) and subrou-
tine (from subsection 3.3.3) in the main program of the tsunami simulator. In a nut-
shell, this program has the same functionality and behavior as the previous version
from chapter 2. The key difference is that now we’ve abstracted away the code to set
the initial conditions and to calculate the finite difference of an array, as you can see
in the following listing.

program tsunami

implicit none

integer :: n

integer, parameter :: grid_size = 100
integer, parameter :: num_time_steps = 100
real, parameter :: dt = 1, dx = 1, c = 1

real :: h(grid_size)

integer, parameter :: icenter = 25
real, parameter :: decay = 0.02

if (grid_size <= 0) stop 'grid_size must be > 0'
if (dt <= 0) stop 'time step dt must be > 0'
if (dx <= 0) stop 'grid spacing dx must be > 0'
if (c <= 0) stop 'background flow speed c must be > 0'

call set_gaussian(h, icenter, decay)

print *, 0, h
time_loop: do n = 1, num_time_steps

h = h - c * diff(h) / dx * dt
print *, n, h

end do time_loop

contains

pure function diff(x) result(dx)
real, intent(in) :: x(:)
real :: dx(size(x))
integer :: im
im = size(x)
dx(1) = x(1) - x(im)
dx(2:im) = x(2:im) - x(1:im-1)

end function diff

pure subroutine set_gaussian(x, icenter, decay)
real, intent(in out) :: x(:)
integer, intent(in) :: icenter
real, intent(in) :: decay

Listing 3.19 The updated complete code of the tsunami simulator

Checks input
values and
aborts if invalid

Calls the subroutine to
initialize water height

Computes the finite
difference of water height
on the fly by calling the
diff function

Function to compute
the finite difference
of an input array

Subroutine to initialize
the input array to a
Gaussian shape

82 CHAPTER 3 Writing reusable code with functions and subroutines

Di
for
integer :: i
do concurrent(i = 1:size(x))

x(i) = exp(-decay * (i - icenter)**2)
end do

end subroutine set_gaussian

end program tsunami

At this point, our simulator produces exactly the same results as its previous version
from chapter 2, and this is intended! The goal of this chapter was to refactor our code
from a purely imperative to a more procedural style. If you check out the code from
GitHub, you can test the correctness of the output by comparing the output from the
two versions. The following listing shows what you should use to compare that output.

git clone https://github.com/modern-fortran/tsunami
cd tsunami
make
src/ch02/tsunami > tsunami_v2.txt
src/ch03/tsunami > tsunami_v3.txt
diff tsunami_v2.txt tsunami_v3.txt

This listing shows all the steps to get the code, compile it, run the chapter 2 and 3 ver-
sions of the tsunami simulator, and store the outputs of each version in their own file.
It then compares the files to make sure they’re exactly the same.

3.8 Answer key
This section contains solutions to exercises in this chapter. Skip ahead if you haven’t
worked through the exercises yet.

3.8.1 Exercise 1: Modifying state with a subroutine

To modify an input argument in-place, define it with the intent(in out) attribute, as
shown in the following listing.

subroutine add(a, b)
integer, intent(in out) :: a
integer, intent(in) :: b
a = a + b

end subroutine add

Listing 3.20 Comparing tsunami simulator results

Listing 3.21 A subroutine that modifies an input argument in-place

Gets the code from GitHub—do
this only if you haven’t before.

This builds the programs
for each chapter; we’ll
use only v2 and v3 here.

Runs the v2 of the program and
pipes the output into a file

tto
 v3

Finds differences between the two
outputs—there should be no output here.

Uses intent(in out) to indicate that
a is both an input and an output

We can modify a directly; it will be returned
to the calling program or procedure.

83New Fortran elements, at a glance
You can think of the intent attribute as a filter. intent(in) says that the arguments
with this attribute can only come in, but not leave. Likewise, intent(out) allows the
argument to be emitted to the calling program or procedure, but it can’t be used as
an input to this procedure. intent(in out) removes these restrictions and allows an
argument to be passed as an input, modified within the procedure, and then emitted
back to the calling program or procedure.

3.8.2 Exercise 2: Writing an elemental function that operates on
both scalars and arrays

The solution is to add the pure elemental attributes to our previous version of the
cold front program, as shown in the following listing.

real pure elemental function cold_front_temperature(&
temp1, temp2, c, dx, dt) result(r)
real, intent(in) :: temp1, temp2, c, dx, dt
r = temp2 - c * (temp2 - temp1) / dx * dt

end function cold_front_temperature

You can now invoke this function with one or more input arguments being arrays of
any number of dimensions; for example

print *, cold_front_temperature(12., 24., [15., 20., 25.], 960., 24.)

Keep in mind that if more than one of the input arguments are arrays, they have to be
of the same shape and size. The pure attribute isn’t required because elemental
implies pure by default; however, I included it for clarity. Either of these attributes
must appear after the type attribute (real) and before the function or subroutine
statement.

3.9 New Fortran elements, at a glance
 function, end function for defining a function.
 subroutine, end subroutine for defining a subroutine.
 contains statement, used to define procedures within the body of a program.
 call statement for invoking a subroutine.
 intent attribute to specify the intention of each procedure argument. (Possible

values are intent(in) for an input argument, intent(out) for an output argu-
ment, and intent(in out) for an input-output argument.)

 pure attribute can be used to prohibit side effects in procedures.
 elemental attribute allows procedures to operate on both scalars and arrays of

any rank and size. (By default, elemental procedures are also pure.) impure
elemental can be used when you need an elemental procedure that can’t be
defined as pure.

Listing 3.22 Cold front temperature function that works with scalars and arrays

The elemental attribute makes
the function compatible with
both scalars and arrays.

84 CHAPTER 3 Writing reusable code with functions and subroutines
 optional attribute allows you to declare a procedure argument as optional
(keyword).

 Built-in functions:
– real—Converts a numerical value to a real value. (This function is distinct

from the real data type used in declarations.)
– size—Returns the integer size of an array.
– present—Checks for the presence of an optional argument inside the

procedure.

3.10 Further reading
functional-fortran: http://mng.bz/nP18

Summary
 Procedures allow you to organize code into self-contained units of functionality,

which you can then reuse whenever needed.
 Fortran has two kinds of procedures: functions and subroutines.
 Functions are invoked from expressions and return only one value as a result.

They’re thus best suited for minimal bits of calculation that don’t cause any
side effects.

 Subroutines are invoked using a call statement; they can’t be invoked in
expressions but can return any number of arguments as a result. In contrast to
functions, subroutines are appropriate whenever you need to return more than
one variable as a result, or for operations that cause side effects, such as modify-
ing variables in-place and I/O.

 You can define functions or subroutines as pure to prevent side effects. In gen-
eral, this will allow you to write code that’s easier to understand and debug, as
well as easier for the compiler to optimize.

 You can also define functions or subroutines as elemental, which allows them
to operate on both scalars and arrays of any rank and size.

 Functions and subroutines are your first layer of abstraction—design them care-
fully and use them only if they make your program easier to read and understand.

http://mng.bz/nP18

Organizing your Fortran
code using modules
So far, we’ve covered the essential building blocks of Fortran: built-in types and dec-
laration, arithmetic, control flow, and procedures. In theory, this is all you need to
write correct and powerful Fortran programs. In practice, however, as your app or
library grows in size, organization of your source code becomes ever more import-
ant. This is where modules come to the rescue.

 Modules allow you to organize variable and procedure definitions in a meaning-
ful way, and make them accessible for use in programs, procedures, or other mod-
ules. Modern Fortran libraries are typically organized in one or more modules.
Large applications define most functionality in modules, with only the top-level
code being defined in the main program. In this chapter, we’ll write a few modules
to define variables and functions. We’ll then access the modules from the main pro-
gram of our tsunami simulator.

This chapter covers
 Accessing variables and procedures in modules

 Writing your own custom module

 Refactoring the tsunami simulator with modules
85

86 CHAPTER 4 Organizing your Fortran code using modules
 Fortran comes with a few built-in modules, so you’ll first learn how to access them
in your programs. Then, you’ll write your first custom module, place it in its own
source file, and compile it. As we refactor our tsunami simulator to use modules, we’ll
use that opportunity to expand it with more physics terms. Specifically, we’ll allow the
simulated water to respond to gravity, and we’ll make sure that the volume of water is
conserved. Considering these factors will allow for more realistic fluid-flow simula-
tions. In the process, you’ll learn how to control what variables and procedures get
imported from modules, as well as how to avoid potential name conflicts. At the end
of the chapter, you’ll come out with the practical knowledge you need to organize
your app or library in modules.

4.1 Accessing a module
Before we venture into writing our own custom modules, let’s first get familiar by
accessing a built-in module that comes with Fortran out of the box. Fortran has a few
built-in modules. The most commonly used one is iso_fortran_env, which, among
other things, provides constants and procedures that allow you to write more portable
programs. Another commonly used module is iso_c_binding, which allows you to
interface functions and data in C and other languages. We’ll dig into that further in
chapter 12.

 In this section, you’ll learn how to import from Fortran modules by tackling two
tasks: getting the compiler version and options, and accessing type kind parameters
for declaring variables in a portable way. Why would you care about these things in
practice? They’ll both become important if you ever develop your code in multiple
environments (computers, operating systems, or compiler vendors), if you need your
code to produce exactly the same results no matter where you run it, or if you distrib-
ute your compiled code to your colleagues or customers. Once you understand how to
work with a built-in module, you’ll be ready to learn how to write your own.

4.1.1 Getting compiler version and options

Once you have a compiled program executable, it’s not obvious how it was compiled.
Specifically, what compiler was used, and were any compiler options used—for exam-
ple, for debugging or optimization? Fortran’s iso_fortran_env module provides two
functions that allow you to get this information at runtime: compiler_version and
compiler_options. You get the idea what each of these functions does. Let’s write a
program that imports these functions from the iso_fortran_env module, then call
them to print this information to the screen. Figure 4.1 illustrates how accessing a
module from a main program works, with the new syntax marked in bold.

 Once you’ve accessed the module via the use statement, you can use directly in
the program any variables or procedures that the module makes available. You also
can do this from a function, a subroutine, or another module. (We’ll get to this in a
bit.) Listing 4.1 provides the complete program that imports two functions from the
iso_fortran_env module and calls them on two print statements.

87Accessing a module
program print_compiler_info
use iso_fortran_env
implicit none
print *, 'Compiler version: ', compiler_version()
print *, 'Compiler options: ', compiler_options()

end program print_compiler_info

On the second line of this program, we access the built-in iso_fortran_env module
with the use statement. This module is available in Fortran out of the box. The use
statement means that we want to access entities—variables and/or procedures—from
the module. This statement imports every entity that’s defined in the module, includ-
ing the two functions that we’re looking for.

 You must place the use statement after the program statement (or the function or
subroutine statement) and before the implicit none statement, or any other declara-
tive statements. The implicit none statement isn’t necessary here because we didn’t
declare any variables; however, it’s a good habit to always include it.

 Let’s compile and run this program and see the results:

gfortran print_compiler_info.f90 -o print_compiler_info
./print_compiler_info

Compiler version: GCC version 8.3.1 20190223
(Red Hat 8.3.1-2)

Compiler options: -mtune=generic -march=x86-64

The first line of output tells us the compiler name (GCC), its version (8.3.1), the build
date (the date when the compiler was built, 20190223), and the operating system that
the compiler was built on (Red Hat). The second line of output gives us the compiler
options used at the time we built the program. In this case, we didn’t use any options
explicitly, and the compiler automatically inserted options that are specific to the

Listing 4.1 Printing the compiler version and options at runtime

program print_compiler_info

use iso_fortran_env

...

end program print_compiler_info

Main program

Built-in module

Imports everything from
the built-in module into
the main program.

Variables and functions
from the module are now
available for use in the
main program.

iso_fortran_env

Figure 4.1 Importing variables and procedures from a module into a main program

Imports everything from the
iso_fortran_env module

Prints the compiler
version to the screen

Prints the compiler
options to the screen

Compiles the
program

Runs the program

Program
output

88 CHAPTER 4 Organizing your Fortran code using modules

Run
pro
computer (-mtune=generic and -march=x86-64). Watch what happens if we compile
with options that aid debugging:

gfortran -fcheck=all -g -O0 -fbacktrace \
print_compiler_info.f90 -o print_compiler_info

./print_compiler_info
Compiler version: GCC version 8.3.1 20190223

(Red Hat 8.3.1-2)
Compiler options: -mtune=generic -march=x86-64

-g -O0 -fcheck=all -fbacktrace

Here, I added the -fcheck=all -g -O0 -fbacktrace option to compile the program:

 -fcheck=all enables all runtime checks, such as exceeding array bounds.
 -g compiles the program with additional instructions that allow it to be run by a

debugger.
 -O0 disables any optimizations by setting the optimization level to zero.
 -fbacktrace will cause the program to print a useful traceback in case of a run-

time failure, telling you where in the program the error occurred.

These options are specific to gfortran and vary between compiler vendors. The key
point is that printing the result of compiler_version and compiler_options func-
tions allows you to get this information at runtime, without having to keep track of
this information otherwise. If you rewrite this program as a subroutine, you can easily
invoke it at the beginning of your programs so you’ll always know exactly how your
program was compiled.

 You may be wondering, Why would I care about the compiler information at run-
time? First, if you’re evaluating multiple compiler vendors for production perfor-
mance, it’s helpful to not have to keep track of this information by some other means.
Second, you’ll likely use different compiler options between development and pro-
duction. Specifically, you’ll likely keep optimization off and have extra diagnostic
options enabled in development, whereas in production you’ll want full optimization
and minimal diagnostics to maximize performance. Allowing your program to carry
this information thus helps you to more easily manage your software stack, in develop-
ment and production.

 In this section, we accessed the iso_fortran_env module, which made the built-in
functions compiler_version and compiler_options available for use. However, with
the general use statement, we don’t know what else may have been imported from
that module. In the following subsection, you’ll learn how to import only those vari-
ables or procedures that you need, and nothing else.

Compiles the
programs the

gram

Program
output

89Accessing a module
4.1.2 Using portable data types

In chapter 2, I mentioned that variables of built-in types can be explicitly and portably
declared using specific type kinds. Type kind parameters determine the space that
numeric variables occupy in memory, which in turn limits the range for integers, and
the range and precision for real and complex numbers. Most Fortran compilers by
default declare 4-byte-long integers and reals, equivalent to int and float in C,
respectively. However, the standard doesn’t guarantee that the size will be the same
between different systems and compilers. This is where the iso_fortran_env module
comes in. It provides, among other things, a set of parameters you can use to specify
the size of numeric data types (table 4.1).

These type kinds are defined in the standard and are guaranteed to have a specified
size in memory. Most commonly used Fortran compilers, such as GNU and Intel, fully
support these type kinds. If your compiler doesn’t implement a standard-defined type
kind, it will raise a compile-time error. The standard guarantees portability of data
types in terms of the memory that they occupy (32 bits, 64 bits, and so on) but not in
terms of their range (minimum and maximum values) and precision (how many sig-
nificant digits can be represented). Unlike C, Fortran doesn’t have unsigned integer
types. More on Fortran interoperability with C in chapter 11.

Built-in Fortran modules
Fortran provides five built-in modules: iso_fortran_env, iso_c_binding, ieee_
arithmetic, ieee_exceptions, and ieee_features. iso_fortran_env provides
useful procedures and parameters that we’ll explore in this chapter, as well as a few
others we’ll explore in chapter 11. iso_c_binding provides facilities to interface C
functions and data structures. We’ll explore that in detail in chapter 12. The latter
three modules provide facilities specific to floating-point arithmetic and aren’t gener-
ally as useful as the first two.

Table 4.1 A summary of Fortran’s built-in numeric type kinds in iso_fortran_env

Type kind Type Size (bytes) C-equivalent

int8 integer 1 None

int16 integer 2 short

int32 integer 4 int

int64 integer 8 long

real32 real, complex 4 float

real64 real, complex 8 double

real128 real, complex 16 long double

90 CHAPTER 4 Organizing your Fortran code using modules
 To declare a variable with a specific type kind parameter, provide it as a kind
argument:

use iso_fortran_env

integer(kind=int32) :: n
real(kind=real32) :: dt

In the first line, we access the iso_fortran_env module, like we did in the previous
example of printing the compiler version and options. Then, we use the built-in
parameters int32 and real32 to declare portable integer and real variables. In doing
so, we ensure that both n and dt have a size of 4 bytes, across platforms and compiler
vendors. The kind keyword is optional, so you can declare these more concisely as

integer(int32) :: n
real(real32) :: dt

In this shorter syntax, you specify the type kind in parentheses. From here on, I’ll omit
the kind keyword in declarations for brevity. I’ll also use integer and integer(int32)
interchangeably, because on all compilers and platforms I’m aware of, they’re one
and the same in practice. Thus, if you prefer less verbose code and don’t need to use
long integers like int64, it’s okay to declare them with just integer.

TIP Always use the portable type kind parameters provided by iso_fortran
_env to declare your variables, at least for your real and complex variables.

I mentioned in the previous section that when you use iso_fortran_env, you import
all the variables and procedures from that module, not just those that you intend to
use in your program. There are two issues with this. First, if your program (or proce-
dure) declares a variable with the same name as some entity that’s declared in the
module, you may end up with a name conflict. I’ll describe in a bit how this occurs
and how to prevent it, but for now, let’s just assume that you don’t want it to happen.
Second, if your program (or procedure) references many different procedures and
variables that were imported from a module, it’s difficult to see where the procedures
and variables are defined just by looking at the code. This makes a program more dif-
ficult to understand and debug. However, if you import only specific variables and/or
procedures from a module, it’ll be much easier to avoid name conflicts with your own
variables, and the code will be more readable.

 Back to our example of portable type kind parameters; let’s import only the ones
that we want to use: int32 and real32. We’ll do so with the special variant of the
use statement:

use iso_fortran_env, only: int32, real32

Accesses only the specified
constants from a built-in module

Declares n as a 4-byte
(32-bit) integer

Declares dt as a 4-
byte (32-bit) real

Imports only these
entities from the module

91Creating your first module
In this example, we imported two integer constants, int32 and real32, from the built-in
module iso_fortran_env. We used the keyword use to access the module, and the key-
word only to explicitly list only the items that we needed. This is analogous to Python’s
from numpy import ndarray.

TIP Always use the use …, only: … syntax to import specific entities from a
module. This will help you avoid name conflicts and will make your code eas-
ier to read and understand.

Now you know how to import variables from modules, and also how type kind param-
eters work. Can you help improve the variable declarations in the tsunami simulator
by using the portable type kind parameters?

4.2 Creating your first module
You’re now ready to tackle the next big item—writing your own custom module. Let’s
do so by implementing it directly in the tsunami simulator. Recall that in the previous
chapter we created two procedures:

 A function, diff, that computes the finite difference of an input array. The
result of this function tells us at what rate the values in an array change from
one element to the next.

 A subroutine, set_gaussian, that initializes an input array to a Gaussian shape.

We defined both of these procedures in the main program. This worked well because
our simulator was still rather simple. However, now we have the perfect opportunity to
define some modules and define these procedures there. We’ll do that in this section
by defining the diff finite difference function in its own module and source file.

 How will this shift concretely affect our tsunami simulator? It’ll allow us to break
up and organize the code in a few small building blocks that we’ll then reuse in dif-
ferent places. Figure 4.2, which you first saw in chapter 3, illustrates the new code
organization.

 We’ll access the finite difference function, diff, in the main program by import-
ing it from the mod_diff module with the use statement. This reorganization of the
code won’t semantically change the program. And if we implement our new module
correctly, the output will be exactly the same as before. However, splitting the code

Exercise 1: Using portable type kinds in the tsunami simulator
You now know how to access iso_fortran_env for portable type kinds, as well as
how to use them to declare your variables with portable types. Can you take our latest
version of the tsunami simulator (listing 3.19), and make all declarations use porta-
ble type kinds?

You can find the solution to this exercise in the “Answer key” section near the end
of this chapter.

92 CHAPTER 4 Organizing your Fortran code using modules
into the main program and modules will allow us to more easily expand the simulator
and make it more realistic.

4.2.1 The structure of a custom module

Before we begin, let’s see what a custom module may look like on the inside, and how
its building blocks work (figure 4.3).

Every Fortran module is defined with a pair of module/end module statements. Mod-
ules can’t have any executable code on their own. Instead, they’re used to declare data
and define functions and subroutines. Like in the main program, the variable declara-
tion and procedure definition sections are separated with a contains statement. Mod-
ules can also import variables and procedures from other modules. Finally, you can

program tsunami

use mod_diff

Declare data

Initialize height

do n = 1, nm

Solve for height

Write output to screen

end do

end program tsunami

Main program

module mod_diff

Declare data

contains

function diff(u)

...

end function diff

end module mod_diff

Module and functions

Tsunami app

Figure 4.2 Using a module
and a function to reuse and
simplify code

module mod_math

use iso_fortran_env

implicit none

real, private :: x, y

contains

function sum(a, b)

...

end function sum

subroutine add(a, b)

...

end subroutine add

end module mod_math

Modules can’t be invoked
on their own like programs,
or called like functions and
subroutines. Instead, modules
provide access to data and
procedures.

You can access a module
from any program, function,
or subroutine with the use
statement; for example,
use mod_math.

You can import variables
and/or procedures from
other modules.

Modules contain data
declarations and function
and subroutine definitions,
but no executable code.

Figure 4.3 Structure of a custom Fortran module

93Creating your first module
make any entities defined in a module be public or private, which determines whether
they can be imported elsewhere or are meant to be hidden and for internal use only.

 That’s it in a nutshell! In the rest of this section, we’ll work step-by-step toward
building our first custom Fortran module.

4.2.2 Defining a module

Here, we’ll focus on writing a brand new module, and defining the finite difference func-
tion in it. When we’re done, we’ll be able to import this function from the module and
use it in the main program. Start by opening a brand-new source file, mod_diff.f90.
Once you’re in the file, you can define the module scope with module and end module
statements:

module mod_diff
end module mod_diff

Nothing exciting here so far—we defined a module and gave it a name. Like program,
function, and subroutine statements, a module statement must be matched with a
corresponding end module statement. Anything that we define between the module
and end module statements will belong to the module.

 I mentioned earlier that we’ll define our new module in its own Fortran source
file. How to name your source files is a matter of style. I like to name my module files
starting with mod_. This tells me that the file defines a module, and the following word
or words in the file name tell me what the module is about. For the finite difference
functions, I’ll just use mod_diff.f90, as I said before, and for the set_gaussian, I’ll use
mod_initial.f90 because a Gaussian shape is a kind of initial condition. Although
multiple modules in a single file are allowed, I recommend keeping one module per
source file.

TIP Define one module per source file.

Our mod_diff module isn’t useful at all yet because we didn’t define any variables or
procedures in it. Let’s do that now. Recall from the previous chapter how we used the
contains statement to define our new procedures in the body of the main program,
as shown in the following listing.

program tsunami
...

contains
...

end program tsunami

Listing 4.2 Procedure definitions follow the contains statement

Begins the module definition
and specifies its name

Ends the module definition

Opens the program scope Variable declarations and
executable code go here.

Separates the executable code
from the procedure definitions

Defines external
procedures here

Closes the program scope

94 CHAPTER 4 Organizing your Fortran code using modules
Defining them in the main program is a reasonable solution while our tsunami simu-
lator is still rather simple. However, the code will soon become hard to manage as we
define more and more procedures. This is where modules come in to help us orga-
nize our code in a meaningful way.

 Defining variables and procedures in a module works the same way as for the main
program, as shown in the following listing.

module mod_diff
...

contains
...

end module mod_diff

If you compare this bare-bones snippet to the one from listing 4.2, you’ll see that I
only replaced the program/end program with module/end module (and their names, of
course). One important difference from the main program, functions, and subrou-
tines, is that the module can only contain declarative code, not executable code. This
means that you can’t run a module like a program, or call it like you can a function or
subroutine. What you can do is access any public entity, be it a variable, a function, or a
subroutine, that’s made accessible by the module. I’ll get into what I mean by public
in a little bit.

 Let’s go ahead and define our diff function inside the module. While we’re at it,
we’ll also use the portable type kinds that we learned about earlier in this chapter. The
complete code listing is as follows.

module mod_diff

use iso_fortran_env, only: int32, real32
implicit none

contains

pure function diff(x) result(dx)
real(real32), intent(in) :: x(:)
real(real32) :: dx(size(x))
integer(int32) :: im
im = size(x)
dx(1) = x(1) - x(im)
dx(2:im) = x(2:im) - x(1:im-1)

end function diff

end module mod_diff

Listing 4.3 Using the contains statement to define procedures in the body of a module

Listing 4.4 Custom module that defines the finite difference function

Opens the module scope Variable declarations go here.

Separates the variable definitions
from the procedure definitions

Defines external
procedures here

Closes the program scope

Imports portable type kinds
from the built-in module

The explicit declaration
applies to the entire module.

Defines the function after
the contains statement

95Creating your first module
And that’s it, your first custom Fortran module. In the first part, before the contains
statement, we import the type kinds from the iso_fortran_env module, and require
explicit declaration using implicit none. When implicit none is used in the mod-
ule scope, it applies to everything within the module and end module statements,
so we don’t need to specify it again in functions or subroutines. Finally, after the
contains statement, we include our function definition, which I copy-pasted from
the main program.

 To access the diff function in the main program, we need to add one line at the
beginning, immediately before the implicit none:

program tsunami

use mod_diff, only: diff
implicit none
...

Now that we have a module in its own source file, and a main program in another, let’s
see how we can compile these two together into a single executable program.

4.2.3 Compiling Fortran modules

The tsunami simulator source code is now made of two source files: the main program
(tsunami.f90), which defines the top-level simulation loop, and the finite difference
module (mod_diff.f90). In all our work so far, we’ve always compiled our Fortran pro-
grams from single-source files. How do you compile a program that’s defined across
multiple files? Easy! Compile and link all of them at once in a single line, or compile
each file individually and link them all at the end. Let’s try the former first, as shown
in the following listing.

gfortran tsunami.f90 mod_diff.f90 -o tsunami
tsunami.f90:11:6:

use mod_diff, only: diff
1

Fatal Error: Can't open module file ‘mod_diff.mod’ for reading at (1):
No such file or directory

compilation terminated.

Ouch! This doesn’t seem to work, and the compiler suggests that the mod_diff.mod file
couldn’t be found. We’ll get to the .mod file in a bit, but for now, let’s try something
else. Perhaps we need to compile the module first before we compile the program. We
can test this by flipping the order of the source files in the compile command:

gfortran mod_diff.f90 tsunami.f90 -o tsunami

Listing 4.5 Compiling and linking multiple source files in a single step

Imports the diff function
from the mod_diff module

Command to compile and link
both source files at once

Compiler output showing file
name, source line, and column
where the error occurred

Part of the source code
where the error occurred

Error message

96 CHAPTER 4 Organizing your Fortran code using modules
Great, this compiles without error. Note that the compiler will emit only warning and
error messages; if you see no output in the terminal, that indicates success.

 So, what happened here? In the first attempt, I listed the main program source file
(tsunami.f90) first, and the module source file (mod_diff.f90) second. The compiler
took that and went from left to right. However, since the module source file came
after the program file, the compiler couldn’t find the compiled module file that was
needed by the main program. This means we have a dependency here—the main pro-
gram depending on the module—which dictates the compilation order.

 To confirm that it works as expected, run the program and compare the output
with that of the previous tsunami version from the end of chapter 3. The output
should be exactly the same between the two programs, because the only thing we
did here is move the function to a module, and import it in the main program. The
program only changes in terms of source code organization and is otherwise seman-
tically equivalent. See listing 3.20 for how to exactly compare the output of two
programs.

 Recall that we have two ways we can compile Fortran programs that are defined
across multiple source files. We just compiled the new tsunami simulator by listing all
source files on a single line, and in a specific order. As you can imagine, this would be
quite challenging if we had many source files to compile. That’s where the alternative
approach of compiling files individually, and linking them all at the end, is a more
sane approach. To compile files individually, use the -c compiler option, where “c”
stands for compile only—do not link:

gfortran -c mod_diff.f90
gfortran -c tsunami.f90
gfortran *.o -o tsunami

Like before, here the module file needs to be compiled before the source file that
uses it. For any nontrivial project, the dependency tree and the order of compilation
are typically handled by a build system, such as Make or CMake. Example Makefiles
for the tsunami simulator are provided in the GitHub repository, and I encourage you
to take a look at how they work. In addition to the compiled object file (.o), building
a module also outputs a compiled module file (.mod). The compiler uses these files
for optimization. They’re not portable across compilers, and sometimes even across
compiler versions.

Compiles the module file and outputs
mod_diff.o and mod_diff.mod

Compiles the main
program file and
outputs tsunami.o

Links all object files into the
executable tsunami

97Creating your first module
4.2.4 Controlling access to variables and procedures

Modules allow you to specify the visibility of variables and procedures defined in
them. All entities in a module can be either public or private:

 Public—A public variable or procedure is accessible from within the module
and can be accessed from any other program unit. You can declare a variable or
procedure public by using the public attribute. This is the default behavior if
not specified.

 Private—A private variable or procedure is accessible only from within the mod-
ule; it can’t be accessed from any other program unit. It’s automatically accessi-
ble from any procedure defined inside that module. You can declare a variable
or procedure private by using the private attribute.

For example, let’s take a look at a module that defines a function to calculate the area
of a circle, given an input radius. The following listing shows how that’s done.

module mod_circle

implicit none
private :: pi
real, parameter :: pi = 3.14159256

contains

real pure elemental function circle_area(r) result(a)
real, intent(in) :: r
a = r**2 * pi

end function circle_area

end module mod_circle

This module defines a parameter pi and a function circle_area. The pi constant is
only meant to be used by circle_area, and is thus marked as private. This removes

Exercise 2: Define the set_gaussian subroutine in a module
Like we did with the diff function and mod_diff module, let’s now define the
set_gaussian subroutine in its own module. As this subroutine sets the initial con-
ditions for the quantity that our simulator predicts, it’s appropriate to call this module
mod_initial and place it in a file called mod_initial.f90. You’ve got all the ingredi-
ents for the solution. If implemented correctly, you’ll be able to import the set_
gaussian subroutine from mod_initial into the main program and use it there like
we did before.

You can find the solution to this exercise in the “Answer key” section near the end
of this chapter.

Listing 4.6 Accessing a private variable from within the module procedure

Defines pi as a
private parameter

Function circle_area can
access pi because it’s defined
in the module scope.

98 CHAPTER 4 Organizing your Fortran code using modules
the possibility of pi being imported from outside of the module. You can also just
use the private or public words as a statement on their own, which will declare all
entities in the module as private or public, respectively. If neither is present, then
all entities are assumed public, unless explicitly declared private. For example, if we
declare the module for calculating the area of a circle with the private and public
statements in the following listing, we’ll ensure that only the procedure we want to
give to the user can be accessed.

module mod_circle
...
private
public :: circle_area
...

end module mod_circle

You can use the private attribute to hide variables and procedures that are internal
to the library and that the user shouldn’t access. In general, it’s good programming
practice to declare everything as private and explicitly declare the public variables
and procedures as such.

TIP Declare all entities as private, and explicitly list those that are meant to
be public.

4.2.5 Putting it all together in the tsunami simulator

You now know how to import variables and procedures from modules, and also how to
write your own modules. Finally, we get to put this all together to refactor, improve,
and expand our wave simulator. If you’ve followed the lessons in this section, and if
you’ve worked through both exercises in this chapter, you now have two modules and
one main program that imports procedures from them. The following listing shows
the complete code for the main program.

program tsunami

use iso_fortran_env, only: int32, real32
use mod_diff, only: diff
use mod_initial, only: set_gaussian

implicit none

integer(int32) :: n

Listing 4.7 Declaring all entities private, except for one

Listing 4.8 Full code for the main program of the tsunami simulator

Declares everything
as private

Only this function
will be public.

Imports type kind parameters
for numeric data

Imports the finite difference
function from the mod_diff module

Imports the set_gaussian subroutine
from the mod_initial module

99Toward realistic wave simulations

Sets
step,

spacing
gravitat
acceler

D
ar

use
sim
integer(int32), parameter :: grid_size = 100
integer(int32), parameter :: num_time_steps = 100
real(real32), parameter :: dt = 1, dx = 1, c = 1

real(real32) :: h(grid_size)

integer(int32), parameter :: icenter = 25
real(real32), parameter :: decay = 0.02

if (grid_size <= 0) stop 'grid_size must be > 0'
if (dt <= 0) stop 'time step dt must be > 0'
if (dx <= 0) stop 'grid spacing dx must be > 0'

call set_gaussian(h, icenter, decay)

print *, 0, h
time_loop: do n = 1, num_time_steps

h = h - c * diff(h) / dx * dt
print *, n, h

end do time_loop

end program tsunami

At this time, you can compile this program, and the one from the end of the previous
chapter, and run each of them to confirm that they produce exactly the same result.
They should, as the only thing we changed here was moving the set_gaussian and
diff functions from the main program to external modules.

4.3 Toward realistic wave simulations
I promised in the previous chapter that we’d finally get to some more realistic wave
simulations in this chapter. With the additions to the simulator in the final section
of this chapter, our water will finally start to move and slosh like real water would
(figure 4.4).

 As in the previous chapter, we’ll run our simulation for 100 s. We initialize the
water height h (this is the perturbation from resting water depth) as a blob with
the same shape and amplitude as in the advection example. At time zero (top panel
in figure 4.4), the water level is completely flat, except for where we initialized it as a
Gaussian shape. So far, so good. A little bit over a second into the simulation, the ini-
tial shape splits into two wave packets, which begin propagating in opposite directions
(second panel from the top). This is expected! Imagine throwing a pebble into a
pond, triggering a series of ripples that radiate away from where the pebble fell in.
Our initial perturbation is emulating that pebble. Periodic boundary conditions allow
the waves to move past either edge of the domain and reenter from the other side. We
thus produce “perpetual” sloshing of water in our small domain.

Sets grid size and
number of time steps

 time
 grid
, and
ional
ation

eclares
rays to
 in the
ulation

Parameters to use to set the
initial condition for water height

Checks input values
and aborts if invalid

Initializes water height
and velocity arrays

Loops for num_time_steps
time steps

Computes the water velocity
in next step and updates

Prints the values
of the time step
and water height

100 CHAPTER 4 Organizing your Fortran code using modules
Water elevation [m], time = 0.0 s

H
e

ig
h

t
[m

]

1.2

–0.2

0.0

0.2

0.6

1.0

0.4

0.8

Water elevation [m], time = 1.6 s

H
e
ig

h
t

[m
]

1.2

–0.2

0.0

0.2

0.6

1.0

0.4

0.8

Water elevation [m], time = 63.0 s

H
e
ig

h
t

[m
]

1.2

–0.2

0.0

0.2

0.6

1.0

0.4

0.8

Water elevation [m], time = 97.2 s

H
e
ig

h
t
[m

]

1.2

–0.2

0.0

0.2

0.6

1.0

0.4

0.8

Initialize the
blob like in the
previous chapter.

The wave splits into two
packets, propagating
in opposite directions.

They slosh
back and forth...

Eventually, new,
smaller waves form.

Distance [m]

100755025

Figure 4.4 Simulated wave propagation as a result of nonlinear one-dimensional shallow water
equations. A water basin with a uniform depth of 10 m is perturbed with a 1 m high blob. The water height
and velocity are then simulated forward in time for 100 seconds, allowing the wave to propagate and
slosh back and forth.

101Toward realistic wave simulations
4.3.1 A brief look at the physics

To go from uniform motion to a more realistic fluid flow, we need to add a few terms
to the equations in our simulation code. Let’s briefly look at the shallow water equa-
tions that I first introduced in chapter 1 (figure 4.5). If you don’t care for the math,
don’t worry about it; you can skip ahead to the next section, where we delve into the
implementation.

We’re almost there! We already have the advection calculation, which allows the shape
to move due to background flow. However, our water is currently moving like a solid
object, and that’s what advection does—it simply moves things around in space. For
the water to flow and slosh in response to gravity, much like real water would in a bath-
tub, we need to add the pressure gradient term. This term is proportional to gravita-
tional acceleration multiplied by the slope of the water surface. The steeper the
surface, the more it will accelerate in the horizontal direction. If the water rushes in
from both sides, the water level will go up, and that’s what the water height divergence
term does. The upside-down triangle symbol is called nabla and is the vector calculus
symbol for the spatial gradient (difference in space). All the terms other than the ten-
dency terms use this same operator! With some forethought, we designed our module
so that we can reuse the finite difference function diff to add the remaining terms:

 The pressure gradient can now be expressed as -g * diff(h) / dx. When the
water surface is steep, this term makes the water rush forward, like in a breaking
wave. We’ll add this term to our equation for velocity.

 The water height divergence, which we can now write as -diff(u * (hmean +
h)) / dx, acts to decrease the water height when the water mass is diverging
(moving apart) or increase it when the water mass is converging (coming
together). Think of a leaky bucket and the water level in it going down as the
water comes out the bottom.

The structure of the new version of our app is illustrated in figure 4.6.

Velocity
tendency

Water height
tendency

Pressure
gradient

Water height
divergence

Advection

Figure 4.5 Shallow water equations revisited. The
top equation is for water velocity, and the bottom for
water height. We’ve already solved for the (linear)
advection term.

102 CHAPTER 4 Organizing your Fortran code using modules
4.3.2 Updating the finite difference calculation

As you probably noticed in the previous subsection, in the new version of the tsunami
simulator we’ll get to apply the diff function not once, but three times. It looks like
our work with procedures and modules will finally pay off. There’s just one more
thing we need to do, and that is make our finite difference function a tad more gen-
eral. Recall that our original finite difference function calculated the upwind differ-
ence between the current and previous element:

dx(2:im) = x(2:im) - x(1:im-1)

It turns out that this difference pattern works well only if the motion in the system is
moving from left to right—that is, from lower to higher array indices. This is also why
it worked well for our simple advection simulator, where the constant background
flow was configured from left to right.

program tsunami

use mod_diff, only: &

diff => diff_centered

implicit none

integer :: n

integer, parameter :: grid_size = 100

integer, parameter :: &

num_time_steps = 5000

real :: h(grid_size), u(grid_size)

call set_gaussian(h, icenter, decay)

time_loop: do n = 1, num_time_steps

u = u - (u * diff(u) + g * diff(h))&

/ dx * dt

h = h - diff(u * (hmean + h)) &

/ dx * dt

print *, n, h

end do time_loop

end program tsunami

tsunami.f90

Declare parameters
and arrays for
water height
and velocity.

Declare the
initial state
for the water
height.

Here we use the
finite difference
function and array
arithmetic to solve
each equation in
one line.

Access the centered
finite differencing
function from
the module.

module mod_diff

implicit none

private

public :: diff_centered

contains

function diff_centered(x)

...

end function diff_centered(x)

...

end module mod_diff

mod_diff.f90

Make only the diff_centered
function publicly accessible.

Figure 4.6 A diagram summarizing the structure of the one-dimensional tsunami simulator. The main
program is shown on the left, and the supporting module is shown on the right. Only the key parts of the
code are shown.

Whole-array difference

103Toward realistic wave simulations
 However, in a more realistic configuration, where water velocity is coupled with
water height and water is allowed to move in both directions, we need a centered
finite difference that can account for changes coming from either direction:

dx(2:im-1) = 0.5 * (x(3:im) - x(1:im-2))

In contrast to the original finite difference, here we’re calculating the difference
between the next and previous element and dividing by 2 to account for the fact that
we’re calculating the difference over two increments. Figure 4.7 illustrates the differ-
ence in calculating these differences.

The following listing provides the complete finite difference function, centered in space.

pure function diff_centered(x) result(dx)
real(real32), intent(in) :: x(:)
real(real32) :: dx(size(x))
integer(int32) :: im
im = size(x)
dx(1) = x(2) - x(im)
dx(im) = x(1) - x(im-1)
dx(2:im-1) = x(3:im) - x(1:im-2)

Listing 4.9 Finite difference of a one-dimensional array, centered in space

Upwind finite difference is
the difference between this
and the previous element.

Upwind finite difference: dx(2:im) = x(2:im) – x(1:im-1)

1 2 3 i... i – 1

x(i) – x(i – 1)

im

Centered finite difference
is the difference between
the next and the previous
element, divided by 2.

Centered finite difference: dx(2:im-1) = 0.5 (x(3:im) – x(1:im-2))∗

1 2 3 i... i – 1

0.5 (x(i+1) - x(i-1))∗

i + 1 im

Figure 4.7 Illustration of
upwind and centered finite
difference calculations

Calculates the boundary
value on the left

Calculates the boundary
value on the right

Calculates the difference
in the interior

104 CHAPTER 4 Organizing your Fortran code using modules
dx = 0.5 * dx
end function diff_centered

We now have two different versions of the finite difference function: one for the
centered difference in space, and another for the upstream difference in space.
They both receive the same input, a one-dimensional array x, and they each return a
result that has the same meaning—it’s just calculated differently. However, it’s
important to use the centered difference function now to allow the water to move in
both directions. Notice that in listing 4.9, I multiply dx by 0.5 rather than dividing it
by 2. In theory, this is preferred, because for floating-point (real) numbers, multipli-
cation is a much faster operation than division. In practice, however, a good com-
piler is typically able to optimize floating-point division for you, so this becomes a
matter of style.

4.3.3 Renaming imported entities to avoid name conflict

Based on what we’ve covered so far about importing entities from Fortran modules,
you can imagine a situation where variables or procedures with the same name could
be imported from different modules. What happens in that case? Fortran will let you
import two entities with the same name; however, it won’t let you reference them.
The purpose of this design choice is twofold: First, it allows you to use just the use
(without only) statement to import everything from modules, even if some entities
may have conflicting names. Second, it doesn’t allow you to mistake one entity for
another by accident.

 What if you need a variable or function with the same name from different mod-
ules? Consider this scenario: You have a weather prediction model defined in mod_
atmosphere and an ocean prediction model defined in mod_ocean. Your job is to make
them talk to each other as they simulate weather and ocean circulation. There’s just one
problem: both mod_atmosphere and mod_ocean define an array called temperature.
Having both arrays in your interface is critical for coupling the two models, and yet, you
won’t be able to reference these arrays because of the name conflict.

 As a workaround, Fortran allows you to rename the entity at the time of import:

use mod_atmosphere, only: temperature
use mod_ocean, only: temperature_ocean => temperature

The key element here is the => operator on the second line. It allows you to import a
variable or procedure under a different name. The first line in the snippet is analo-
gous to Python’s from numpy import sqrt. The second line is analogous to Python’s
from numpy import sqrt as np_sqrt. The operator => means “points to” rather than
“is renamed as.” The name on the left side is the new name we want to use, whereas
the one on the right side is the original name as defined in the module. (This may not
be intuitive at first.)

Divides all
elements by 2

Imports temperature as is

Imports temperature as temperature_ocean

105Toward realistic wave simulations

Decl
array

use in
simula
 If you need to rename multiple entities, separate them with a comma:

use mod_ocean, only: temperature_ocean => temperature, &
velocity_ocean => velocity

In summary, the easiest way to access a module is to import everything from it. use …,
only: … lets you list explicitly the variables that you want to import. Finally, to resolve
any name conflicts, you can use the => operator to rename the imported variables or
procedures. Keep in mind that unlike Python, Fortran doesn’t have namespaces. As
your application and library grow in size, and you import all entities from all modules
implicitly, it becomes difficult to keep track of what came from what module, and
there’s no way to find out until you look inside the modules for the declarations.

 Let’s return to our finite difference functions in the mod_diff module. To avoid
naming conflicts between the two functions, let’s call the old function diff_upwind
and add the new function diff_centered. We can then import the centered differ-
ence function as diff in the main program:

use mod_diff, only: diff => diff_centered

At this point, you should have a mod_diff module that defines both the diff_upwind
and diff_centered functions.

4.3.4 The complete code

Finally, we get to the end! The complete code for the main application is shown in the
following listing.

program tsunami

use iso_fortran_env, only: int32, real32
use mod_diff, only: diff => diff_centered
use mod_initial, only: set_gaussian

implicit none

integer(int32) :: n

integer(int32), parameter :: grid_size = 100
integer(int32), parameter :: num_time_steps = 5000

real(real32), parameter :: dt = 0.02, dx = 1, g = 9.8
real(real32), parameter :: hmean = 10

real(real32) :: h(grid_size), u(grid_size)

integer(int32), parameter :: icenter = 25
real(real32), parameter :: decay = 0.02

Listing 4.10 Complete code of the main program of the tsunami simulator

Imports type kind parameters
for numeric data

Imports the diff_centered
function from the mod_diff
module and renames it as diff

Imports the set_gaussian procedure
from the mod_initial module

Sets grid size and
number of time steps

Sets time step,
grid spacing, and
gravitational
acceleration

ares
s to
 the
tion

Parameters to use to set the initial
condition for water height

106 CHAPTER 4 Organizing your Fortran code using modules
if (grid_size <= 0) stop 'grid_size must be > 0'
if (dt <= 0) stop 'time step dt must be > 0'
if (dx <= 0) stop 'grid spacing dx must be > 0'

call set_gaussian(h, icenter, decay)
u = 0

print *, 0, h
time_loop: do n = 1, num_time_steps

u = u - (u * diff(u) + g * diff(h)) / dx * dt
h = h - diff(u * (hmean + h)) / dx * dt
print *, n, h

end do time_loop

end program tsunami

There are quite a few changes in this program relative to our previous version.
 First, we’re now using a new function (diff_centered) for the finite difference

calculation, which allows us to account for changes coming from either direction.
On import, we rename this function to just diff so that we don’t have to change the
existing terms from the previous version of the simulator. The other imports from
modules are also new and should be familiar by now, if you’ve worked through this
chapter in order.

 Second, our main simulation loop now has two equations instead of one. We’re
now solving for both water velocity (u) and water height (h). These two equations are
coupled: water velocity appears on the right side of the equation for water height, and
vice versa. This coupling is exactly what leads to a more realistic fluid flow. However,
more realistic physics requires higher resolution in time, and this is reflected in our
time step dt now being smaller than before. For an analogy, think about watching an
extremely slow-paced video in which not much is going on. You may not even notice if
the video is playing at a low frame rate. However, if you’re watching a fast-paced video
of a car chase or a basketball game, you’ll easily notice any lag or drop in frame rate.
The same goes for fluid dynamics—a more realistic simulation (more physics terms)
and a finer computational grid (level of detail) require a shorter time step, which
translates to a higher frame rate.

 Congratulations, we made it! If you now compile the simulator, run it, and plot the
results, you’ll be able to see the flow similar to that in figure 4.4. To account for the
shorter time step, I increased the number of time steps (now 5,000) to simulate for a
long enough period of time. I encourage you to play with a few of the simulation
parameters, such as the grid size, number of time steps, and the initial shape and per-
turbation of the water.

Checks input
parameter
values

Initializes water height
and velocity arrays

Loops for
num_time_steps
time steps

Computes the water
velocity in the next
step and updates

Computes the water
height in the next
step and updates

107Answer key

Ass
a n
to

prog

En
e

decla
4.4 Answer key
This section contains solutions to exercises in this chapter. Skip ahead if you haven’t
worked through the exercises yet.

4.4.1 Exercise 1: Using portable type kinds in the tsunami simulator

The task is to import the portable type kind parameters from the iso_fortran_env
module and use them in the tsunami simulator. To do this, we’ll rewrite only the dec-
laration section, as shown in the following listing.

program tsunami

use iso_fortran_env, only: int32, real32
implicit none

integer(int32) :: n

integer(int32), parameter :: grid_size = 100
integer(int32), parameter :: num_time_steps = 100
real(real32), parameter :: dt = 1, dx = 1, c = 1

real(real32) :: u(grid_size)

...

end program tsunami

We first import the standard type kinds int32 and real32 from the iso_fortran_env
module. We then specify these type kinds in each integer and real declaration state-
ment, respectively. That’s it, we’re done! As long as we declare all our variables like this,
we ensure that they’re always of the same size in memory across different machines and
compilers. This is one of many important steps toward reproducibility of results. As
always, with any change or addition to the code, make sure it works as expected by
recompiling and rerunning it.

4.4.2 Exercise 2: Defining the set_gaussian subroutine in a module

The task is to define the set_gaussian subroutine, which sets the values of an input
array to a specific shape, in its own module. The solution is analogous to defining the
diff function in the mod_diff module. This time, we’re defining the set_gaussian
procedure in the mod_initial module, as shown in the following listing.

module mod_initial

use iso_fortran_env, only: int32, real32
implicit none

Listing 4.11 Using portable type kinds in the tsunami simulator

Listing 4.12 Defining the set_gaussian subroutine in a custom module

igns
ame
 the
ram

Accesses only these
two constants from
the built-in module

forces
xplicit
ration

Declares integer variables
for loop counters

Declares integer
constants for grid size
and number of time steps

Declares real constants
for time step, grid
spacing, and phase speed

Declares
an array

Marks the end
of the program

Imports standard type kinds

Enforces explicit declaration
in the whole module

108 CHAPTER 4 Organizing your Fortran code using modules
contains

pure subroutine set_gaussian(x, icenter, decay)
real(real32), intent(in out) :: x(:)
integer(int32), intent(in) :: icenter
real(real32), intent(in) :: decay
integer(int32) :: i
do concurrent(i = 1:size(x))

x(i) = exp(-decay * (i - icenter)**2)
end do

end subroutine set_gaussian

end module mod_initial

Like with the diff function and the mod_diff module, we’ll import this subroutine in
the main program, as shown in the following listing.

program tsunami

use mod_diff, only: diff
use mod_initial, only: set_gaussian
implicit none
...

All external procedures that we use in the main program are now defined in their
own modules. This will become especially useful as our tsunami simulator grows and
becomes more complex.

4.5 New Fortran elements, at a glance
 use statement for accessing a module
 Built-in iso_fortran_env module, which includes

– portable type kind parameters: int8, int16, int32, int64, real32, real64,
real128

– functions to get compiler information: compiler_info, compiler_version
 module/end module for defining a module
 use …, only: … syntax to import specific variables and procedures defined in a

module
 The => operator to rename entities on import
 public and private attributes to allow and restrict access to entities defined in

a module, respectively

4.6 Further reading
Fortran Wiki article on submodules: http://fortranwiki.org/fortran/show/Submodules

Listing 4.13 Importing the set_gaussian subroutine from the mod_initial module

Defines the subroutine
after the contains
statement

Imports the diff function
from the mod_diff module

Imports the set_gaussian
subroutine from the
mod_initial module

http://fortranwiki.org/fortran/show/Submodules

109Summary
Summary
 Modules are special program units that allow you to define functions, subrou-

tines, and variables in one place.
 Fortran comes with a few built-in modules, such as iso_fortran_env and

iso_c_binding.
 The built-in module iso_fortran_env provides, among other things, functions

that return information about the compiler and the options used to compile
the program, as well as type kind parameters that allow you to declare variables
in a portable way.

 Compiling modules produces special .mod files, which must be included in the
compiler path when building other Fortran code that accesses the modules.

 Accessing a module with just the use statement imports all public entities from
the module into the current scope. You can use an expanded variant, use …,
only: …, to import only specific entities.

 Entities defined in a module can be public or private. Public entities are avail-
able for use to any program or procedure that uses that module. Private entities
can only be accessed within the module itself.

 You can set public and private properties of module entities using the public
and private attributes, respectively.

 Variables and procedures with conflicting names can be imported from mod-
ules but can’t be referenced. To work around the name conflict, use the =>
operator to rename a variable or procedure on import.

Analyzing time series
data with arrays
An array is a sequence of data elements that are of the same type and contiguous in
memory. While this may seem restrictive, it comes with its advantages. First, it allows
you to write simpler code using expressive one-liners that work on many elements
at once. Whereas arrays have been part of Fortran since its birth, whole-array oper-
ators and arithmetic were introduced in Fortran 90, allowing programmers to write
cleaner, shorter, and less error-prone code. In a nutshell, arrays allow you to easily
work on large datasets and apply functions and arithmetic operators on whole
arrays without resorting to loops or other verbose syntax.

 Back in section 3.2.2, I gave you a sneak peek into how to replace entire do
loops in the tsunami simulator with single-line, whole-array operations. We’re now
going to take a deep dive into Fortran arrays and learn the mechanics of declaring
arrays, allocating them in memory, and using them with familiar arithmetic opera-
tors. For this chapter, we’ll take a small break from the tsunami simulator and
explore Fortran arrays by writing a stock price analysis app. You’ll learn how to

This chapter covers
 Analyzing stock prices with Fortran arrays

 Declaring, allocating, and initializing arrays

 Using whole-array arithmetic to quantify stock
performance and risk
110

111Analyzing stock prices with Fortran arrays
declare, allocate, and initialize dynamic arrays; read and store data into them; and
then perform whole-array arithmetic to quantify stock performance, volatility, and
other metrics. This knowledge will give you a solid foundation for what’s coming in
the next few chapters—parallelizing the tsunami simulator with Fortran coarrays and
expanding it into two dimensions for more realistic tsunami prediction.

5.1 Analyzing stock prices with Fortran arrays
We’ll learn how Fortran arrays work in a real-world application—analyzing stock price
time series. This has been an increasingly popular topic since the early days of com-
puter programming, and Fortran has been used in the bowels of many trading and
banking systems, mainly thanks to its robustness, reliability, and efficiency. In this chap-
ter, we’ll work with a dataset that’s freely available, small enough to be easily down-
loaded, and yet large enough to demonstrate the power of Fortran arrays.

 I’m no trader, and I won’t go into the details of true technical stock market analy-
sis. Therefore, I recommend that you don’t use this chapter as trading advice. Instead,
I’ll merely show you how you can leverage the power of Fortran arrays to perform any
kind of time series analysis that you can think of, whether it’s stock or commodity
prices, weather measurements, or signal processing. Let’s start by setting objectives for
our application, and looking at the data that we’ll work with.

5.1.1 Objectives for this exercise

In this section, we’ll set tangible goals for this exercise:

 Find the best and worst performing stocks. We’ll first evaluate which stock grew (or
lost value) the most, relative to its starting price. For this, we’ll need to know the
stock price from the start and the end of the time series, and calculate the dif-
ference relative to the initial price. In this challenge, you’ll learn how to
declare, allocate, and initialize dynamic arrays; calculate the size of an array;
and reference individual array elements.

 Identify risky stocks. Some stocks are riskier than others. This can be quantified
using stock volatility, which is related to the standard deviation of the stock
price. Standard deviation is a statistical measure of how much the values deviate
from the average value, and it can be defined over arbitrary time periods. In
this challenge, you’ll learn to slice arrays and perform whole-array arithmetic.

 Identify good times to buy and sell. Traders commonly use a technique called the
moving-average crossover to decide whether it’s a good time to buy or sell
shares of a stock. The moving-average crossover tells us when the stock price
crosses the moving average (average over a limited time window) and indicates
change in the longer term trend of the stock price, regardless of high-frequency
fluctuations. In this challenge, you’ll learn how to search the arrays for specific
values and extract elements that meet any criteria that you want.

Before we dive into implementing the solutions to these challenges, let’s get familiar
with the data that we’ll work with.

112 CHAPTER 5 Analyzing time series data with arrays
5.1.2 About the data

In this chapter, we’ll work on daily stock price time series from 10 technology compa-
nies, including Apple, Amazon, and Intel. The data is stored in the comma-separated
value (CSV) format. Here’s a sample of the Apple stock daily data:

timestamp,open,high,low,close,adjusted_close,volume,dividend_amount,
split_coefficient

2018-05-14,189.0100,189.5300,187.8600,188.1500,188.1500,20364542,0.0000,1.0000
2018-05-11,189.4900,190.0600,187.4500,188.5900,188.5900,26212221,0.7300,1.0000
2018-05-10,187.7400,190.3700,187.6500,190.0400,189.3072,27989289,0.0000,1.0000
2018-05-09,186.5500,187.4000,185.2200,187.3600,186.6376,23211241,0.0000,1.0000
2018-05-08,184.9900,186.2200,183.6650,186.0500,185.3326,28402777,0.0000,1.0000
...

The columns in each CSV file are

 timestamp—Date in YYYY-mm-dd format
 open—Opening price at the start of the trading day
 high—Highest price that the stock reached during the trading day
 low—Lowest price that the stock reached during the trading day
 close—Closing price at the end of the trading day (reflects the price of the last

stock that was traded that day)
 adjusted_close—Closing price that has been retroactively adjusted for stock

splits (See split coefficient below.)
 volume—The total number of shares traded during the day
 dividend_amount—The amount of dividend paid per share
 split_coefficient—Occasionally, a stock can be split for various reasons, and

the split coefficient indicates the factor by which the stock was split. If split
_coefficient is 1, the stock was not split. If it’s 0.5, the stock price is halved
because of the split.

For a birds-eye view of how these stocks performed since 2000, I plotted the adjusted
close price against time in figure 5.1.

 Most of the companies had their stock grow in the overall. We can even spot some
trends. For example, IBM grew considerably from 2009 to 2012 following the growth
of cloud-based technologies and expanding in that space. Nvidia (NVDA) entered a
period of explosive growth in early 2016 thanks to the mass adoption of their GPUs
for machine learning.

 You may be wondering, why use the adjusted close and not just the closing price?
Occasionally, a company splits its stock, resulting in a much different closing price
than the day before. We could see this in effect in June of 2014 when Apple split its
stock sevenfold:

timestamp,open,high,low,close,adjusted_close,volume,dividend_amount,
split_coefficient

2014-06-09,92.7000,93.8800,91.7500,93.7000,87.1866,75414997,0.0000,7.0000
2014-06-06,649.9000,651.2600,644.4700,645.5700,85.8134,12497800,0.0000,1.0000

113Analyzing stock prices with Fortran arrays
On June 6, the closing price was $645.57, whereas on the next trading day, June 9
(exchange markets close on weekends), the opening price was $92.70. Notice that the
split coefficient on this day is 7, indicating the factor by which the stock price was
divided. If we analyzed long time series of closing prices, we’d also capture occasional
large increases or drops due to events that don’t reflect the market value of the stock.
Adjusted closing price retroactively accounts for all stock splits that occurred, and
results in time series that are consistent with stock value. It’s thus a useful metric when
analyzing the long-term historical performance of a stock.

100

1500

1000

500

0

60

150

100

100

75

50

40

20

25

50

40

20

40

20

20

10

40

20

200

100

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

0

0

0

AAPL AMZN

CRAY CSCO

HPQ IBM

INTC MSFT

NVDA ORCL

Figure 5.1 Adjusted close stock prices (USD) of 10 technology companies. The y-axis on each panel has a
different scale.

114 CHAPTER 5 Analyzing time series data with arrays
5.1.3 Getting the data and code

The full code for the stock analysis exercise is available as a GitHub repo at https://
github.com/modern-fortran/stock-prices. If you use git, you can clone it directly from
the command line:

git clone https://github.com/modern-fortran/stock-prices

Otherwise, you can download it as a zip file from http://mng.bz/OMZo.
 The repository already includes the stock price data needed for this exercise in the

data directory. However, if this exercise leaves you hungry for more in-depth analysis
or larger stock price datasets, there’s an easy way to get more data.

Cloning the repository (or downloading the zip file) will also get you the complete
code that implements the three data analysis challenges. We’ll implement them step-
by-step in the following sections, so if you want to follow along, defer reading the final
code until the end of this chapter.

5.2 Finding the best and worst performing stocks
Before we do any data analysis, we need to take care of the logistics. These steps will
generally apply to each of the three challenges in this exercise:

1 Define the arrays to hold the data. We’ll learn how to declare dynamic arrays whose
size isn’t known at compile time. We’ll use built-in types: real for stock prices
and character for timestamps.

2 Read data from the CSV files. We’ll implement a custom subroutine to read the
files and store the data into arrays defined in step 1.

3 Calculate statistics from raw data. Most of the number crunching described in this
chapter will be in relation to this step.

To start, we can estimate the performance of different stocks by calculating their gain
over the whole period of the time series data—from January 2000 to May 2018. When
we implement the solution to our first challenge, the output of the program will look
like this:

2000-01-03 through 2018-05-14
Symbol, Gain (USD), Relative gain (%)

Downloading more stock data
To download the stock data in CSV format for this exercise, I used the free service
Alpha Vantage (https://www.alphavantage.co), which provides an HTTP API to obtain
data in JSON or CSV format. You’ll need to register for the API key at their website.
Once you have one, you can make your own API requests to get various stock data.
For an example, see the download script that I used to download the daily data for
this exercise in data/get_data.sh.

https://github.com/modern-fortran/stock-prices
https://github.com/modern-fortran/stock-prices
https://github.com/modern-fortran/stock-prices
http://mng.bz/OMZo
https://www.alphavantage.co

115Finding the best and worst performing stocks

Ar
store

sym

R
th

of a
clo

Ca

a
st
AAPL 184.594589 5192
AMZN 1512.16003 1692
CRAY 9.60000038 56
CSCO 1.71649933 4
HPQ 1.55270004 7
IBM 60.9193039 73
INTC 25.8368015 89
MSFT 59.4120979 154
NVDA 251.745300 6964
ORCL 20.3501987 77

For each stock, we’ll calculate its gain; that is, the difference between the closing price
at the end of the beginning of the time series, and the gain in percent relative to the
starting price. The main program (not including the utility functions) looks like
the following listing.

program stock_gain

use mod_arrays, only: reverse
use mod_io, only: read_stock

implicit none

character(len=4), allocatable :: symbols(:)
character(len=:), allocatable :: time(:)
real, allocatable :: open(:), high(:), low(:),&

close(:), adjclose(:), volume(:)
integer :: n
real :: gain

symbols = ['AAPL', 'AMZN', 'CRAY', 'CSCO', 'HPQ ',&
'IBM ', 'INTC', 'MSFT', 'NVDA', 'ORCL']

do n = 1, size(symbols)

call read_stock(&
'data/' // trim(symbols(n)) // '.csv', &
time, open, high, low, close, adjclose, volume)

adjclose = reverse(adjclose)
gain = (adjclose(size(adjclose)) - adjclose(1))

if (n == 1) then
print *, &

time(size(time)) // ' through ' // time(1)
print *, 'Symbol, Gain (USD), Relative gain (%)'
print *, '-------------------------------------'

end if

Listing 5.1 Calculating stock gains over the whole time series

Function to
reverse an array

Function to read
data from CSV files

ray to
 stock

bols
Array to store
timestamps

Array to store
stock price data

List of stocks that
we’ll analyze

Uses a custom
subroutine to read the
data from CSV files

everses
e order
djusted
se price

lculates
the

bsolute
ock gain

Writes the table
header to the screen,
only in first iteration

116 CHAPTER 5 Analyzing time series data with arrays
print *, symbols(n), gain, &
nint(gain / adjclose(1) * 100)

end do

end program stock_gain

In this program, we first declare the dynamic (allocatable) arrays to hold the list of
stock symbols and the timestamps and stock price data for each stock. We then loop
over each stock and read the data from the CSV files one at a time. Finally, we calcu-
late the difference between the end and start price and print the results to the screen.
The following subsections go into detail about how dynamic Fortran arrays work. Spe-
cifically, we’ll examine how to declare them, allocate them in memory, initialize their
values, and finally clear them from memory when done.

5.2.1 Declaring arrays

In chapter 2, we covered the basic declaration of arrays when implementing the mini-
mal working version of our tsunami simulator:

real :: h(grid_size)

When you specify the size of the array in the declaration line, you tell the compiler to
declare a static array. The array size is known at compile time, and the compiler can
use this information to generate more efficient machine code. Effectively, when you
declare a static array, it’s allocated in memory when you run the program.

 However, you won’t always know the size of the arrays ahead of time. It just so hap-
pens that each stock data CSV file has the same number of records (4,620), but this
may not always be the case, as some companies may have a much longer presence in
the public markets than others. Furthermore, if you chose to later work on a different
or larger stock price dataset, it would be unwieldy to have to hardcode the size of the
arrays every time. This is where dynamic, or, in Fortran lingo, allocatable, arrays come
in. Whenever the size of the array is unknown ahead of time, or you anticipate that it
will change at some time during the life of the program, declare it as allocatable:

real, allocatable :: h(:)

Writing more general and flexible apps will also require allocating arrays at runtime.
 Notice that there are two key changes here relative to the basic declaration. We

added the allocatable attribute, and we used the colon (:) as a placeholder for the
array size. At this point in the code, we didn’t allocate this array in memory but simply
stated, “We’ll use a real, two-dimensional array h, whose size is yet to be determined.”

Calculates relative gain and
prints results to the screen

grid_size is the integer
size of array h.

The colon in parentheses indicates
that the size is to be determined.

117Finding the best and worst performing stocks
It does seem that for our use case we should use dynamic arrays. Following the data
description from the previous section, we’ll need the following:

 An array of character strings to hold stock symbols (AAPL, AMZN, etc.)
 An array of character strings to hold the timestamps (2018-05-15, 2018-05-14,

etc.)
 Arrays of real numbers to hold the actual stock data, such as opening and clos-

ing prices and others

We can apply the syntax from the allocatable declaration earlier to declare these
arrays, as shown in the following listing.

program stock_gain

implicit none

character(len=4), allocatable :: symbols(:)
character(len=:), allocatable :: time(:)
real, allocatable :: open(:), high(:), low(:), &

close(:), adjclose(:), volume(:)

end program stock_gain

Notice that for symbols I declared an array of character strings of length 4, whereas
for the time array I didn’t specify the length ahead of time (len=:). This is because
we’ll determine the length of timestamps in the subroutine that’s in charge of reading
the data files, and we don’t need to hardcode the length here. For the rest of the data,
I declared real (floating point) arrays. Even though the volume is an integer quantity
(number of shares traded), real will work just fine for typical volume values and will
help simplify the code. You can compile and run this program, but it won’t do any-
thing useful yet, since it only declares the arrays that we’ll use. To loop over stock

When do we use dynamic over static arrays?
Use dynamic over static arrays whenever you don’t know the size of the arrays ahead
of time, or know that it will change. A few examples come to mind:

 Storing user-input data, either entered by standard input (keyboard) or read
from an input file

 Reading data from multiple files of different lengths
 Arrays that will be reused across datasets
 Arrays that may grow or shrink during the lifetime of the program

Dynamic arrays will help you write more general and flexible code but may carry a per-
formance penalty, as allocation of memory is a slow operation compared to, say,
floating-point arithmetic.

Listing 5.2 Declaring the arrays for stock symbols, timestamps, and stock price data

Dynamic array of
stock symbols

Dynamic array
of timestamps

Dynamic arrays for
stock price data

118 CHAPTER 5 Analyzing time series data with arrays
symbols and print each one to the screen, we’ll use an array constructor to initialize
the array symbols.

5.2.2 Array constructors

Array constructors will come in handy to initialize the stock symbols. If we do it correctly,
looping over them and printing each one to the screen, the output will look like this:

Working on AAPL
Working on AMZN
Working on CRAY
Working on CSCO
Working on HPQ
Working on IBM
Working on INTC
Working on MSFT
Working on NVDA
Working on ORCL

As you can imagine, specific symbols depend on what data we have. Since in this exer-
cise we’ll work with only 10 stocks, we can type them directly in the code, as shown in
the following listing.

program stock_gain
...
integer :: n

symbols = ['AAPL', 'AMZN', 'CRAY', 'CSCO', 'HPQ ', &
'IBM ', 'INTC', 'MSFT', 'NVDA', 'ORCL']

do n = 1, size(symbols)
print *, 'Working on ' // symbols(n)

end do

end program stock_gain

Here, I use the built-in function size to return the integer size of an input array, in
this case 10. We used this function already back in chapter 3. Where I initialize the
stock symbols, I also introduce a new syntax element, the array constructor, to assign

Specifying the length of character strings
The keyword argument len in the character data type declaration isn’t required,
and you can just type character(4) instead of character(len=4). Likewise for
character(:). The value can also be omitted entirely (character), in which case
it defaults to character(1), which is a single character. Feel free to type out len
if you want to help a casual reader of your code, or omit it to make your code less
verbose.

Listing 5.3 Initialize and print stock symbols to screen

Initializes stock
symbols

Loops over stock
symbols and prints
them to screen

119Finding the best and worst performing stocks
the stock symbols to the symbols array. Array constructors allow you to create arrays
on the fly and assign them to array variables:

integer :: a(5) = [1, 2, 3, 4, 5]

In this example, I used square brackets to enclose a sequence of five integers.
Together, this syntax forms a literal constant array that is then assigned to a. For static
arrays, the size and shape of the array constructor must match the size and shape of
the array variable on the left side.

In the array constructor snippet, I initialized a on the declaration line. This makes for
an easy and concise declaration and initialization of a small array. However, there’s
one exception case in which you’re not allowed to do this: pure procedures. In that
case, you have no choice but to declare and initialize in separate statements:

integer :: a(5)
a = [1, 2, 3, 4, 5]

This is no big deal, but you may rightfully ask, why this restriction? It stems from a his-
torical feature of Fortran called implicit save behavior.

Alternative syntax for array literals
Besides the square brackets, there’s another standard-compliant way to create array
literals, using parentheses and forward slashes:

integer :: a(5) = (/1, 2, 3, 4, 5/)

I mention this because you may encounter it in existing Fortran code. However, since
this syntax is more verbose (twice as much, in fact), I recommend using square brack-
ets exclusively, which I’ll do throughout this book.

Implicit save
Adding a save attribute to the declaration statement in a procedure causes the value
of the declared variable to be saved between calls. In other words, the procedure
would “remember” the value of that saved variable. Now, here’s the twist: if you ini-
tialize a variable in the declaration statement, this will implicitly add the save attri-
bute to the declaration. A variable with the save attribute will maintain its value in
memory between procedure calls. As this is a side effect, it can’t be used in pure
procedures.

I don’t recommend using the save attribute or relying on the implicit save feature to
maintain state between calls. In main programs and modules, it’s harmless, and you
can safely initialize on declaration. In procedures, I recommend against using the
implicit save behavior, as it leads to bug-prone code.

Initializes from a
constant array

Initializes from a
constant array

120 CHAPTER 5 Analyzing time series data with arrays
There’s another, more general way of constructing an array. In several examples, I’ve
assigned to a an array of five elements, and they were easy to type in by hand. How-
ever, what if you wanted to assign a hundred or a thousand elements? This is where we
can use the so-called implied do loop constructor, as shown in the following listing.

integer, allocatable :: a(:)
integer :: i

a = [(i, i = 1, 100)]

This syntax is called an implied do loop because (i, i = 1, 100) is just syntactic sugar
for an explicit do loop:

do i = 1, 100
a(i) = i

end do

With an implied do loop array constructor, you aren’t restricted to just the loop
counter. For example, you can use it to assign array values from arbitrary functions or
expressions, as shown in the following listing.

real, allocatable :: a(:)
integer :: i
real, parameter :: pi = 3.14159256

a = [(sin(2 * pi * i / 1000.), i = 0, 1000)]

Here, I used the integer index i to construct an array of sines with arguments that go
from 0 to 2π in 1,000 steps. Although it’s almost always useful, i doesn’t need to
appear in the expression that evaluates array elements.

 For example, initializing an array of a thousand zeros is trivial:

a = [(0, i = 1, 1000)]

Finally, Fortran also lets you create empty arrays using [integer ::] or [real ::]. In
practice, these could be useful if invoking a generator—a function that appends an ele-
ment to an array on every call.

Listing 5.4 Initializing an array from an implied do loop constructor

Listing 5.5 Initializing a real array with sines from 0 to 2π, with 1,000 steps

Combining different numeric types in expressions
Notice that in listing 5.5 I’ve mixed integer and real variables in a single expression:
sin(2 * pi * i / 1000). What’s the type of the result then? Integer or real? Fortran
follows two simple rules:

Elements will range
from 1 to 100.

Initializes an array with
sines from 0 to 2π

121Finding the best and worst performing stocks
5.2.3 Reading stock data from files

Now that we have the list of stock symbols that we’ll work on, let’s use this information
to load the data from file and store it in our newly declared dynamic arrays. The pro-
totype of our main loop should look like the following listing.

do n = 1, size(symbols)
call read_stock(&

'data/' // trim(symbols(n)) // '.csv', &
time, open, high, low, close, adjclose, volume)

end do

However, we haven’t implemented the read_stock subroutine yet! Based on the call-
ing signature, we should pass the file name as the first argument, an array of times as
the second, and six real arrays to hold the stock data as the remaining arguments. At
this point, we’re passing arrays that haven’t been allocated yet. As we iterate over the
stocks, we’ll need to explicitly allocate our arrays before loading data from the files.
The declaration of data in our read_stock subroutine prototype may thus be ren-
dered as shown in the following listing.

subroutine read_stock(filename, time, open, high, &
low, close, adjclose, volume)

character(*), intent(in) :: filename
character(:), allocatable, intent(in out) :: time(:)
real, allocatable, intent(in out) :: open(:), &

high(:), low(:), close(:), adjclose(:), volume(:)
...

end subroutine read_stock

Let’s look at our arguments in this subroutine definition. filename is declared as
character(*). This is an assumed-length character string. It says that whatever the

1 The expression is first evaluated to the strongest (most precise) type. For
example, multiplying a real with an integer always results in a real, and mul-
tiplying a complex number with either a real or an integer always results in a
complex number. Same goes for kinds of different precision—adding a real32
to a real64 results in a real64 value.

2 If you’re assigning the result of the expression to a variable, its type is auto-
matically promoted (or demoted!) to the type of the variable.

In the specific example of listing 5.5, 2, i, and 1000 are integers, and pi is a real.
The whole expression is thus a real number. This is generally known as type coercion
or mixed-mode arithmetic. We’ll use it often in this book.

Listing 5.6 Reading stock data from a file using a read_stock subroutine

Listing 5.7 Data declaration in the read_stock subroutine

For each symbol, reads
stock data from the file
and stores it in arrays

Assumed-length input
character string

Dynamic array of
character strings
of length 10

Dynamic real arrays for
stock data; ampersand
marks line continuation

This is where the
action will happen.

122 CHAPTER 5 Analyzing time series data with arrays
length of the string is that’s passed to the subroutine, this argument will accept and
assume that length. This is useful when you want to pass character strings that are of
either varying or unpredictable length. time, however, is declared as a character(:)
allocatable array to match the declaration in the calling program. Finally, the arrays to
hold the actual stock data are declared as real and allocatable.

 Recall the intent attribute from section 3.2.1? Here, we’re using intent(in out)
for all arrays, which means that they will be passed back and forth between the main
program and the subroutine. Notice also that here we’ve matched the data type and
allocatable attributes for the stock data with those declared in the main program. (See
listing 5.2.)

 In the next subsection, I give a detailed explanation of how explicit allocation and
deallocation works and how we can implement it in our app.

5.2.4 Allocating arrays of a certain size or range

In the previous few sections, we’ve learned how to declare and initialize dynamic
arrays. However, what if we need to assign values to individual array elements, one by
one, in a loop? This will be the case as we load the data from CSV files into arrays—
we’ll iterate over records in files, and assign values to array elements one at a time.
However, we don’t really have a way to initialize the data arrays like we did with
stock_symbols in listing 5.3. Note that implicitly allocating by assigning an empty
array [integer ::] or [real ::] won’t work here because we may need to index ele-
ments of an array in some order other than just appending values. This calls for a
more explicit mechanism to allocate the array without assigning known values to it:

real, allocatable :: a(:)
integer :: im = 5
allocate(a(im))

This code tells the program to reserve memory for the array a of size im, in this case 5.
When invoked like this, a will, by default, have a lower bound of 1, and an upper
bound of im. The lower bound of 1 is the default, similar to what you’ll find in Julia, R,
or MATLAB. This is unlike C, C++, Python, or JavaScript, where array or list indices
begin with 0.

 However, Fortran doesn’t impose a constraint to the start index being 1, unlike
Python, where the first index is always 0. You can specify the lower and upper bounds
in the allocation statement:

integer :: is = -5, ie = 10
allocate(a(is:ie))

Notice that I used a colon (:) between is and ie to specify the range. This range is
inclusive (unlike in Python!), so the size of a is now ie - is + 1—in this case 16.

Declares a real,
dynamic array a

Allocates the array
a with size im

Allocates the array a with
a range from is to ie

123Finding the best and worst performing stocks
5.2.5 Allocating an array from another array

It’s also possible to dynamically allocate an array based on the size of another array.
The allocate statement accepts two optional arguments:

 mold—A variable or an expression that has the same type as the object being
allocated

 source—Equivalent to mold, except that the values of source are used to initial-
ize the object being allocated

For example, allocating a from b using mold will reserve the space in memory for a
but won’t initialize its elements:

real, allocatable :: a(:), b(:)
allocate(b(10:20))
allocate(a, mold=b)
a = 0

However, if we allocate a from b using source, it will be allocated and initialized with
values of b:

real, allocatable :: a(:), b(:)
b = [1.0, 2.0, 3.0]
allocate(a, source=b)

TIP No matter how you choose to allocate your arrays, always initialize them
immediately after allocation. This will minimize the chance of accidentally
using uninitialized arrays in expressions. Although Fortran will allow you to
do this, you’ll likely end up with gibberish results.

You may have noticed that when describing the array constructors in section 5.2.2, I
initialized arrays without explicitly allocating them with an allocate statement (see,
for example, listings 5.4 and 5.5). How come? You may rightfully ask, do I need to
explicitly allocate arrays or not? Since Fortran 2003, we’ve had available a convenient
feature of the language called allocation on assignment.

5.2.6 Automatic allocation on assignment

If you assign an array to an allocatable array variable, the target array variable is auto-
matically allocated with the correct size to match the array on the right side. The array
variable can be already allocated or not. If it is, it will be reallocated if its current size
differs from that of the source array. For example, try appending elements to an array
on the fly, as shown in the following listing.

Inquiring about array bounds
You can use the built-in functions lbound and ubound to get the lower and upper
bound, respectively, of any array.

Allocating from mold
won’t initialize a.

Initializes values
separately

Allocates and initializes
a with values of b

124 CHAPTER 5 Analyzing time series data with arrays
integer, allocatable :: a(:)

a = [integer ::]
a = [a, 1]
a = [a, 2]
a = [a, 2 * a]

This feature is particularly useful when trying to assign an array that is a result of a
function, and whose size is not known ahead of time. We’ll use this feature often in
this book.

 There’s an important difference between explicit allocation with the allocate
statement and allocation on assignment. The former will trigger a runtime error if
issued twice—that is, if you issue an allocate statement on an object that’s already
allocated. On the other side, the latter will gracefully reallocate the array if already allo-
cated. To be able to effectively reuse dynamic arrays, Fortran gives us a counterpart to
the allocate statement that allows us to explicitly clear the object from memory.

5.2.7 Cleaning up after use

When we’re done working with the array, we can clean it from memory like this:

deallocate(a)

After issuing deallocate, you must allocate array a again before using it on the right
side of assignments. We’ll apply this mechanism to reuse arrays between different stocks.

Much like it’s an error to allocate an object that’s already allocated, it’s also an error to
deallocate an object that’s not allocated! In the next subsection, I explain how you can
check the allocation status so you’ll never erroneously allocate an object twice or deal-
locate an object that hasn’t even been allocated yet.

 Otherwise, there’s no restriction with regard to whether the array has been initial-
ized or not. You’re free to deallocate an uninitialized array; for example, if you learn
that the array is not of the expected size, or similar.

TIP Deallocate all allocatable variables when you’re done working with them.

The diagram in figure 5.2 illustrates a life cycle of a dynamic array.

Listing 5.8 Automatically reallocating an array on assignment

Automatic deallocation
An allocatable array is automatically deallocated when it goes out of scope. For exam-
ple, if you declare and allocate an array inside of a function or subroutine, it will be
deallocated on return.

Initializes an empty array

Reallocated to [1]

Then to [1, 2]

Now [1, 2, 2, 4]

125Finding the best and worst performing stocks
We first declare the array as allocatable. At this point, the array isn’t yet allocated in
memory, and its size is unspecified. When ready, we issue the allocate statement to
reserve a chunk of memory to hold this array. This is also where we decide the size of
the array or the start and end indices (in this example, 3 and 8). If not allocating from
another source array, the values will be uninitialized. We thus need to initialize the
array before doing anything else with it. Finally, once we’re done working with the array,
we issue the deallocate statement to release the memory that holds the array. The
status of the array is now back to unallocated, and it’s available for allocation. You can
reuse a dynamic array like this any number of times, even with different sizes or start
and end indices. This is exactly what we’ll do in our stock price analysis app. For each
stock, we’ll allocate the arrays, use them to load the data from files, work on them, and
then deallocate them before passing them on to the next stock.

Careful with frequent allocation!
Arrays are contiguous in memory. This has pros and cons. On one side, indexing an
array is a fast operation (constant in time, O(1)) because the computer can predict
the position in memory of an element solely based on the index. On the other side,
inserting, appending, or removing elements always triggers a reallocation of the
whole array! The cost of this operation is proportional to the array size (linear in time,
O(n)). For small arrays, this may be insignificant. However, appending an element to
a 100 million-element-long array will trigger reallocation of ~400 MB! This can easily
turn into a performance bottleneck in your app if you’re not careful.

3 4 5 6 7 8 8

real, allocatable :: a(:)

… ?

This declares a dynamic 1-D array.
It is not yet allocated in memory,
and its size is to be determined.

1.

This allocates the array in
memory, with start index 3
and end index 8, with a
total of six elements.

At this point, the array is allocated
but not initialized. Make sure to
always initialize array values
before using it in expressions.

Our array is now initialized
and ready to use!

Finally, when we’re done
working with the array, we
can clean it from memory.

3. 2.

allocate(a(3:8))deallocate(a)

0 0 0 0 0 0

3 4 5 6 7

8

a = 0

Figure 5.2 A life cycle of a dynamic array

126 CHAPTER 5 Analyzing time series data with arrays
5.2.8 Checking for allocation status

It will, at times, be useful to know the allocation status of a variable; that is, whether it’s
currently allocated or not. To do this, we can use the built-in allocated function, as
shown in the following listing.

real, allocatable :: a(:)
print *, allocated(a)
allocate(a(10))
print *, allocated(a)
deallocate(a)
print *, allocated(a)

Trying to allocate an already allocated variable, or to deallocate a variable that’s not
allocated, will trigger a runtime error.

TIP Always check for allocation status before explicitly allocating or deallo-
cating a variable.

5.2.9 Catching allocation and deallocation errors

Your allocations and deallocations will occasionally fail. This can happen if you try to
allocate more memory than available, allocate an object that’s already allocated, or
free an object that has been freed. When it happens, the program will abort. However,
the allocate statement also comes with built-in error handling if you want finer con-
trol over what happens when the allocation fails. You can use

allocate(u(im), stat=stat, errmsg=err)

where stat and errmsg are optional arguments:

 stat—An integer that indicates the status of the allocate statement. stat
will be zero if allocation was successful; otherwise, it will be a nonzero positive
number.

 errmsg—A character string that contains the error message if an error occurred
(such as stat being nonzero) and is undefined otherwise.

By using the built-in error handling, you get the opportunity to decide how the pro-
gram should proceed if the allocation fails. For example, if there isn’t enough mem-
ory to allocate a large array, perhaps we can split the work into smaller chunks. Even if
you want the program to stop on allocation failure, this approach lets you handle
things gracefully and print a meaningful error message.

TIP If you want control over what happens if (de)allocation fails, use stat
and errmsg in your allocate and deallocate statements to catch any errors
that may come up. Of course, you’ll still need to tell the program what to do if

Listing 5.9 Checking for allocation status

Will print F

Will print T

Will print F

127Finding the best and worst performing stocks
an error occurs; for example, stop the program with a custom message, print
a warning message and continue running, or try to recover in some other way.

We can use the built-in error handling in our stock analysis app. However, we’re going
to need this for several arrays. This seems suitable to implement once in a subroutine,
and then reuse it as needed. That’s the goal of our first exercise for this chapter, as
shown in the “Exercise 1” sidebar.

We’ll use these convenience subroutines to greatly reduce the boilerplate in the read
_stock subroutine. Be aware, however, that convenience procedures like this add a
layer of abstraction over existing code. This can be a blessing and a curse—abstractions
help reduce the amount of boilerplate code we need to write, but they also obscure
how things are implemented under the hood, which may add to cognitive complexity
for a reader who’s trying to understand how the code works. Use abstractions carefully
and mindfully.

5.2.10 Implementing the CSV reader subroutine

Having covered the detailed mechanics of allocating and deallocating arrays, includ-
ing the built-in error handling, we finally arrive at implementing the CSV file reader
subroutine, as shown in the following listing.

Exercise 1: Convenience (de)allocator subroutines
Explicitly allocating and deallocating arrays can be quite tedious. This is especially
true if you decide to make use of the built-in error handling. If you’re working with
many different arrays at a time, this can quickly build up to a lot of boilerplate code.

For this exercise, write subroutines for allocation and deallocation that handle the
allocation status, as well as handling errors:

1 Write a subroutine, alloc, that allocates a given array with a given integer size.
If the input array is already allocated, free it from memory first. (See #2.)

2 Write a subroutine, free, that takes an input allocatable array and deallo-
cates it. If the input array is not allocated, do nothing and return.

Both subroutines should use the stat and errmsg arguments to catch and report
any errors if they occur. Once implemented, you should be able to allocate and free
your arrays like this:

call alloc(a, 5)
! do work with a
call free(a)

You can find the solution in the “Answer key” section near the end of this chapter, or
in the stock-prices repository in stock-prices/src/mod_alloc.f90.

128 CHAPTER 5 Analyzing time series data with arrays

Ope
C

subroutine read_stock(filename, time, open, high,&
low, close, adjclose, volume)

...
integer :: fileunit
integer :: n, nm

nm = num_records(filename) - 1

if (allocated(time)) deallocate(time)
allocate(character(10) :: time(nm))
call alloc(open, nm)
call alloc(high, nm)
call alloc(low, nm)
call alloc(close, nm)
call alloc(adjclose, nm)
call alloc(volume, nm)

open(newunit=fileunit, file=filename)
read(fileunit, fmt=*, end=1)
do n = 1, nm

read(fileunit, fmt=*, end=1) time(n), open(n),&
high(n), low(n), close(n), adjclose(n), volume(n)

end do
1 close(fileunit)

end subroutine read_stock

To find the length of the arrays before I allocate them, I inquire about the length of
the CSV file using a custom function num_records, defined in src/mod_io.f90. If
you’re wondering what the number 1 means in the 1 close(fileunit), it’s just a line
label that Fortran uses if and when it encounters an exception in the read(fileunit,
fmt=*, end=1) statements. If you’re interested in how this function works, take a look
inside src/mod_io.f90. I won’t spend much time on the I/O-specific code here, as we
just need it to move forward with the array analysis. We’ll explore I/O in more detail
in chapter 6.

 On every subroutine entry, the arrays time, open, high, low, close, adjclose, and
volume will be allocated with size nm. The subroutine alloc now seamlessly reallocates
the arrays for us. Notice that we still use the explicit way of allocating and deallocating
the array of timestamps. This is because we implemented the convenience subroutines
alloc and free that work on real arrays. Because of Fortran’s strong typing discipline,
we can’t just pass an array of strings to a subroutine that expects an array of reals. We’ll
learn in chapter 9 how to write generic procedures that take arguments of different
types. For now, explicitly allocating the array of timestamps will do. Furthermore, we
also need to specify the string length when allocating the time array.

 Having read the CSV files and loaded the stock price arrays with the data, we can
move on to the actual analysis and fun with arrays.

Listing 5.10 Reading stock price data from CSV files and storing them into arrays

Finds the number of
records (lines) in a file

Allocates the array
of timestamps

Allocates the
stock price
data arrays

ns the
SV file Skips the data header

in the first line

Reads the data
line-by-line and stores
them into arrays

Closes the file
when done

129Finding the best and worst performing stocks
5.2.11 Indexing and slicing arrays

Did you notice that the stock data in the CSV files are ordered from most recent to
oldest? This means that when we read it into arrays from top to bottom, the first ele-
ment will correspond to the most recent stock price. Let’s reverse the arrays so they’re
oriented in a more natural way, going forward in time with the index number. If we
express the reverse operation as a function, we could apply it to any array like this:

adjclose = reverse(adjclose)

The reverse function will prove useful for the other two objectives of the stock-
prices app. Before implementing it, we need to understand how array indexing and
slicing works.

 To select a single element, we enclose an integer index inside the parentheses; for
example adjclose(1) will refer to the first element of the array, adjclose(5) to the
fifth, and so on.

 To select a range of elements—for example, from fifth to tenth—use the start and
end indices inside the parentheses, separated by a colon:

real, allocatable :: subset(:)
...
subset = adjclose(5:10)

In this case, subset will be automatically allocated as an array with six elements, and
values corresponding to those of adjclose from index 5 to 10.

 By default, the slice adjclose(start:end) will include all elements between the
indices start and end, inclusive. However, you can specify an arbitrary stride. For
example, adjclose(5:10:2) will result in a slice with elements 5, 7, and 9. The gen-
eral syntax for slicing an array a with a custom stride is

a(start:end:stride)

where start, end, and stride are integer variables, constants, or expressions. start
and end can have any valid integer value, including zero and negative values. stride
must be a nonzero (positive or negative) integer.

 Similar rules apply for start, end, and stride as apply for do loops:

1 If stride is not given, its default value is 1.
2 If start > end and stride > 0, or if start < end and stride < 0, the slice is an

empty array.

Getting the number of lines in a text file
If you’re curious how the num_records function is implemented, take a look at
src/mod_io.f90. This function opens a file and counts the number of lines by reading
it line-by-line.

130 CHAPTER 5 Analyzing time series data with arrays
3 If start == end—for example, a(5:5)—the slice is an array with a single ele-
ment. Be careful not to mistake this for a(5), which is a scalar (nonarray).

Furthermore, if start equals the lower bound of an array, it can be omitted, and the
same is true if end equals the upper bound of an array. For example, if we declare an
array as real :: a(10:20), then the following array references and slices all corre-
spond to the same array: a, a(:), a(10:20), a(10:), a(:20), a(::1). The last syntax
from this list is particularly useful when you need to slice every n-th element of the
whole array—it’s as simple as a(::n). If you have experience with slicing lists in
Python, this will feel familiar.

Play with different ways to slice arrays. Try different values of start, end, and stride.
What happens if you try to create a slice that’s bigger than the array itself? In other
words, can you reference an array out of bounds?

Now that we understand how array indexing works, it’s straightforward to calculate
the stock gain over the whole time series. Take the difference between the last and
first element of the adjusted close price to calculate the absolute gain in US dollars:

Exercise 2: Reversing an array
Write a function reverse that accepts a real one-dimensional array as an input argu-
ment and returns the same array in reverse order. Use array slicing rules to perform
the reversal. You can test your new function by reversing the input array twice and
comparing it to itself:

print *, all(a == reverse(reverse(a)))

Here, all is the built-in function that takes a logical array as input and returns
.true. if all elements evaluate as .true..

Hint: use the built-in function size to determine the end index of the input array.

You can find the solution in the “Answer key” section near the end of this chapter.

Referencing array elements out of bounds
Be very careful to not reference array elements that are out of bounds! Fortran itself
doesn’t forbid this, but you’ll end up with either an invalid value or a segmentation
fault, which can be particularly difficult to debug.

By default, compilers don’t check if an out-of-bounds reference occurs during run-
time, but you can enable it with a compiler flag. Use gfortran -fcheck=bounds and
ifort -check bounds for GNU and Intel Fortran compilers, respectively. This can
result in significantly slower programs, so it’s best if used only during development
and debugging.

131Finding the best and worst performing stocks
adjclose = reverse(adjclose)
gain = (adjclose(size(adjclose)) - adjclose(1))

Here, I’m using the built-in size function, which returns the integer total number of
elements, to reference the last element of the array. Like everything else we did
before, gain must be declared, in this case as a real scalar. The absolute gain, how-
ever, only tells us how much the stock grew over a period of time; it doesn’t tell us any-
thing about whether that growth is small or large relative to the stock price itself. For
example, a gain from $1 to $10 per share is greater than a gain from $100 to $200 per
share, assuming you invest $100 in either stock. In the former case, you’ll come out
with $1,000, whereas in the latter case, you’ll have just $200! To calculate the relative
gain in percent, we can divide the absolute gain by the initial stock price, and multiply
by 100 to get the percent; that is, gain / adjclose(1) * 100. For brevity, I’ll also round
the relative gain to the nearest integer using the built-in function nint:

print *, symbols(n), gain, nint(gain / adjclose(1) * 100)

The output of the program is

2000-01-03 through 2018-05-14
Symbol, Gain (USD), Relative gain (%)

AAPL 184.594589 5192
AMZN 1512.16003 1692
CRAY 9.60000038 56
CSCO 1.71649933 4
HPQ 1.55270004 7
IBM 60.9193039 73
INTC 25.8368015 89
MSFT 59.4120979 154
NVDA 251.745300 6964
ORCL 20.3501987 77

From this output, we can see that Amazon had the largest absolute gain of $1,512.16
per share, and Hewlett-Packard had the smallest gain of only $1.55 per share. How-
ever, the relative gain is more meaningful than the absolute amount per share because
it tells how much the stock has gained relative to its starting price. Looking at relative
gain, Nvidia had a formidable 6,964% growth, with Apple being the runner up with
5,192%. The worst performing stock was that of Cisco Systems (CSCO), with only 4%
growth over this time period.

 If you’ve cloned the stock-prices repo from GitHub, it’s straightforward to compile
and run this program. From the stock-prices directory, type

make
./stock_gain

Reverses the array so that the first
element refers to the oldest record

Takes the difference
between the last and
the first element

132 CHAPTER 5 Analyzing time series data with arrays
We’ve now covered a lot of the nitty-gritty of how arrays work. Let’s apply this knowl-
edge to the other two challenges we have for the main exercise for this chapter.

5.3 Identifying risky stocks
One of the ways to estimate how risky a stock is at some time is by looking at volatility.
Stock volatility can be quantified as the standard deviation of the stock price relative
to its average. Standard deviation is a statistical measure that tells you how much indi-
vidual array elements deviate from the average. To estimate volatility, we’ll implement
functions to compute average and standard deviation given an arbitrary input array.
Furthermore, we’ll compute these metrics over a limited time window, and we’ll slide
that window along the whole time series. This is the so-called moving average. For
example, figure 5.3 shows the actual price, 30-day moving average, and volatility based
on the 30-day moving standard deviation for Nvidia stock.

While Fortran comes with many built-in mathematical functions, it doesn’t include a
function to compute the average of an array. That’s fairly straightforward to imple-
ment using the built-in functions sum and size, as shown in the following listing.

200

A
d
j.
 c

lo
s
e
 [

U
S

D
]

V
o
la

ti
lit

y
 [
%

]

15.0

12.5

10.0

7.5

5.0

2.5

0.0

175

150

125

100

2017–01 2018–012017–112017–092017–07

NVDA

2017–052017–03

2017–01 2018–012017–112017–092017–072017–052017–03

NVDA

Figure 5.3 Top: Nvidia stock price (black) and a 30-day simple moving average (gray). Bottom:
Volatility expressed as standard deviation relative to the 30-day simple moving average, in percent.

133Identifying risky stocks
pure real function average(x)
real, intent(in) :: x(:)
average = sum(x) / size(x)

end function average

We already saw earlier that we can use size in a do loop when we want to iterate over
all elements of an array, or when we want to reference the last element of an array. sum
does exactly what you think it does—you pass to it an array, and it returns the sum of
all elements.

 To calculate the standard deviation of an array x, follow these steps:

1 Calculate the average of the array—For this, use the function that we just wrote:
average(x). The result is a scalar (nonarray).

2 Find the difference between each element of the array and its average—This is where the
power of whole-array arithmetic comes in. We can use the subtraction operator
- that we’re familiar with and apply it directly on the whole array, without the
need for a loop: x - average(x). When using arithmetic (+, -, *, /, **), assign-
ment (=), or comparison (>, >=, <=, <, ==, /=) operators, they’re applied element-
wise. In this case, x is an array, and average(x) is a scalar; x - average(x) will
subtract average(x) from each element of x. The result is an array.

3 Square the differences—This operates the same as in step 2, except this time we
need to take the power of 2: (x - average(x)) ** 2. In this expression, ** is the
power (exponentiation) operator.

4 Calculate the average of the squared differences—We can apply the same function
again: average((x - average(x))**2).

5 Finally, take the square root of the result from step 4—For this, we can use the built-in
sqrt function, which is also an elemental function—it works on both scalars
and arrays.

Here’s the complete code for the standard deviation function. Thanks to Fortran’s
whole-array arithmetic, we can express all five steps as a one-liner, as shown in the fol-
lowing listing.

pure real function std(x)
real, intent(in) :: x(:)
std = sqrt(average((x - average(x))**2))

end function std

To use arithmetic operators on whole arrays, the arrays on either side of the operator
must be of the same shape and size. You can also combine an array of any shape and
size with a scalar. For example, if a is an array, 2 * a will be applied element-wise; that
is, each element of a will be doubled.

Listing 5.11 Computing the average value of an array

Listing 5.12 Computing the standard deviation of an array

The sum of all elements
divided by the number
of elements

Root of mean
squared differences

134 CHAPTER 5 Analyzing time series data with arrays
TIP Use whole-array arithmetic over do loops whenever possible.

We’re not done here yet. Rather than just the average and standard deviation of the
whole time series, we’re curious about the metrics that are relevant to a specific time,
and we want to be able to see how they evolve. For this, we can use the average and
standard deviation along a moving time window. A commonly used metric in finance
is the so-called simple moving average, which takes an average of some number of previ-
ous points, moving in time. I’ll let you tackle this one in the “Exercise 3” sidebar, and
will meet you on the other side.

The main program of this challenge is very similar to the previous one (stock_gain).
However, besides printing the total time series average and volatility on the screen,
now we also write the 30-day moving average and standard deviation into text files, as
shown in the following listing.

program stock_volatility

use mod_arrays, only: average, std, moving_average,&
moving_std, reverse

use mod_io, only: read_stock, write_stock
...
do n = 1, size(symbols)

...
im = size(time)
adjclose = reverse(adjclose)
...

Exercise 3: Calculating moving average and standard deviation
Our current implementations for average and standard deviation are great, but they
don’t let us specify a narrow time period that would give us more useful information
about stock volatility at a certain time.

Write a function, moving_average, that takes an input real array, x, and integer win-
dow, w, and returns an array that has the same size as x, but with each element being
an average of w previous elements of x. For example, for w = 10, the moving average
at element i would be the average of x(i-10:i). In finance, this is often referred to
as the simple moving average.

Hint: You can use the built-in function max to limit the indices near the edges of x to
prevent going out of bounds. For example, max(i, 1) results in i if greater than 1,
and 1 otherwise. Note that you’ll need to use a combination of looping and whole-
array arithmetic to implement the solution.

You can find the solution in the “Answer key” section near the end of the chapter.

Listing 5.13 Calculating stock volatility using moving average and standard deviation

Accesses custom
functions from
modules

135Finding good times to buy and sell
call write_stock(&
trim(symbols(n)) // '_volatility.txt', &
time(im:1:-1), adjclose, &
moving_average(adjclose, 30), &
moving_std(adjclose, 30))

end do

end program stock_volatility

Look inside src/mod_io.f90 to see how the write_stock subroutine is implemented.
The full program is located in src/stock_volatility.f90.

5.4 Finding good times to buy and sell
Can we use historical stock market data to determine a good time to buy or sell shares
of a stock? One of the commonly used indicators by traders is the moving average cross-
over. Consider that the simple moving average is a general indicator of whether the
stock is going up or down. For example, a 30-day simple moving average would tell
you about the overall stock price trend. You can think of it as a smoother and delayed
stock price, without the high-frequency fluctuations. Combined with the actual stock
price, we can use this information to decide whether we should buy or sell, or do
nothing—see figure 5.4.

In this figure, I’ve marked with an up arrow every point in time when the actual price
crossed the moving average line from low to high, and with a down arrow when crossing

Writes the 30-day
moving average and
standard deviation
to files

150

A
d
j.
 c

lo
s
e
 [
U

S
D

]

140

160

170

130

120

2017–01 2018–012017–112017–092017–07

AAPL

2017–052017–03

Figure 5.4 Moving average crossover indicators for Apple. Black is the adjusted daily closing price,
gray is the 30-day simple moving average, and up and down arrows are the positive and negative
crossover markers, respectively.

136 CHAPTER 5 Analyzing time series data with arrays
from high to low. The rule of thumb is this: sell when the actual price drops below the
moving average line, buy when it rises above the moving average line.

 Let’s employ Fortran arrays and arithmetic to compute the moving average cross-
over. The calculation has two steps:

1 Compute the moving average over some time period. It can be any period of
time, depending on the trends that you’re interested in (intra-day, short-term,
long-term, etc.) and the frequency of the data that you have. We’re working
with daily data, so we’ll work with a 30-day moving average. Hopefully, you
worked through exercise 3 in the previous subsection and implemented the
moving_average function. Otherwise, you can find it in src/mod_arrays.f90.

2 Once we have the moving average, we can follow the actual stock price and
find times when it crosses the moving average line. If the actual price crosses
the moving average from below going up, it’s an indicator of a potentially
good time to buy. Otherwise, if it crosses from above going down, it’s likely
a good time to sell.

The main trick we’ll use for this challenge is to determine all array indices where the
stock price is greater than its moving average, as well as those where the stock price is
smaller than its moving average. We can then combine these two conditions and find
all the indices where the stock price changes from smaller to greater, and vice versa.
Figure 5.5 illustrates this algorithm.

To implement this calculation, we’ll use almost all of the array features that we’ve
learned about in this chapter so far: assumed-shape and dynamic array declaration,
array constructor, and invoking a custom array function (moving_average). Further-
more, we’ll create logical (Boolean) arrays to handle the conditions I described in fig-
ure 5.5. Finally, we’ll employ a built-in function, pack, to select only those indices that
satisfy our criteria.

 We can write all this in about a dozen lines of code, as the following listing
demonstrates.

Smaller

Greater

T

F F

F F

T

T

F

T

F

T

F F

F

We’re looking for all indices where
x changes from smaller to greater.

x > moving_average(x, w)

x < moving_average(x, w)

T

T F

T

T

T

Figure 5.5 Finding indices where the stock price crosses its moving
average

137Finding good times to buy and sell

A
sto

m
a

Com

m
a

pure function crosspos(x, w) result(res)
real, intent(in) :: x(:)
integer, intent(in) :: w
integer, allocatable :: res(:)
real, allocatable :: xavg(:)
logical, allocatable :: greater(:), smaller(:)
integer :: i
res = [(i, i = 2, size(x))]
xavg = moving_average(x, w)
greater = x > xavg
smaller = x < xavg
res = pack(res, greater(2:) &

.and. smaller(:size(x)-1))
end function crosspos

We first initialize our result array, res, as an integer sequence from 2 to size(x). This
is our first guess from which we’ll subset only those elements that satisfy our criteria.
The crux is in the last executable line, where we invoke the pack function. How does
pack work? When you have an array x that you want to subset according to some con-
dition mask, invoking pack(x, mask) will, as a result, return only those elements of x
where mask is true. mask doesn’t have to be a logical array variable—it can be an
expression as well, which is how we used it in our function in the listing. Recall the
automatic reallocation on assignment from section 5.2.5? This is exactly where it
comes in handy—we pass the original array, res, and a conditional mask to pack, and
it returns a smaller, reallocated array, res, according to the mask.

 This function only returns the crossover from low to high value, thus named
crosspos. However, we also need the crossover from high to low so that we know
when the stock price is going to drop below the moving average curve. How would we
implement the negative variant of the crossover function, crossneg? We can reuse all
the code from crosspos except for the last criterion—we need to look for elements
that are going from higher to lower, instead of lower to higher:

pure function crossneg(x, w) result(res)
...
res = pack(res, smaller(2:) .and. greater(:size(x)-1))

end function crossneg+

The main program will use these functions to find the indices from the time series,
and write the matching timestamps into files, as shown in the following listing.

program stock_crossover
...
use mod_arrays, only: crossneg, crosspos, reverse
...
integer, allocatable :: buy(:), sell(:)

Listing 5.14 Computing the moving-average crossover, low to high

Listing 5.15 Finding the moving average crossover times and writing them into files

We don’t know the size ahead
of time, so we’ll declare this
as a dynamic array.

rray to
re the
oving

verage
of x Logical (Boolean)

arrays to mask x

First guess result, all
indices but the first

putes
the

oving
verage

Logical arrays to tell us where
x is greater or smaller

Uses built-in function
pack to subset an array
according to a condition

Different criterion
for the mask

Accesses new functions
from a module

Integer indices for
storing the crossovers

138 CHAPTER 5 Analyzing time series data with arrays
...
do n = 1, size(symbols)

...
time = time(size(time):1:-1)
adjclose = reverse(adjclose)

buy = crosspos(adjclose, 30)
sell = crossneg(adjclose, 30)

open(newunit=fileunit, &
file=trim(symbols(n)) // '_crossover.txt')

do i = 1, size(buy)
write(fileunit, fmt=*) 'Buy ', time(buy(i))

end do
do i = 1, size(sell)

write(fileunit, fmt=*) 'Sell ', time(sell(i))
end do
close(fileunit)

end do

end program stock_crossover

I included only the relevant new code in listing 5.15. The full program is located in
src/stock_crossover.f90. The program itself doesn’t do much new stuff. For each
stock, it calls the moving average crossover functions, stores the results into arrays
(buy and sell), and writes the timestamps with these indices into a text file. I plotted
the results for Apple (AAPL) for 2017 in figure 5.4. You can use the Python scripts
included in the repository to plot the results for other stocks and time periods.

And that’s it, we made it! Following only a few rules for array declaration, initializa-
tion, indexing, and slicing, we wrote a nifty little stock analysis app that tells us some
useful things about the longer term trends and risk of individual stock prices. The
skills that you learned in this chapter will form a foundation for what’s coming in
chapter 7.

Plotting the results
Both the second and third challenge in this chapter produce results that I’ve plotted
and showed in this section. The Python plotting scripts that I used are included in the
stock-prices/plotting directory. Follow the directions in README.md to set up your
own Python plotting environment. If you decide to further explore the stock prices
data, you can use and modify these scripts for your own application.

Time is an array of strings,
so we have to use the slice.

Reverses using our
custom function

Finds the positive and
negative crossover

Opens the file to
store the results

Writes the positive
crossover timestamps

Writes the negative
crossover timestamps

Closes
the file

139Answer key

I

I

5.5 Answer key
This section contains solutions to exercises in this chapter. Skip ahead if you haven’t
worked through the exercises yet.

5.5.1 Exercise 1: Convenience (de)allocator subroutines

Start with the allocator subroutine alloc. For the key functionality to work, our sub-
routine needs to do the following:

1 Check if the input array is already allocated and, if yes, deallocate it before pro-
ceeding.

2 Allocate the array with input size n.
3 If an exception occurs during allocation, abort the program and print the error

message to screen.

The following listing demonstrates the implementation.

subroutine alloc(a, n)
real, allocatable, intent(in out) :: a(:)
integer, intent(in) :: n
integer :: stat
character(100) :: errmsg
if (allocated(a)) call free(a)
allocate(a(n), stat=stat, errmsg=errmsg)
if (stat > 0) error stop errmsg

end subroutine alloc

Now, take a look at the implementation of the free subroutine shown in the follow-
ing listing.

subroutine free(a)
real, allocatable, intent(in out) :: a(:)
integer :: stat
character(100) :: errmsg
if (.not. allocated(a)) return
deallocate(a, stat=stat, errmsg=errmsg)
if (stat > 0) error stop errmsg

end subroutine free

The code is very similar to alloc except that here, at the start of the executable sec-
tion of the code, we check if a is already allocated. If not, our job here is done, and we
can return immediately.

Listing 5.16 Allocating an array with error handling

Listing 5.17 Freeing an array with error handling

Array to allocate
Array

size

nteger
status

code

Character string to store
the error message

Free if already
allocated

Allocates with
error handlingIf nonzero status, aborts

and prints error message

Array to deallocatenteger
status

code

Character string to store
the error message

If already freed, return

Deallocates with
error handling

If nonzero status,
aborts and prints

error message

140 CHAPTER 5 Analyzing time series data with arrays
 These subroutines are also part of the stock-prices repository. You can find them
in src/mod_alloc.f90, and they are used by the CSV reader in src/mod_io.f90.

5.5.2 Exercise 2: Reversing an array

The solution to this exercise has only two steps and you can write it as a single-line
function (not counting the declaration code). First, we know that since we’re just
reversing the order of elements, the resulting array will always be of the same size as
the input array. The size will also correspond to the end index of the array. Second,
once we know the size, we can slice the input from last to first and use the negative
stride to go backward. The following listing provides the full code.

pure function reverse(x)
real, intent(in) :: x(:)
real :: reverse(size(x))
reverse = x(size(x):1:-1)

end function reverse

Notice that our input array doesn’t need to be declared allocatable. This is the
so-called assumed-shape array, which takes whatever size array is passed by the caller.
We can use the information about the size directly when declaring the result array.

 You may be wondering why we’d make this a separate function at all when we can
just do x(size(x):1:-1) to reverse any array. There are two advantages to making this
a dedicated reverse function. First, if you need to reverse an array more than a few
times, the one-liner slicing syntax soon becomes unwieldy. Every time you read it,
there’s an extra step in the thought process to understand the intention behind the
syntax. Second, the slicing syntax is allowed only when referencing an array variable,
and you can’t use it on expressions, array constructors, or function results. In contrast,
you can pass any of those as an argument to reverse. This is why we can make a test
like all(x == reverse(reverse(x))). Try it!

 I use this function in our stock-prices app, so if you’ve cloned the repo from
GitHub, you can find it in src/mod_arrays.f90.

5.5.3 Exercise 3: Calculating moving average and standard deviation

You can implement the moving average by iterating over each element of the input
array, slicing that array over a subrange determined by the input window parameter, and
applying the general average function to that slice, as shown in the following listing.

pure function moving_average(x, w) result(res)
real, intent(in) :: x(:)
integer, intent(in) :: w

Listing 5.18 Reversing an input array

Listing 5.19 Calculating moving average of a real array x over window w

Assumed-shape array—
no need for allocatable!

The result will be the
same size as the input.

Slice with negative stride
to reverse order

141Summary

wi
real :: res(size(x))
integer :: i, i1
do i = 1, size(x)

i1 = max(i-w, 1)
res(i) = average(x(i1:i))

end do
end function moving_average

Notice that inside the loop, I use the built-in functions min and max to limit the sub-
range from exceeding the bounds of the array x. For a standard deviation function
over an equivalent window, we’d just replace average(x(i1:i)) with std(x(i1:i)).
You can find these functions in src/mod_arrays.f90.

5.6 New Fortran elements, at a glance
 allocatable attribute to declare a dynamic array whose size is unknown at

compile time
 Bracket syntax for array constructors; for example, [1, 2, 3]
 Implied do loop array constructor; for example, [(i, i = 1, 3)]
 Type coercion, or mixed mode arithmetic, where the values of lower kinds get

implicitly promoted when used in expressions with higher kinds
 allocate and deallocate statements to explicitly allocate or free arrays from

memory
 Indexing and slicing arrays
 Built-in functions:

– sum, which returns the sum of all elements of a numeric array
– lbound and ubound to return the lower and upper bounds, respectively, of

an array
– pack, which returns array elements that meet a condition
– min and max to return the minimum or maximum, respectively, from any

number of values
– nint, which returns the nearest integer of an input real number
– all, which returns .true. if all elements of an input logical array are .true.

5.7 Further reading
Best practices with arrays: http://mng.bz/pBp2

Summary
 An array is a sequence of values of the same type that is contiguous in memory.
 Arrays are Fortran’s only built-in data structure.
 Fortran arrays can be statically or dynamically allocated, and support up to 15

dimensions.

Result
array

th size
of x

Loops over each element

Start and end indices,
limited to not exceed
bounds of x

Computes the average
over the subrange

http://mng.bz/pBp2

142 CHAPTER 5 Analyzing time series data with arrays
 You can index and slice arrays to reference specific elements or sections of them.
 Fortran’s allocate and deallocate statements come with built-in error handling.
 Take care to never index arrays out of bounds, or you’ll get undesired results

and perhaps even crash the program.
 Arrays are the basis of their parallel analog, coarrays, which we’ll explore in

chapter 7.

Reading, writing, and
formatting your data
One of the pillars of every useful program is its input and output (I/O). Almost
every program reads some input data from the keyboard, file, or network; does
some calculation or processing on it; and outputs the result to the screen, a file on
disk, or some other device. If the program is designed to be used directly by a
human user (rather than being a piece of some intricate pipeline), I/O becomes
even more important. Specifically, inputting data to the program should be as easy
as possible, with minimum effort for the user. The output should be easy to parse
and not surprising. Some of the best end-user software out there is intuitive on the
first try, without the need to refer to dense user manuals.

 In what kind of real-world scenarios are you most likely to work with I/O? First,
reading and parsing input from the keyboard is likely in any program that needs
some initial configuration from the user; for example, a program that calibrates an

This chapter covers
 Reading from the keyboard and writing to

the screen

 Standard input, output, and error streams

 Formatting numbers and text

 Writing data to files on disk
143

144 CHAPTER 6 Reading, writing, and formatting your data
instrument to measure the flow through water lines. Second, formatting and writing
data to the screen will come up for any program that periodically outputs results for
the user (or another program) to consume. Such output needs to be easy to read
and of predictable format. Think financial metrics of a market, weather data logs, or
a dashboard in the control room of a power plant. Finally, many programs, and
especially large simulation software, need to write their output data to files on disk
for later processing and analysis. This is true of all weather, ocean, and climate pre-
diction models today.

 In this chapter, you’ll learn how to read data from user input (such as the key-
board or another program) and how to format and write data to screen. We’ll cover
standard streams, such as standard input, output, and error units, and why they
matter. Then, you’ll learn how to explicitly format numerical, logical, and text
values for readable and portable output. Finally, we’ll explore Fortran’s I/O capa-
bilities for writing to files on disk by building a minimal note-taking app for the
command line.

6.1 Your first I/O: Input from the keyboard and
output to the screen
So far, we’ve read data and written it to screen and/or files in almost every chapter in
this book. For brevity, and to stay focused on other features of the language, I only
briefly mentioned what we did and why, so I haven’t explained in much detail about
how it works. Before we jump into a more concrete miniproject (a note-taking app),
we’ll first spend some time getting familiar with the basics. In this section, we’ll start
with the most basic I/O tasks—reading user input from the keyboard, and writing
data to the screen.

6.1.1 The simplest I/O

Let’s start with the simplest I/O imaginable. In this subsection, we’ll program a sim-
ple robot called Echo. This robot can’t do many things. He can’t move, ask ques-
tions, or even think. In fact, Echo can do only two things—listen to what we say, and
say it back to us. This is actually more powerful than it seems at first. Echo can hear
us, and he can also speak. He doesn’t seem to do much internally with what we tell
him, but let’s worry about that later. The important part for now is that we can com-
municate with Echo.

 To make Echo the robot, we’ll write a program that will receive our input from the
keyboard and emit that data to the screen. If you’re familiar with Linux command-line
tools, this functionality is similar to that of tee, a GNU core utility. The program
should work like this: when invoked, it will wait for the user to enter some message
into the terminal. Once received, the program will print the same message to the
screen, as shown in the following listing.

145Your first I/O: Input from the keyboard and output to the screen
gfortran echo_robot.f90 -o echo_robot
./echo_robot
Greetings!
 Greetings!

The first output of the message (“Greetings!”) isn’t output by the program, but is
typed in by the user and emitted to the terminal at the same time. Only after the user
presses the Enter key will the program read this message and write it back to the
screen. The message thus appears twice.

 To accomplish this task, we’ll engage the read and print statements in their basic
form. The following listing provides the complete program.

program echo_robot
implicit none
character(len=1000) :: text
read *, text
print *, trim(text)

end program echo_robot

This program consists of essentially three statements: one declaration and two built-in
I/O statements. We first declare a character string text that will hold the data input
from the keyboard. Recall that when declaring a character variable, we need to give it
a fixed length a priori, or declare it as a dynamic (allocatable) string. While using the
allocatable string would be a more elegant solution here, it would complicate the code
quite a bit because Fortran doesn’t allow us to automatically allocate a string on a read
statement. Instead, we’d need to somehow find out the length of the input, allocate
the string, and then use the read statement to store the data into the variable. To keep
this example simple, we’ll stick with a fixed-length string. There’s nothing special
about the number 1000 here—we’re just making this character variable long enough
to hold an unusually large text input. The first I/O statement is read *, text. It instructs
the computer to read the data from the standard input (more on this in a bit), using
default formatting (*), and store it into text. The second I/O statement, print *,
trim(text), does the same, but the other way around. It takes the value of trim(text)
and prints it to the screen (terminal) using default formatting (*).

 trim is the built-in function that removes any trailing blanks. It takes care of the
fact that text is 1,000 characters long, and anything beyond the text input by the user
is padded by spaces. What would happen if we didn’t do this? Since text is declared as
character(len=1000), only the first 10 characters will be occupied by “Greetings!”,

Listing 6.1 Compiling and running your first I/O program

Listing 6.2 Reading user input from the keyboard and writing it to the screen

Compiles the program
into an executable with
the same name

Runs the program

This line is input
by the user.This line is output

by the program.

1,000-character
string to store
user input

Reads user input
and stores it into
the variable

Trims the message to remove trailing
blanks and writes it to the screen

146 CHAPTER 6 Reading, writing, and formatting your data
and the rest will remain blank. Trimming the blank characters off the end of message
will thus make the output not spill over into the next line if our terminal screen is less
than 1,000 characters wide (mine is 80).

Compile and run this program a few times. Play around with it. Does it work as
expected? Almost, but not quite:

./echo_robot
Hello!
Hello!

This is what I expected, except for that one little pesky space in front of the output.
OK, I can swallow this. But it gets worse:

./echo_robot
Hi, there, Echo! :)
Hi

./echo_robot
Wait, what just happened?
Wait

Oh no! Now whole parts of my input are gone—our poor robot is broken. This is not
at all what we intended. What’s going on here? Based on our experiments so far, the
program seems to read input only up to a comma and writes a spurious leading space
in the output.

 It turns out that the culprit is the default formatting, specified by the asterisk (*) in
the read and print statements. This is also what’s known in the Fortran lingo as list-
directed I/O, which allows you to read or write multiple variables on the same line, sep-
arated by spaces or commas. It’s a feature, not a bug! When we use default formatting
and try to enter a message with spaces or commas in it, the program will interpret
these as separate variables. However, we provide only one variable on the right side of
the read statement, so the rest of the message is discarded. Fortunately, there’s an easy
fix, and that is to specify a text formatting string in place of the asterisk:

read '(a)', text
print '(a)', trim(text)

Removing trailing blanks from character strings
If your character variable is longer than the data you assign to it, like it is in listing 6.2,
the unused part of the variable will always be padded by spaces. Use the built-in func-
tion trim whenever you need to remove such trailing spaces on the fly. For example,
trim('run-017.dat ') returns just 'run-017.dat'. This is useful in any situation
in which you can’t predict the length of the string you’re working with; for example, a
user inputting the name of the file to be read by the program.

Leading space in the output
that I didn’t ask for

Reads text from the keyboard
using text formatting

Writes trim(text) to the screen
using text formatting

147Your first I/O: Input from the keyboard and output to the screen
Immediately after typing read, we provide the format string for text data ('(a)').
This statement will thus read any data that’s input on the keyboard, format it with
'(a)', and print it to the screen.

 The formatting strings are instructions for the program on how to format data.
We’ll get into the specifics of number and text formatting soon. For now, all you need
to know is that you can use '(a)' as a format string to read data as character strings,
no matter if the data is plain text or numbers.

 This program is not terribly useful in the real world, but it illustrates how read and
print statements work in their most basic form.

6.1.2 Reading and writing multiple variables at once

While implementing a simple echo program in the previous subsection, we acciden-
tally stumbled on list-directed I/O, which allows you to read or write multiple variables
on the same line. It’s called list-directed because of its functionality to consume and
emit an arbitrary list of variables. For example, if you input a character string, an inte-
ger, and a real number on a single line, our next program will write out “‘User typed:’”,
and print the variables on the remainder of the line:

Hello 42 3.14159
User typed: Hello 42 3.14159012

We’ll modify our program from listing 6.2 to accommodate all the variables, as shown
in the following listing.

program read_write_list
implicit none
character(len=1000) :: text
integer :: a
real :: x
read *, text, a, x
print *, 'User typed: ', trim(text), a, x

end program read_write_list

Passing data from other programs
Typing the data using the keyboard isn’t the only way to get data into the program
through standard input. For example, with the bash shell on Linux or macOS, you
could also input data straight from the command line when executing the program

./echo_robot <<< "Hi, there, Echo! :)"

or pipe it from another program:

echo "Hi, there, Echo! :)" | ./echo_robot

Listing 6.3 Using list-directed I/O to read and write an arbitrary number of variables

Values for each variable
typed in by the user The output of

the program

Reads a string, an
integer, and a real
from the terminal Writes the variables

to the screen

148 CHAPTER 6 Reading, writing, and formatting your data
What’s new here relative to listing 6.2 are the declarations for integer a and real x, and
also that we are now using the default formatting in the read and print statements,
indicated by a single asterisk (*). This does two things:

 The output will be written in a format that is compiler- and system-dependent.
This means arbitrary leading and trailing spaces, and nonportable output preci-
sion for real numbers.

 It allows you to list any number of variables in the read and print statements,
including arrays or derived type components. For example, if you read an array
of five elements, it would work the same as if you were to read five separate sca-
lar variables. Likewise, writing out a derived type instance would write out each
of its public components.

Using list-directed I/O is convenient for easy printing of values in your program. How-
ever, the form of the output isn’t portable across compilers and operating systems,
and is thus not predictable. For these reasons, I only recommend using list-directed
I/O during development, for quick and easy diagnosis or manual debugging.

 Now run the read_write_list program again, and input data of different types
(text, integer, or real) in a different order. What happens if you pass text to a variable
that’s typed as an integer or a real? How about if you pass more than three items? Play
with different inputs and explore what makes the program break and why.

TIP Use list-directed I/O only for quick-and-dirty tasks, such as manual
debugging.

So far, we’ve assumed that the input data is coming from the keyboard, and the output
data is going to the screen. Is this always the case, and how does the Fortran program
know where the data comes from, and where it should go? By default, and in their
basic form that we used in listings 6.2 and 6.3, the read statement will receive data
from the standard input, and the print statement will send the data to the standard out-
put. Let’s go into more detail about what they are and how we can use them for good.

NOTE When working with plain text data, read, print, and write statements
always process one line at a time. To read or write multiple lines of data,
invoke these statements as many times as needed.

6.1.3 Standard input, output, and error

If you’ve done any programming before picking up this book, you’ve likely heard
of standard input (stdin), output (stdout), and error (stderr). They’re collectively
known as standard streams and were introduced in the early days of the Unix operating
system to allow easier interaction with the local file system and hardware, such as key-
boards, printers, and, later, screens. Today, standard streams are ubiquitous on all
mainstream operating systems, including Linux, macOS, and Windows.

 In the context of Fortran, standard streams matter when you want to read and
write data in a portable manner. Using read * and print * is likely to access standard

149Your first I/O: Input from the keyboard and output to the screen
input and output but isn’t guaranteed by the Fortran standard. Furthermore, if your
program encounters an exception and you want to send the error message to the user,
the least surprising place to put it is the standard error stream. Fortran 2003 intro-
duced the following named constants with the iso_fortran_env module to allow the
programmer to specify standard I/O units in a portable way:

use iso_fortran_env, only: input_unit, output_unit, error_unit

I prefer to rename them to their widely used shorthands. The following listing shows
an expanded variant of the program in listing 6.2 that will read user input in a porta-
ble way, write the message back to standard output, and print a dummy error message
(for demonstration) to the standard error.

program standard_streams
use iso_fortran_env, only: stdin => input_unit, &

stdout => output_unit, &
stderr => error_unit

implicit none
character(len=1000) :: text
read(stdin, '(a)') text
write(stdout, '(a)') trim(text)
write(stderr, '(a)') 'This is an error message'

end program standard_streams

This is a rather simple program. We first import standard input, output, and error
units from the iso_fortran_env module, renaming them on import so that we can
use their shorter names, stdin, stdout, and stderr, respectively. We then use the read
statement to read the user-input data from stdin and store it into text. Finally, we emit
messages to stdout and stderr using the write statement. write is a more general and
versatile variant of print, and we’ll use it almost exclusively from here on.

Listing 6.4 Reading from stdin and writing to stdout and stderr

What’s an I/O unit?
Since we’re talking about standard streams, it’s a good time to introduce Fortran I/O
units, as they’ll be relevant to the rest of this chapter. An I/O unit is like a file handle
in other programming languages. It’s a unique identifier that’s assigned to a file when
you open it. This number can then be used to reference the file in a unique way until
the file is closed. Standard streams also come with I/O units preassigned to them—
the input_unit, output_unit, and error_unit constants from the iso_fortran
_env module. Internally, I/O units are represented as integer numbers; however, in
most cases, you won’t need to worry about their values.

Imports standard
units as their
shorthands

Declares the character string variable
in which we’ll store user input

Waits for and reads user input

Emits the user-input message
to the standard output

Emits an error
message to the
standard error

150 CHAPTER 6 Reading, writing, and formatting your data
The read and write statements shown in listing 6.4 take two arguments: the first being
the I/O unit to read from (or write to), and the second being the format to use to read
and write data. These arguments are called unit and fmt, respectively, as illustrated on
figure 6.1. In general, you can omit spelling out these keywords in your code if you find
them to be too verbose. read and write statements can take quite a few more optional
arguments than this. We’ll take a look at some of them a bit later in this chapter.

To see it in action, compile and run the program in listing 6.4 while redirecting the
standard error to a file, as shown here:

./standard_streams 2> log.err
Hi, there! :)
Hi, there! :)
cat log.err
This is an error message

You may ask, when should I use standard error over standard output? Standard output
and error streams are typically used to differentiate the output between normal and
erroneous operation of a program. You can follow a simple rule of thumb: if the pro-
gram should report an error or a warning to the user, write it to stderr. Any other out-
put of the program, such as a log or progress bar, should be written to stdout.

Better logging
If you’re looking for more serious logging capability for your Fortran application, check
out the flogging (Fortran logging) library by Chris MacMackin at https://github.com/
cmacmackin/flogging. It features easy logging to file and/or standard output and
error streams, built-in log timestamps, colored output, and more! (See figure 6.2.)

Figure 6.2 Example output from the flogging library

read (unit=stdin, fmt='(a)') text

Read from
this I/O unit...

...using this
format...

...and store into
this variable.

write (stdout, '(a)') text

read (stdin, '(a)') text

write (unit=stdout, fmt='(a)') text

Write to
this I/O unit...

...using this
format...

...and from
this variable.

unit fmtand keyword

arguments are optional,

so you can just write:

Figure 6.1 The relationship
between the read and write
statements. In this example, the
read statement reads data from
the standard input and writes it
into a character variable, text.
Similarly, the write statement
writes data from the text variable
to standard output (screen).

This will redirect stderr
to the log.err file.

Contents of the file stderr
was redirected to

https://github.com/cmacmackin/flogging
https://github.com/cmacmackin/flogging
https://github.com/cmacmackin/flogging

151Formatting numbers and text
6.2 Formatting numbers and text
In this section, you’ll learn how to explicitly format numbers and text for output to
screen or files on disk. You’ve probably noticed that in most cases when we used print
or write statements to display values on the screen, they produced output with some-
what awkward formatting and wide empty spaces between values. For example, in the
previous section, we used list-directed I/O to read a few text and numerical variables
from standard input and write them back to the screen:

Hello 42 3.14159
User typed: Hello 42 3.14159012

Notice the odd empty space between “Hello” and 42. Worse, when writing the number
3.14159 back to the screen, the program output “3.14159012,” which is a similar but
nevertheless different number. What the heck is going on here?

 These inconsistencies are due to the default formatting that’s compiler- and system-
dependent. Anytime that we use read *, print *, or write(*,*) statements, we instruct
the compiler to use any format it sees fit. Default formatting is fine for quick and dirty
printing of values from your program. However, if you want your app to produce
human-readable output, or write results in a portable format, you’ll need to explicitly
format your output. In this section, you’ll learn how to compose the format strings (or,
in Fortran terminology, edit descriptors) to control how the values of variables should be
converted to text data for output to screen or files. Formatting your output will prove
important in any production app or system where the output of your program is either
directly consumed by your users or used as input to some other program.

6.2.1 Designing the aircraft dashboard

Fortran’s formatting rules are quite tedious, so let’s learn them by tackling a practical
problem. Consider the following scenario. You’re an aircraft flight instruments engi-
neer, and you’re tasked with implementing the on-screen display of several key param-
eters related to the aircraft’s in-flight state. The design team has instructed you to
display only certain parameters and to a limited precision:

 Latitude and longitude (real)—With a precision up to 0.00001 degree (about a
meter on the equator)

 Altitude in meters—With a precision up to 0.1 m
 Engine load in percentage—Represented with integer values between 0 and 100

(There are four engines total, so this parameter is an array of four elements. It
should always be displayed with all three digits.)

 Airborne (logical) status—To show whether the aircraft is airborne. (This parame-
ter will be displayed as T or F depending on the aircraft state.)

Furthermore, each parameter should be separated by at least two empty spaces to make
them easier to read. Note that this is a much simplified version of flight instruments,

Values for each variable
typed in by the user The output of

the program

152 CHAPTER 6 Reading, writing, and formatting your data
even for the most rudimentary aircraft. However, it’s all we need from an example to
learn how formatting data works.

 In our implementation, we’ll assume that the plane is flying over Stockholm, Swe-
den, at an altitude of close to 12 km, with a velocity of 267.5 m/s. We’ll hardcode the
example values in the declaration for simplicity. In the production code, the data
would come from some external subroutine, like get_aircraft_parameters or some-
thing similar. We don’t have to worry about how that works, and we’ll focus on just for-
matting the data for readable display. Let’s begin with the full program, as shown in
the following listing, which we’ll break down step by step.

program dashboard
use iso_fortran_env, only: dash => output_unit
implicit none

real :: lat = 59.329444, lon = 18.068611, alt = 11678.3
integer :: eng(4) = [96, 96, 95, 97]
logical :: airborne = .true.

character(len=:), allocatable :: dashfmt

dashfmt = '(2(f9.5, 2x), f7.1, 2x, 4(i3.3, 2x), l)'
write (dash, dashfmt) lat, lon, alt, eng, airborne

end program dashboard

This program is quite simple. We first declare and initialize the aircraft parameters,
then we assign the formatting string to dashfmt, and finally we apply dashfmt in the
write statement to format the data to our liking. The key question we seek to answer
is, What value of dashfmt will correctly display the flight parameters as per the design
specification sheet? The result will look like this:

59.32944 18.06861 11678.3 096 096 095 097 T

Though I’ve already given you the answer in listing 6.5, we don’t yet understand how
this formatting string works. We’ll dive into the details of its syntax in the following
subsection.

6.2.2 Formatting strings, broken down

If you’re familiar with any C-style language, you’ve likely had some experience with
formatting numbers and text there. In Python, for example, if you wanted to display
the number pi as “3.14,” you’d type '%4.2f' % pi—four characters total, two of which
are used for the fractional part, with the character f denoting a floating-point num-
ber. This is part of the C-style format specification syntax. Fortran’s formatting rules

Listing 6.5 Formatting airplane state parameters for display on the dashboard

Imports standard
output unit as dash

Sets parameter
values

Declares the format string as an
allocatable character variable

Assigns the format
string value

Writes parameter
values to the
dashboard using
given format

153Formatting numbers and text
are similar, but with plenty of differences that will take some time getting used to. Oth-
erwise, if you’re new to formatting text and numbers, it may be even easier for you to
learn Fortran’s format strings from scratch.

 Let’s take a look again at the crux of our formatting code from listing 6.5:

dashfmt = '(2(f9.5, 2x), f7.1, 2x, 4(i3.3, 2x), l)'
write (dash, dashfmt) lat, lon, alt, eng, airborne

The formatting string consists of comma-separated substrings that are each made of
different letters and numbers. Letters will denote different data types, and numbers
will instruct how many spaces to provide for output, or how many times to repeat the
formatting instruction. This is a quite tedious part of the language, so don’t worry if
it feels overwhelming at first. You don’t have to learn the complete syntax at once,
and you can come back to it at any time when you need it. Let’s see how it works,
step by step.

FORMATTING REAL NUMBERS

A formatting string consists of one or more substrings, each made of a letter and
one or more numbers. We’ll start by formatting the latitude, longitude, and altitude
parameters:

real :: lat = 59.329444, lon = 18.068611, alt = 11678.3

Their values fall in the range of (–90, 90) degrees, (–180, 180) degrees, and (0, 99999)
meters, respectively. This means that we need to reserve at least three characters for
the integer part of the value (left of the decimal point) for lat and lon. We also need
to display the coordinates with the precision down to 0.00001 degree, so we’ll reserve
five characters for the fractional part. In total, this will require nine characters (includ-
ing the decimal point).

 To format a real or complex number, use f (floating-point; for example, 523.11) or
e (exponential; for example, 5.2311 × 102) edit descriptors. These descriptors must be
followed by an integer number representing the total width, a period, and an integer
number representing the fractional (in the case of f) or the exponential (in the
case of e) part. For example, the number pi formatted with f8.3 will be displayed as
" 3.142" (three leading blanks), whereas the same number formatted with e8.3
will be displayed as .314E+01. These are illustrated in figure 6.3. In general, use the
exponential format for very small (< 0.01) or very large (> 1000) numbers, and the
floating-point format otherwise. The exponential format allows two additional flavors,
namely the engineering one (en) and the scientific one (es). I leave it to you as an
exercise to explore how these two work.

 Back to latitude and longitude. We’ll format them as floating-point (f) numbers
having a total of nine digits (including the decimal point), with five digits for the frac-
tional part: f9.5.

 To format two values using the same formatting string, we can add a number to
the front of the string: 2f9.5. Not so fast, though. As is, this format string will yield

154 CHAPTER 6 Reading, writing, and formatting your data
"59.3294418.06861" as output. These are our latitude and longitude values, but with-
out any blank spaces between them. To add two empty spaces after each value, we’ll
compose our format string as 2(f9.5, 2x). We now get " 59.32944 18.06861 ".
Much better! The leading space in this string is due to the fact that our integer part is
three characters wide (9 minus 5 minus 1 for the decimal point). You can use the edit
descriptor, x, to insert one or more empty spaces in combination with any other format
string. For example, 5x will insert five empty spaces, and 100x will insert a hundred.

 Now that we’ve formatted the latitude and longitude values, formatting the alti-
tude is easy. From the design spec, we have the requirement to display up to a 0.1 m
precision, and we can safely assume that this aircraft won’t fly above 100 kilometers in
altitude. So our formatting string will be f7.1—five digits for the integer part, and
one digit for the fractional part. Our formatting string so far is 2(f9.5, 2x), f7.1,
and our output is

59.32944 18.06861 11678.3

FORMATTING INTEGERS

Now we can tackle the display of our integer values—the four-element array of values
describing engine load, one for each engine:

integer :: eng(4) = [96, 96, 95, 97]

To format an integer, we’ll use the letter i followed by the number of characters that
will be reserved to display the value. For example, 34 formatted with i5 will be output
as " 34" (three leading blanks, for a total of five characters). Optionally, you can

print '(f8.3)', 3.14159

Formats a real into 8 characters
with three used for the
fractional part

Statement

3.142

Output

print '(e8.3)', 3.14159

Formats a real with an exponent,
eight characters total, with three
for the fractional part

.314E+01
123 64 5 78

1 23 64 5 78

Figure 6.3 Example of formatting a real number for output. The gray spaces
represent empty spaces or blanks. The numbers underneath each output
indicate character positions.

155Formatting numbers and text
specify the number of digits that must be output, even if they’re leading zeros. For
example, i5.5 applied to 34 will output 00034.

 Formatting an integer is illustrated in figure 6.4. With print '(i4)', 42, we make
sure that the number 42 will be output using exactly four characters, no more and no
less. As a result, we get 42 (two leading blanks) in the output. If the number we output
was a three-digit number, such as 123, we’d end up with one leading blank. In the sec-
ond example, print '(i4.3)', 42, we specify that we want four characters, with at
least three of them being nonblank. Thus, for any one- or two-digit number, the com-
piler will add leading zeros to satisfy this requirement.

Back to our task. The engine load is an array of four integers that go from 0 to 100.
We’ll display any leading zeros (rather than blanks), so the format string will be
4(i3.3, 2x), and it will yield:

096 096 095 097

Both i and f edit descriptors allow a field width of zero; for example, i0 or f0.2. This
instructs the compiler to use the minimum width necessary to display the variable.
This is useful when you want to format your numbers just wide enough that they can
be properly output, but don’t care about the total width of your output changing from
line to line.

FORMATTING LOGICAL AND TEXT VALUES

To format character and logical variables, use a and l, respectively. These can stand
on their own, and the compiler will use exactly the number of characters needed to
display them entirely. Alternatively, you can limit the number of characters used by

print '(i4)', 42

Format an integer
into four characters.

Statement

42

Output

1 23 4

print '(i4.3)', 42

Format an integer into
four characters, and at
least three must be used.

Four characters
with one leading
blank

Statement

042

Output

Four characters
with two leading
blanks

1 23 4

Figure 6.4 Example of formatting an integer for output. The gray spaces represent empty
spaces or blanks. The numbers above each output indicate character positions.

156 CHAPTER 6 Reading, writing, and formatting your data
appending an integer width to them. For example, applying a7 to “Hello world” will
print “Hello w.” You can use edit descriptor g in place of any built-in type (i, f, e, a,
or l), as long as you properly set the total width and the width of the fractional part
(in the case of f). Note that while both g and * will match any data type, g gives you
explicit control over formatting, whereas * will allow the compiler to format values the
way it sees fit.

 Finally, as the airborne status is a logical scalar, we’ll use just l to format it. This
brings us to our final form of dashfmt:

dashfmt = '(2(f9.5, 2x), f7.1, 2x, 4(i3.3, 2x), l)'
write (dash, dashfmt) lat, lon, alt, eng, airborne

There’s a bit more nuance to formatting, but this is plenty to get you going. The edit
descriptors, the data types that they apply to, and their example uses are shown in
table 6.1.

In read or write statements with parentheses, the format string is specified as the sec-
ond positional or keyword argument. All of these statements are thus equivalent:

print fmt_string, 'User typed: ', trim(text), a, x
write (*, fmt=fmt_string) 'User typed: ', trim(text), a, x
write (*, fmt_string) 'User typed: ', trim(text), a, x

Whichever form you use is completely a matter of style. Pick one that’s easiest on your
eyes and be consistent throughout your code.

Table 6.1 A summary of Fortran’s format string syntax

Format specifier Type Example use

i integer i3, i3.3, 5i2

f real, complex f12.4

e real, complex e12.4

en real, complex en12.4

es real, complex es12.4

a character a,

l logical l, l5

g Any g5, g8.3

x character (blank) 1x, 5x

* Any (system dependent) *

157Writing to files on disk: A minimal note-taking app
6.2.3 Format statements in legacy Fortran code

If you find yourself working with a legacy Fortran program or library for some time,
you’ll eventually run into labeled format statements that look like this:

write (*, fmt=1022) x, y, z
...
1022 format(3(f6.3, 2x))

Here, the format string is specified not with a character variable or string literal, but
with an integer number that directs the compiler to a labeled line elsewhere in the
program. This line then specifies the format string using the format statement. It can
be placed anywhere in the local scope—before or after the I/O statement that refers
to it. This is a historical, although correct, alternative approach to formatting variables
for I/O. Although I don’t recommend that you use the format statement in any new
code, I think it’s important that you be aware of its use and meaning, as you may
encounter it in existing Fortran code.

TIP Avoid labeled format statements in new code. They break the structure of
the code and can make it harder to read and understand. Instead, use literal
format strings or character variables in read and write statements directly.

6.3 Writing to files on disk: A minimal note-taking app
You now know how to read from standard input and write to standard output. You also
know how to format the data for pretty printing, or for reading specially formatted
records. Sooner or later, you’ll need to read data from and write data to files on disk.
In this section, we’ll implement a minimal, yet surprisingly useful, note-taking app for
the command line. The app should do the following:

 Take a filename to write notes into a command-line argument.
 Read user input from the standard input stream and write it into a file.
 If the file exists, prompt the user about whether to overwrite the file, append to

it (continue writing), or quit.

Figure 6.5 illustrates the workflow of our note-taking app.
 What does it take to write some text to a file? For example, here’s what my mini-

journal entry looks like this morning:

Fresh cup of coffee
Wrote a small note-taking app
Hope readers like it

Nothing fancy, just some text, spread across a few lines. It’s also a Haiku poem, but
that’s not crucial for this exercise. To write this note, while considering the specifica-
tions above, my command-line experience with the app (let’s call it qn, short for quick-
note) will look like listing 6.6.

Refers to the format
statement via a
numbered label

Label and format statement

158 CHAPTER 6 Reading, writing, and formatting your data

cha
s

./qn
STOP Usage: qn <filename>
./qn haiku_20190420.txt
Fresh cup of coffee
Wrote a small note-taking app
Hope readers like it
^C
cat haiku_20190420.txt
Fresh cup of coffee
Wrote a small note-taking app
Hope readers like it

In summary, we want an app to quickly jot down some notes in the file of our choice,
stored as a plain text file that can be easily read. The ability to resume writing to an
existing file, though not shown in listing 6.6, would also be a nice feature. Finally, we
should have some protection from accidentally overwriting an existing file. By imple-
menting these features, you’ll learn the most important elements of Fortran for work-
ing with files. Ready? All right, then, let’s get started.

6.3.1 Opening a file and writing to it

The first step involves getting the filename as a command-line argument, opening the
file for writing, and allowing the user to write into it. To implement this is relatively
straightforward but will require quite a few new language elements. Let’s take a look
at the complete program first, as shown in the following listing.

program qn
use iso_fortran_env, only: stdin => input_unit
implicit none
integer :: fileunit
character(len=9999) :: filename, text

Listing 6.6 Writing a short note with the qn app

Listing 6.7 First version of the qn app

$./qn haiku_20190420.txt
Fresh cup of coffee
Wrote a small note-taking app
Hope readers like it

Program to run
File name to store
the notes into

Save notes into a file on disk.

Our notes

haiku_20190420.txt

Fresh cup of coffee
Wrote a small note-taking app
Hope readers like it

Figure 6.5 Illustration of a simple workflow for our note-taking app

Shows the usage message
if filename not provided

This is me
typing on the
keyboard.

I quit the app by
pressing Ctrl+C.

Prints the contents of
the file to the screen

I/O unit number used
to connect to a file

Long
racter
trings

159Writing to files on disk: A minimal note-taking app
if (command_argument_count() < 1) stop 'Usage: qn <filename>'
call get_command_argument(1, filename)

open(newunit=fileunit, file=trim(filename))

do
read(stdin, '(a)') text
write(fileunit, '(a)') trim(text)
flush(fileunit)

end do

end program qn

The first step is to parse the command line for an argument, and its value will be the
name of the file to write notes into. Here we use the built-in command_argument_count
function and the get_command_argument subroutine to check for the number of argu-
ments, and to store the value of the first argument into the character variable filename.
Note that we declared filename as character(len=9999). There’s no special mean-
ing behind this number—we’re simply declaring a character variable long enough to
store strings of arbitrary length. On most Linux file systems, maximum path length is
4,096, but this should be handled elsewhere. You’ll learn in more detail how command
_argument_count and get_command_argument work in chapter 10.

6.3.2 Opening a file

Once we have the desired filename stored in the filename variable, our next step is to
open the file for writing. Opening a file means creating a connection between the
program and some file on disk. We can do this using the open statement:

open(newunit=fileunit, file=trim(filename))

Fixed-length or allocatable character variables?
If you’re thinking that using fixed-length character variables is awkward, you’re abso-
lutely right! Why would I not use allocatable character strings instead? This situation
is due to Fortran’s inability to implicitly allocate a dynamic character variable on a
read statement. In other words, the character variable must be allocated before
using it on the right side of a read statement, which would require us to somehow
know what the length of the input data would be.

The choice to use fixed-length strings that are just long enough to hold most input
data is thus a pragmatic one, though not too elegant.

Prints a short help message if
no command-line arguments
were provided

Reads the first CLI
argument and stores
its value into filename

Opens the file with
the given filename

Loops indefinitely

Reads text from standard
input (keyboard)

Writes text to file while
trimming any trailing whitespace

On each write,
flushes the
contents to
the file

Opens a file with a given
filename, assigning its I/O
unit to fileunit

160 CHAPTER 6 Reading, writing, and formatting your data
This is one of the most basic forms of the open statement. It takes two keyword
arguments:

 newunit—An integer variable whose value will be set to an available I/O unit
number. This number is system-dependent and not known ahead of time, but is
guaranteed to be available and not conflict with any other units, be it other
open files or standard streams such as stdout or stderr.

 file—A character variable or literal constant whose value is the name of the
file to open.

On successful execution of this open statement, the new file is now open and ready for
use, with a unique I/O unit number assigned to fileunit. Once a file is opened and
attached to a unit, it can’t be opened again before it’s closed and its I/O unit is
released. Alternatively, you can pass the unit number to the open statement yourself,
but you have to make sure that I/O unit is available for use:

open(unit=2112, file=trim(filename))

With this statement, a file is opened, and the unit number 2112 is assigned to it. Note
that spelling out unit= is optional but file= is not, so you can just write open(2112,
file=trim(filename)) for brevity. Historically, a Fortran programmer was expected
to keep track of the I/O units being used. It’s important to be aware of this form of
the open statement because you’re likely to encounter it in Fortran code in the wild, as
the newunit functionality was added to the language only recently (Fortran 2008). If
your compiler supports it, and a recent version of any mainstream compiler should, I
recommend that you use newunit exclusively.

TIP Use newunit in your open statements rather than specifying the unit
number yourself. It will spare you from having to keep track of available
I/O units.

There may be exceptional situations where you’d need to specify an I/O unit in the
open statement, rather than getting a new one from the system. One such situation is
if you wanted to redirect standard output and error channels to files. Let’s do this one
as an exercise. (See “Exercise” sidebar.)

Exercise: Redirect stdout and stderr to files
You now know how to access standard output and error I/O units, and you know how
to open files with a specific I/O unit number. Write a program that redirects its stan-
dard output and error into files; for example, log.out and log.err, respectively.

You can find the solution to this exercise in the “Answer key” section near the end
of this chapter.

161Writing to files on disk: A minimal note-taking app
6.3.3 Writing to a file

OK, so we’ve parsed the command line for a filename as the argument, and we’ve
opened the file as requested by the user. Let’s write some notes to it. To do this, we’ll
need to parse user input from the keyboard, and write the data to the file on each new
line—that is, every time the user presses the Enter or Return key. The following listing
demonstrates this.

do
read(stdin, '(a)') text
write(fileunit, '(a)') trim(text)
flush(fileunit)

end do

We use a plain do statement to loop indefinitely. Within each iteration, the program
reads the user’s input from the console, trims any trailing whitespace (because text is
9,999 characters long), and writes it to the file. On each write, we use the flush state-
ment to make sure that any data from the buffer is written to disk. The program
doesn’t have any way to exit the loop, except by hitting an exception in one of the I/O
statements (for example, running out of disk space), or by the user quitting the pro-
gram with a keyboard interrupt (Ctrl+C). For our little app, this is good enough.

Let’s now see how we can add more nuanced functionality to the quick-note app. First,
we’ll allow our app to write to existing files by appending notes to them. Second, we’ll
add a prompt to ask the user what action to take if the file for writing notes to already
exists. In doing so, we’ll cover some optional parameters to the open statement. We’ll
also learn about the inquire statement and how to use it to get information about a
file without opening it.

Listing 6.8 Reading user input and writing to a file in a loop

Flushing the output buffer to a file
For efficiency, some compilers and operating systems may use a buffer as an inter-
mediate storage of output before dumping it into a file. The motivation for using buf-
fers is that writing to a file too often may keep the disk busier than necessary. By
using a buffer, the program writes to disk only when the data exceeds the buffer size.
For a more responsive behavior, you may want to explicitly write to disk whatever is
currently stored in the buffer, using the flush statement.

Furthermore, the program will write to a file only after the user presses Enter to make
a new line in the note. This is the case because the read statement won’t execute
until the user enters the whole line. Thus, if you exit the program by pressing Ctrl+C
halfway through the note, the line in progress will be lost.

Loops indefinitely Reads a single line
from standard input
and stores it into text

Writes text into the file
connected to fileunit, removing
any trailing whitespaceFlushes the write

buffer to file

162 CHAPTER 6 Reading, writing, and formatting your data

Ctr
to exit

prog
6.3.4 Appending to a file

Our little note-taking app is simple and neat and does what it promised. However, one
of the first issues we may run into is that if we specify an existing file to write our notes
into, the program will overwrite the previous contents of the file with our new notes.
The following listing shows an example of what that could look like.

./qn reminders.txt
Call Jenny after work
^C
cat reminders.txt
Call Jenny after work
./qn reminders.txt
Pick up groceries for tonight
^C
cat reminders.txt
Pick up groceries for tonight

Oh no! The reminder to call Jenny is gone. What happened? Let’s take a look again at
how we’re opening the file:

open(newunit=fileunit, file=trim(filename))

Without other keyword parameters specified, Fortran will default to opening a file at
its beginning. If you write anything to it, the program will write from the beginning,
and any contents that were already there will be overwritten. It doesn’t matter if you
had a thousand lines of data and you’re writing only one line—the entire contents of
the previous file will be gone.

 What we really want our app to do is to keep writing to an existing file, continuing
from the end and preserving existing notes:

./qn groceries.txt
Toast
^C
./qn groceries.txt
Avocadoes
^C
cat groceries.txt
Toast
Avocadoes

Fortunately, Fortran provides an easy way to open a file in the append mode, allowing
you to continue where you left off:

open(newunit=fileunit, file=trim(filename), position='append')

Listing 6.9 Overwriting previous notes if writing to an existing file

Writes a reminder
into a text file

l+C
 the
ram

Prints the contents
of the file to screen

Now writes a new note
into the same file

Prints the
contents again

163Writing to files on disk: A minimal note-taking app
Here, we added a third keyword parameter, position. It can take one of three values:

 append—The file will be opened at its final position, preserving any previously
written data.

 asis—The file will be opened “as is.” This is the default value if the position
parameter is not specified and matters only if the file is already opened and pre-
connected to an I/O unit. (It must be the same unit!) In that case, the file will
be opened at the same position. Otherwise, the file is opened at the beginning.

 rewind—The file will be opened at the beginning, without exception.

In general, if your app will always write from the beginning, whether to old or new
files, you don’t have to specify position. Use position='append' only if you need to
continue writing to an existing file, while preserving its original content. position=
'asis' and position='rewind' may only be useful in some special cases where you’re
opening a file that’s already connected to an I/O unit and you need to change its
position. Use this with caution, as rewinding the file and writing to it will truncate any
existing content.

 The position='append' setting in the open statement is convenient because it
won’t change the behavior of writing to new files. If you’re appending to a new
(empty) file, the result is the same as if you were writing from scratch. You can add this
now to the open statement in listing 6.7. Does it work as expected? Great! The quick-
note app is now more versatile, as it can add notes to existing files.

6.3.5 Opening files in read-only or write-only mode

Sooner or later, you’ll run across files that are meant to be used as read-only; for exam-
ple, important satellite data that shouldn’t be overwritten. Similarly, some files will be
useful only in write-only mode, such as the quick notes that we’ve been working on in
this section. Fortran allows you to open a file in a mode that restricts certain opera-
tions to a file. Here’s an example of opening a file in read-only mode:

open(newunit=fileunit, file=trim(filename), action='read')

The read/write behavior is controlled with the action keyword parameter. It can take
one of three values:

 read—The file will be opened in read-only mode, and write and print state-
ments can’t be used on this file. Furthermore, the file will be assumed to be
existing, so it’s impossible to open new files when using action='read'.

Rewinding a file
You can also rewind a file (set the read or write position to the start) at any time using
the rewind statement:

rewind(fileunit)

164 CHAPTER 6 Reading, writing, and formatting your data
 write—The file will be opened in write-only mode, and the read statement
can’t be used in connection with this file.

 readwrite—The file is opened without restriction. This is also the default
behavior (if action is not specified) on all the systems that I’m aware of; how-
ever, the Fortran Standard allows this to be system-dependent.

Why do this? If the file is supposed to be read-only, can we simply not issue any write
statements and be done with it? Likewise for write-only files. You don’t ever have to use
the action parameter to write correct Fortran programs. However, it may be benefi-
cial to do so for at least two reasons. First, if you’re working with a read-only file, spec-
ifying action='read' in the open statement will prevent you from accidentally writing
to it elsewhere in the program, either because of a typo or by confusing two different
I/O units. Second, your code will be easier to read and understand. This is analogous
to my advice from chapter 3 about always specifying intent for procedure arguments.
It’s easier to understand what the program is doing to a file if the open statement says
it loud and clear.

TIP Always specify action in your open statements. It will make your code
easier to understand and can prevent you from accidentally overwriting
important files.

You can go ahead and update the open statement in our quick-note program to read

open(newunit=fileunit, file=trim(filename),&
action='write', position='append')

While not strictly necessary, it’s good practice and will help future readers of your
code (including yourself).

6.3.6 Checking whether a file exists

With the upgrade to the open statement that allows our program to open an existing
file in the append mode, we can now continue writing notes to an old file. This is a
useful feature, but it assumes that the user would want to continue writing. There are
situations where I’d want to start writing from the beginning; that is, overwrite the file.
To allow for more general behavior, and to not surprise the user, it may be a good idea
to allow them to choose whether to keep writing to an existing file, or start over, as
shown in the following listing.

./qn daily_todo.txt
Finish chapter draft
Email Jerry
neural-fortran pull request
^C
./qn daily_todo.txt
File daily_todo.txt already exists!
[O]verwrite, [A]ppend, [Q]uit:

Listing 6.10 Prompting the user if a file exists

Tries to write to
an existing file

Prints warning
message

Prompts and lets
user decide

165Writing to files on disk: A minimal note-taking app
How can we know programmatically whether or not a file exists? This is where the
inquire statement comes in, as shown in the following listing.

logical :: file_exists
...
inquire(file=trim(filename), exist=file_exists)

You can inquire about a file by its name or its I/O unit number (inquire(fileunit,
…)). Of course, the latter is possible only if you’ve already opened the file and its I/O
unit number has been assigned. Here, we’re inquiring by filename, which is necessary
because the file hasn’t been opened yet. The exist keyword parameter takes a logical
variable whose value will be either .true. or .false. on successful completion of the
inquire statement. Whenever you open a new file, the file will be present and detect-
able by inquire, even if you haven’t written to it yet.

 The following listing shows the new version of the program that checks for the
presence of the file, and prompts the user if the file exists.

program qn
use iso_fortran_env, only: stdin => input_unit, &

stdout => output_unit
implicit none
integer :: fileunit
character(len=9999) :: filename, text
character(len=6) :: pos
logical :: file_exists

if (command_argument_count() < 1) stop 'Usage: qn <filename>'
call get_command_argument(1, filename)

inquire(file=trim(filename), exist=file_exists)
pos = 'rewind'

if (file_exists) then
write(stdout, '(a)') &

'File ' // trim(filename) // ' already exists!'
do

write(*, '(a)', advance='no') &
'[O]verwrite, [A]ppend, [Q]uit: '

read(stdin, '(a)') text
if (any(trim(text) == ['O', 'o'])) then

write(stdout, '(a)') &
'Overwriting ' // trim(filename)

exit
else if (any(trim(text) == ['A', 'a'])) then

Listing 6.11 Checking whether a file exists without opening it

Listing 6.12 Updated program that prompts the user if the file exists

Declares a logical variable to store
the existence status of the file

Inquires by filename
whether it exists or not

Checks for presence
of the file

Assumes writing
from scratch

Prints warning
message if file exists

Prompts the user and
awaits their response

Leaves loop if user
chose “overwrite”

166 CHAPTER 6 Reading, writing, and formatting your data
pos = 'append'
write(stdout, '(a)') &
'Appending to ' // trim(filename)

exit
else if (any(trim(text) == ['Q', 'q'])) then

stop
end if

end do
end if

open(newunit=fileunit, file=trim(filename), &
action='write', position=pos)

do
read(stdin, '(a)') text
write(fileunit, '(a)') trim(text)
flush(fileunit)

end do

end program qn

The code added to the program starts with the inquire statement and ends immedi-
ately before the open statement. Its purpose is to determine whether the position
parameter in the open statement should have the value rewind or append. We start
by assuming that the file will be opened in rewind mode, which is the case if the file
is not present (start a new file) or the user chooses to overwrite an existing file. If
the requested file is present, the program will warn the user and prompt them
regarding whether to overwrite (“O” or “o”) or append (“A” or “a”) to the file. At
this point, the user can also choose to quit (“Q” or “q”) the program without com-
mitting any changes to the file. Note that if the user input doesn’t match any of the
coded options (overwrite, append, or quit), no if branch is matched, and we’ll prompt
the user again for input.

 If you look carefully, you’ll notice that the first write statement in the program has
advance='no' as a keyword parameter. This makes the position in the file not move to
the next record (line) after printing the message. As a result, the user will be entering
their choice on the same line:

./qn daily_todo.txt
File daily_todo.txt already exists!
[O]verwrite, [A]ppend, [Q]uit: a

If omitted, advance has the value yes by default, so any such write statement will move
the position to the next line after executing, and likewise for the read statement.

Sets the position parameter
and leaves loop if user chose
“append”

Stops the program if
user chose “quit”

The user’s choice appears
on the same line.

167Writing to files on disk: A minimal note-taking app
6.3.7 Error handling and closing the file

In our quick-note app, we haven’t had an explicit need to close the file because we’re
prompting the user for input and writing to the file in an infinite loop. The only way
for the program to quit is by the user pressing Ctrl+C. However, if any of the I/O state-
ments encounters an error (such as no space on disk, for example), the program
should be able to print a helpful error message and close the file gracefully. The
changes needed to enable error handling in the quick-note app are shown in the fol-
lowing listing.

integer :: stat
...
do

read(stdin, '(a)', iostat=stat, err=100) text
write(fileunit, '(a)', iostat=stat, err=100) &

trim(text)
flush(fileunit, iostat=stat, err=100)

end do

100 close(fileunit)
if (stat > 0) then

write(stderr, '(a, i3)') &
'Error encountered, code = ', stat

stop
end if
...

The main additions to the code are the iostat and err keyword parameters to each
of the read, write, and flush statements. They enable Fortran’s built-in error han-
dling for I/O statements. Each of the read, write, open, close, inquire, flush, and
rewind statements allows passing the iostat and err keyword parameters:

 iostat—The integer status code, which evaluates to 0 if no error is encoun-
tered, and a positive number otherwise

 err—An integer error label to which the program will jump if the error is
encountered

Nonadvancing I/O
It’s possible to use the read and write statement without advancing the file position
to the next record. Although this may seem like a purely aesthetic feature, there are
cases where it can be quite useful. A common example that comes to mind is prog-
ress bars in the terminal. If you’re interested in fancy progress bars for your Fortran
app, check out the forbear library by Stefano Zaghi on GitHub: https://github.com/
szaghi/forbear. It uses nonadvancing I/O in combination with the Unicode character
set to display some impressive, dynamic progress bars.

Listing 6.13 Catching and recovering from errors in I/O statements

Gets the status number
and jumps to the label if
an error is encountered

The program will jump
to this point on error.

Prints the message
with the error code

https://github.com/szaghi/forbear
https://github.com/szaghi/forbear
https://github.com/szaghi/forbear

168 CHAPTER 6 Reading, writing, and formatting your data
For brevity and demonstration, we’re only checking for errors on read, write, and
flush statements. If an error is encountered in any of them, the program control is
transferred to the label (the line of code that begins with a number, in this case 100)
and the program continues from there. It will first use the close statement to close
the file, then print the error message with the error code if the code is nonzero. The
meaning of each error code isn’t defined by the Standard and is specific to each
compiler, so you’d need to consult the compiler documentation for details. Note
that without error handling, I/O errors are always nonrecoverable, meaning that
the program will stop, usually with a descriptive error message, although this is also
compiler-specific.

 It’s good practice to close the file when we’re done working with it. This ensures
that any data left over in the I/O buffer gets written to disk before the program ends.

 With error handling and closing the file, this concludes our minimal note-taking
app. For your reference, you can find the complete code in the listings repository on
GitHub (https://github.com/modern-fortran/listings) in src/ch06/qn.f90.

6.4 Answer key
This section contains the solution to the exercise in this chapter. Skip ahead if you
haven’t worked through the exercises yet.

6.4.1 Exercise: Redirect stdout and stderr to files

Let’s redirect output to standard output and error channels into their respective files
from within the Fortran program. Why would you want to do this? For some applica-
tions that run for a long time, such as large weather and ocean prediction models that
can run for days, it’s useful to write standard output and error streams into files by
default. More critically, if you’re running your program in parallel, a convenient way
to differentiate the output from different images is to redirect standard output and
error streams from each image into their own respective files.

 Recall from section 6.1 how we write text to standard output and error channels, as
shown in the following listing.

program redirect_stdout_to_file

use iso_fortran_env, only: stdout => output_unit, &
stderr => error_unit

implicit none

write(stdout, *) 'This goes to stdout.'
write(stderr, *) 'This goes to stderr.'

end program redirect_stdout_to_file

Listing 6.14 Writing to standard output and error streams

Gets standard output and
error unit constants from
the built-in module

Writes some text
to standard output

Writes some text
to standard error

https://github.com/modern-fortran/listings

169New Fortran elements, at a glance
If you compile and run this program as is, both messages will be printed to screen:

./redirect_stdout_to_file
This goes to stdout.
This goes to stderr.

However, with shell redirection, we can confirm that each of these messages indeed
goes to its respective standard stream:

./redirect_stdout_to_file 1> log.out 2> log.err
cat log.out
This goes to stdout.

cat log.err
This goes to stderr.

Now, how do we redirect the output within our Fortran program such that log.out
and log.err files are written without the help of shell redirection? The solution is
simple, though perhaps not immediately obvious. Open a file log.out while assigning
it an I/O unit number of stdout, and likewise for stderr. The following listing pro-
vides the complete program.

program redirect_stdout_to_file

use iso_fortran_env, only: stdout => output_unit, &
stderr => error_unit

implicit none

open(stdout, file='log.out')
open(stderr, file='log.err')

write(stdout, *) 'This goes to stdout.'
write(stderr, *) 'This goes to stderr.'

close(stdout)
close(stderr)

end program redirect_stdout_to_file

And voilà, we’re done! By opening files and assigning them reserved stdout and
stderr I/O units, you’re effectively instructing the compiler to send any output
intended for standard streams into these files. This will apply to print statements as
well! For example, if you type print *, 'where will this go?', the text will be written
to log.out rather than the screen.

6.5 New Fortran elements, at a glance
 read, print, and write—Statements for reading and writing data to files on

disk or standard streams, such as standard input, output, or error
 Format strings—For formatting values of any built-in data type into text.

Listing 6.15 Redirecting standard output and error streams to their own files

Gets standard output and
error unit constants from
the built-in module

Opens a file for each of the
stdout and stderr I/O units

Writes some text to
standard output, now
redirected to log.out

Writes some text to
standard error, now
redirected to log.err

Closes the files
when done

170 CHAPTER 6 Reading, writing, and formatting your data
 open, close, and inquire—Statements to open, close, and get information about
a file, respectively

 trim—A built-in function that returns the input character string without any
trailing blanks

Summary
 Six core syntax elements provide most of Fortran’s I/O functionality: read,

print, write, open, close, and inquire.
 Use read and write for input and output of any data, respectively.
 You can access standard input, output, and error streams from the iso_fortran

_env module as input_unit, output_unit, and error_unit.
 Fortran I/O units are unique integer identifiers that let you access standard

streams and files on disk that you work with, akin to file handles in other pro-
gramming languages. Use them in your code to write to standard streams in a
portable way.

 Use format strings to convert numbers and other non-text data into text. For
example, i3 formats an integer into text with width 3, whereas f5.2 will for-
mat a real number into text with a total width of 5 and a width of 2 for the
fractional part.

 You can use the open statement to open existing or new files, as well as to redi-
rect output from standard streams to files on disk.

 You can use the inquire statement to get information about a file, including
whether the file is open or not.

Part 3

Advanced Fortran use

In this part, you’ll get an introduction to parallelism and working with advanced
data structures.

 Chapter 7 introduces images and coarrays for parallel programming. This is
the parallel programming model that’s built into Fortran. In this chapter, you’ll
write your first program to analyze weather buoy data in parallel. Here, we’ll also
implement the parallel version of the tsunami simulator.

 Chapter 8 covers derived types, which is the Fortran concept of classes in
object-oriented programming. Derived types will allow you to create your own
custom data types that can have other data as components and procedures as
bound methods. In this chapter, we’ll transition the tsunami simulator from a
one-dimensional to a two-dimensional solver.

 In chapter 9, you’ll learn how to write generic procedures that can work on
arguments with any data type. This will be important in any scenario where
input data can come in more than one data type. You’ll also have your first
encounter with custom operators, beyond the built-in ones that we’ve been
working with so far.

 Finally, chapter 10 will teach you how to define your own operators for your
derived types and override the existing arithmetic or logical operators with your
own. You’ll see that this is quite powerful—it will allow you to create your own
data structures and your own rules to govern them. We’ll use these capabilities in
the tsunami simulator to make our parallel variables synchronize automatically
on assignment. At this point, we’ll have mostly completed our journey with the
tsunami simulator.

 This is the heaviest part of the book. Approach it with patience and an open mind.
At the end, you’ll be able to understand, reuse, and extend most of the existing For-
tran code in the wild. For the first time, you’ll also be able to write your own parallel
programs from scratch.

Going parallel
with Fortran coarrays
Parallel programming became more commonly used in the early 1990s when the
need for larger and faster solutions in physical sciences and engineering exceeded
what could be done with individual existing computers. Scientists and engineers
began connecting computers in intricate, dense networks and exchanging packets
of data between them. What used to be one impossibly large computational prob-
lem became feasible because each computer could work on a small subset of the
problem, and only communicate the data needed by other computers to proceed
with their calculations. This gave rise to the message-passing style of parallel pro-
gramming, later implemented as the Message Passing Interface (MPI) library. To
date, MPI remains the de facto standard for parallel programming in Fortran, C,
and C++ applications.

This chapter covers
 Processing weather buoy data in parallel

 Decomposing a problem between parallel
processors

 Using coarrays to exchange data between
processors

 The first parallel version of the tsunami
simulator
173

174 CHAPTER 7 Going parallel with Fortran coarrays
 Unfortunately, MPI programming is hard, to the point that the developers of par-
allel applications dubbed it “the assembly of parallel programming.” This is where
Fortran coarrays come in. Coarrays were introduced in the 2008 revision of the Stan-
dard as a minimal extension to Fortran syntax that would allow an efficient and robust
parallel model. Coarrays are very much like arrays, and use a similar indexing mecha-
nism to reference individual elements. In chapter 1, I strongly advocated for the use
of parallel programming to take advantage of modern CPU and interconnect archi-
tectures, and contrasted a simple data exchange program implemented using MPI
and more recent Fortran coarrays. There, I emphasized that coarrays offer a much
more elegant and concise way of expressing parallel algorithms compared to MPI.
Although parallel Fortran initially became known as Coarray Fortran, there’s much
more to it than coarrays, as I will explain later in this chapter. I believe that parallel
Fortran will make you rethink how to build high-performance applications from the
ground up.

 By now, you’re probably warmed up and ready to dive deep into parallel program-
ming. We’ll first build an application to process and analyze real-world weather buoy
data. In that exercise, you’ll learn how to break down the data and distribute it
between processors. You’ll also use coarrays for the first time to gather the distributed
data to a single processor. Finally, you’ll apply these skills to parallelizing the tsunami
simulator that we’ve been building since chapter 2.

7.1 Why write parallel programs?
The way the processor industry is going, is to add more and more cores, but nobody knows
how to program those things. I mean, two, yeah; four, not really; eight, forget it.

—Steve Jobs (2008)

You may be asking, Why write parallel programs? It seems like an unnecessary compli-
cation. In general, you’ll want to write parallel programs for two reasons:

 Too big to fit into memory—Some programs are too big to fit into a single com-
puter’s memory. For example, if you want to calculate statistics such as average
and variance on a data file that’s 20 GB, but your computer’s RAM can only fit 8
GB, you may be stuck. The parallel programming solution to this problem is to
load only a fraction of the file in each parallel computer, compute the statistics,
and only share the intermediate data required to compute the final results.

 Too slow to be useful—Even if your program can fit into memory, it may be too
computationally expensive to run on a single CPU. Consider this weather pre-
diction problem: If the forecast for the next day takes 12 hours to compute, it
has already lost a lot of its value by the time the program is done. Today’s oper-
ational forecast centers are able to deliver forecasts for a week ahead with only a
few hours of compute time by distributing the computational workload across
hundreds of CPUs.

Figure 7.1 illustrates these challenges.

175Processing real-world weather buoy data
You’ll find that most problems that take very long to compute are also too big to fit
into the memory of a single computer. Computational fluid dynamics problems like
the tsunami simulator definitely fall into both of these categories. So far, we’ve been
solving the shallow water equations over only 100 grid cells. But as we go to 1,000 or
10,000 grid cells for more realistic simulations, we’ll inevitably increase the memory
and computational footprint. We’ll soon tackle problem sizes for which parallel pro-
gramming will significantly reduce compute time.

7.2 Processing real-world weather buoy data
For a gentle entry into parallel programming, we’ll process and analyze a real-world
weather buoy dataset. This is a miniature example of the big data challenge: how to
process a large amount of data that may be too big to fit into memory, or may take too
long to process sequentially. The crux of the problem is in the sheer volume of data;
however, the computation itself can typically be carried out on subsets of the data
independently from one another. For this exercise to be tenable and easily repro-
duced on personal computers, I created a sample of a real weather dataset that’s small
enough to be easily downloaded, but large enough to demonstrate the application of
parallel data processing with Fortran.

 In this exercise, you’ll learn the following:

 How to distribute the data and workload between parallel processes
 How to exchange intermediate results between parallel processes using Fortran

coarrays

20 GB

Some problems are too big to fit

into a single computer's memory.

8 GB RAM

:(

:)

Parallel processing is one solution.

Figure 7.1 When a problem is too big to fit
into a single computer’s memory, one solution
is to split the input data and process it in
parallel. Because each computer will work on
only a fraction of the calculation, this program
will also finish in a fraction of the time.

176 CHAPTER 7 Going parallel with Fortran coarrays
I’ll first describe the data and show you how to get it, and then we’ll dive straight into
the serial implementation of the program. We’ll then identify which parts of the pro-
gram we can parallelize and how.

7.2.1 About the data

The dataset that we’ll use in this exercise consists of hourly measurements of several
weather, ocean, and wave parameters, recorded by buoys managed by the NOAA
National Data Buoy Center (NDBC). One such buoy is shown in figure 7.2.

Why are these buoys so important? There are a few big reasons:

 They report real-time weather, wave, and ocean conditions and help provide
guidance and safety warnings to mariners.

 The data is fed in real time into weather and ocean prediction models, making
them more accurate.

 Most buoys now accrue measured data for at least a few decades. These records
allow for unprecedented insights into the change of climate in the recent past.

There are hundreds of these buoys located throughout the world’s oceans, but in this
exercise, we’ll focus on nine buoys located in the Gulf of Mexico (figure 7.3).

 The dataset contains hourly measurements of wind speed, air pressure, air tem-
perature and humidity, water temperature, and ocean wave height and period, in the
comma-separated value (CSV) format, for the years 2005 through 2017. Data from

Figure 7.2 A weather and wave buoy
operated by the NDBC. Instruments that
measure wind, temperature, humidity, and
pressure are located on the mast from top
to bottom. Accelerometers inside the hull
record the wave-induced motion of the
buoy, which is used to derive wave height
and other properties. Photograph courtesy
of NDBC (http://www.ndbc.noaa.gov).

http://www.ndbc.noaa.gov

177Processing real-world weather buoy data
each buoy are stored in their own respective file, so we have a total of nine data files,
one for each buoy:

2005-01-01_00:00:00, 9.4, 1020.9, 24.2, 20.5, 24.6, 2.22, 6.11
2005-01-01_01:00:00, 8.6, 1021.5, 24.0, 20.6, 24.5, 2.41, 6.44
2005-01-01_02:00:00, 7.3, 1021.8, 24.3, 20.9, 24.5, 2.16, 5.97
2005-01-01_03:00:00, 7.6, 1022.0, 24.5, 20.6, 24.5, 2.26, 6.38
2005-01-01_04:00:00, 7.8, 1022.4, 24.6, 20.1, 24.5, 2.03, 5.98
...

This is a sample of weather data that we’ll use in this exercise. From left to right, the
columns are: Timestamp (UTC), wind speed (m/s), pressure (mbar), air temperature
(deg. C), dew point (deg. C), water temperature (deg. C), wave height (m), and wave
period (s).

 To give you an idea of what the data look like through time, I plotted the wind
speed measured by buoy 42002 during January of 2017 in figure 7.4. The peaks on
January 8 and January 24 are associated with the passage of cold fronts through the
Gulf of Mexico, much like the one that we used in exercises in chapters 2 and 3. This
is also just a small subset of the data. The full dataset for this exercise contains 13 years
of hourly measurements of several weather, ocean, and wave parameters, for each of
the nine buoys. I use 13 years here to keep the problem small enough. However, if
you’re feeling adventurous, I encourage you to explore longer time series and process
more buoys available from NDBC. Some of the buoy measurements go as far back as
the early 1970s!

Figure 7.3 Locations of the nine weather buoys in the Gulf of Mexico used
in this exercise

178 CHAPTER 7 Going parallel with Fortran coarrays
7.2.2 Getting the data and code

The complete source code for the weather buoy exercise is available on GitHub at
https://github.com/modern-fortran/weather-buoys. If you use git, clone it directly
from the command line:

git clone https://github.com/modern-fortran/weather-buoys

Otherwise, you can download it as a zip file from http://mng.bz/aRVo.
 The CSV data files are located in the weather-buoys/data directory. I encourage

you to explore the data files from your favorite text editor. The repository also con-
tains full code for this exercise. I suggest that you defer looking at the parallel code
until the end of this exercise.

7.2.3 Objectives

Let’s set some simple objectives for our data analysis exercise. This should be chal-
lenging enough to require data decomposition and communication in parallel mode,
but simple enough to not get bogged down in the details of math or statistics. To that
end, I’d like to know

1 What was the maximum measured wind speed in the Gulf of Mexico in the
2005-2017 period? Which buoy recorded the maximum value?

2 Which buoys had the strongest average winds, and which had the lowest average
winds? What were their respective values?

10.0

W
in

d
 s

p
e

e
d

 [
m

/s
]

7.5

12.5

17.5

15.0

20.0

5.0

2.5

0.0

Measured wind speed at buoy 42002

2017–01–05 2017–01–12 2017–01–19 2017–01–26

Figure 7.4 Time series of wind speed measurements at buoy 42002 during January of 2017

https://github.com/modern-fortran/weather-buoys
http://mng.bz/aRVo

179Processing real-world weather buoy data

Alloc
maxim
and m

w
sp

Lo

b

Re
m

To find the answers, we’ll need our program to have a few elements:

 Reading each CSV file and storing the wind speed data in arrays
 Finding the maximum and mean (average) wind speed values for each buoy
 Comparing the maximum and mean wind speed between all buoys

You could program each of these tasks without parallel considerations. However, if we
execute this program serially, each file will be processed in order, one at a time. For
many large files, this approach can become infeasible or even impossible. This is
where parallel data decomposition will come to our aid!

 If we implement our program correctly, we should get output like this:

Maximum wind speed measured is 40.9000015 at station 42001
Highest mean wind speed is 6.47883749 at station 42020
Lowest mean wind speed is 5.43456125 at station 42036

7.2.4 Serial implementation of the program

Before we devise our parallelization strategy, let’s first go over the serial program, as
shown in the following listing, so we understand how each step works.

program weather_stats

use mod_arrays, only: denan, mean
use mod_io, only: read_buoy

implicit none

character(5), allocatable :: ids(:)
character(20), allocatable :: time(:)
real, allocatable :: wind_speed(:)
real, allocatable :: max_wind(:), mean_wind(:)
integer :: i

ids = ['42001', '42002', '42003', '42020', '42035', &
'42036', '42039', '42040', '42055']

allocate(max_wind(size(ids)), mean_wind(size(ids)))

do i = 1, size(ids)
call read_buoy('data/buoy_' // ids(i) // '.csv', &

time, wind_speed)
wind_speed = denan(wind_speed)
max_wind(i) = maxval(wind_speed)
mean_wind(i) = mean(wind_speed)

end do

print *, 'Maximum wind speed measured is ', &
maxval(max_wind), 'at station ', ids(maxloc(max_wind))

print *, 'Highest mean wind speed is ', &
maxval(mean_wind), 'at station ', ids(maxloc(mean_wind))

print *, 'Lowest mean wind speed is ',

Listing 7.1 Serial implementation of the weather buoy processing program

Helper functions for
working with arrays

Subroutine to read
the buoy CSV data

Dynamic arrays for
timestamps and
wind speed

Temporary arrays for maximum
and mean wind speed

Buoy IDs to
process

ates
um
ean
ind

eeds

ops
over
uoys

Reads buoy file and
stores timestamps and
wind speed in arrays

moves
issing
values

Calculate maximum and
mean values for this buoy

Writes the
results to
screen

180 CHAPTER 7 Going parallel with Fortran coarrays
minval(mean_wind), 'at station ', ids(minloc(mean_wind))

end program weather_stats

We use this array to determine both the number of buoys to process and the data file
names. We allocate the dynamic arrays max_wind and min_wind to be of the same
length as ids. We’ll use these arrays to store intermediate results: maximum and mean
values for each buoy. The bulk of the work happens within the do loop and consists of
the following:

1 Reading the data using the read_buoy subroutine, and storing it into the
wind_speed array

2 Removing missing values (nan) using the denan function
3 Calculating the maximum wind speed using the maxval built-in function
4 Calculating the mean wind speed using the mean function

Finally, we use the minval, maxval, minloc, and maxloc built-in functions to find the
minimum and maximum values, and their respective indices, of the arrays max_wind
and min_wind. Whereas inside the do loop we were evaluating maxima in time for
each buoy, at this step we compare the values between buoys. Figure 7.5 illustrates the
program flow.

Note that for removing missing data (not a number (NaN)) and calculating the mean
value of the arrays, we defer to the external functions denan and mean, respectively.
To see how they’re implemented, take a peek inside src/mod_arrays.f90. If you’re

buoy_42001.csv

buoy_42002.csv

buoy_42055.csv

maxval(max_wind), ids(maxloc(max_wind))

maxval(mean_wind), ids(maxloc(mean_wind))

minval(mean_wind), ids(minloc(mean_wind))

do i = 1, size(ids)

call read_buoy()

wind_speed = denan(wind_speed)

max_wind(i) = maxval(wind_speed)

mean_wind(i) = mean(wind_speed)

end do

weather_stats.f90

Image 1

All files are
processed
in order.

In serial mode, a single
image works through each
of the files one by one.

Collective calculation
over all buoys is done
at the end.

.

.

.

Figure 7.5 The flow of the serial weather_stats program. “Image 1” here refers to a single
serial core or CPU.

181Parallel processing with images and coarrays
interested in how the CSV data reader (read_buoy) works, it’s defined in src/mod
_io.f90. The main program is defined in src/weather_stats.f90.

How can we parallelize the program in listing 7.1 in the most straightforward way?
What you need to look for is what region of the program repeats over different inputs.
Recall the discussion about embarrassingly parallel problems in chapter 1. They’re
the kind of problems where you can break the input data down into pieces and work
on each piece independently, regardless of the rest of the data. In the weather_stats
program, the do loop over the buoy data files is like that:

do i = 1, size(ids)
call read_buoy('data/buoy_' // ids(i) // '.csv', time, wind_speed)
wind_speed = denan(wind_speed)
max_wind(i) = maxval(wind_speed)
mean_wind(i) = mean(wind_speed)

end do

If I loop over the buoys in any order, I’ll still end up with the same result for max_wind
and mean_wind. This means that I can safely dispatch the processing of each buoy file
to a different processing core or thread. However, this also means that the elements of
max_wind and mean_wind will be scattered across the parallel processes. To calculate
the global minima and maxima across all buoys, we’ll need to gather the data on one
processor. This is where Fortran coarrays come in.

7.3 Parallel processing with images and coarrays
What is the smallest change required to convert Fortran into a robust and efficient
parallel language? Our answer is a simple syntactic extension. It looks and feels like
Fortran and requires Fortran programmers to learn only a few new rules.

—John Reid, Coarrays in the next Fortran Standard

You need to grasp two concepts to get started with parallel Fortran programming:
images and coarrays. A Fortran image refers to a parallel process, be it a thread or a
core. Each image exists with its own copy of the program and its local memory. Images
execute the program independently from one another, until instructed otherwise.
You can tell the images to wait for each other; that is, synchronize them. You can also

Run it yourself!
If you cloned the repository from GitHub and installed OpenCoarrays (see appendix
A), you’re good to go! Inside the weather-buoys directory, type make weather_stats
to build the serial program, and run it by typing ./weather_stats.

Note that the weather_stats program doesn’t use any coarrays or other parallel fea-
tures at this point. However, for simplicity, the repository is configured to build using
the OpenCoarrays wrapper caf, which can be used to build both serial and parallel
programs.

182 CHAPTER 7 Going parallel with Fortran coarrays
order the images to send or receive data between one another. Coarrays are the main
mechanics for doing this, and I’ll spend most of the time explaining how they work.

7.3.1 Fortran images

When writing a parallel Fortran program, you don’t have to worry about whether
you’re writing a multithreaded concurrent application that’s meant to run on a single
core, a shared-memory multicore application, or a distributed memory application.
The code that you write is independent of the underlying architecture. Fortran intro-
duces the concept of image, which identifies parallel processes and can map to one or
more threads in a single core, or multiple cores in a shared- or distributed-memory sys-
tem. For example, if you ran multiple images on a single core, the application would
behave very much like a threaded application in some other language, like C or Python.
This would give you concurrency without necessarily cutting down on the compute
time. On the other hand, if a separate core was available for each image, the application
would speed up significantly. This way, you focus on the parallel algorithm and let the
compiler do the dirty work when it comes to executing the program on different archi-
tectures, using the Single Program, Multiple Data (SPMD) model (see sidebar).

The implication of the SPMD paradigm is that you can invoke any serial program in
parallel, without modifications! It’s easiest to illustrate this with the simplest meaning-
ful program (figure 7.6).

 Now go ahead and try running the weather_stats program in parallel using, for
example, two images:

cafrun -n 2 ./weather_stats

The output is the same as when we ran this program, but repeated twice:

Maximum wind speed measured is 40.9000015 at station 42001
Highest mean wind speed is 6.47883749 at station 42020
Lowest mean wind speed is 5.43456125 at station 42036
Maximum wind speed measured is 40.9000015 at station 42001
Highest mean wind speed is 6.47883749 at station 42020
Lowest mean wind speed is 5.43456125 at station 42036

Single Program, Multiple Data
Fortran parallelism follows the so-called Single Program, Multiple Data (SPMD)
model. With SPMD, a single program is replicated on each invoked parallel process,
with its own independent set of data objects. In a nutshell, this means that if we
invoke the program on, say, four parallel images, each processor will run an exact
copy of the same program and will have an independent copy of the working data in
local memory. This is true regardless of whether the program is running on a shared-
memory or distributed-memory system. The logic inside the program then determines
and assigns a different workload for each image and, if necessary, exchanges data
between images. SPMD is the most common style of parallel programming.

183Parallel processing with images and coarrays
If you look at figure 7.6, this is not surprising at all. What you did is load a copy of the
weather_stats program on two images, and each of them ran it and wrote their respec-
tive output to the screen. Now you must be thinking, This can’t be super useful, can it?
This is where inquiring about the images within the program comes in! You, the pro-
grammer, have to tell the images what to do differently. Looking back at the diagram
in figure 7.5, we should tell each image to work on a different subset of the data. Let’s
see how we can do that by inquiring about the images themselves.

7.3.2 Getting information about the images

To tell the images what to work on, we first need to know more about the images
themselves, specifically how many there are and who they are. Fortran provides the
functions this_image and num_images to do exactly this. Here’s how we write the image
number and total number of images to screen:

program hello_images
print *, 'I am image', this_image(), 'of', num_images()

end program hello_images

Let’s store this into a file, hello_images.f90, compile it, and run it:

caf hello_images.f90 -o hello_images
cafrun -n 4 hello_images
I am image 1 of 4
I am image 2 of 4

cafrun –n 4 ./hello

Image 1

write(,) &∗ ∗

'Hello world'

Image 2

write(,) &∗ ∗

'Hello world'

Image 3

write(,) &∗ ∗

'Hello world'

Image 4

write(,) &∗ ∗

'Hello world'

Hello world

Hello world

Hello world

Hello world

Spawn four parallel images;
each will execute its own
copy of the program.

Each image writes the
output of the program
on the screen.

Figure 7.6 A serial “Hello, World!” program executed in parallel on four images

184 CHAPTER 7 Going parallel with Fortran coarrays
I am image 3 of 4
I am image 4 of 4

Based on this, you probably get the idea how these functions work, but let’s go over
the details:

 this_image—A built-in function that, when called without arguments, returns
an integer index of the current image. Fortran array indices start from 1
(unlike C or Python, which start from 0), and this_image follows the same con-
vention. For now, this is all you need to know about this_image. We’ll explore a
bit more advanced use in chapter 12.

 num_images—A built-in function that takes no arguments and returns an inte-
ger total number of images. The result of this function will always match the
argument number of images passed to cafrun -n.

Both this_image and num_images are automatically available in any Fortran pro-
gram—they don’t need to be imported from a module. In case you have some experi-
ence with parallel programming with MPI, these functions are the analogs of the
mpi_comm_rank and mpi_comm_size subroutines.

7.3.3 Telling images what to do

So far, we’ve used this_image and num_images to instruct each image to tell us who it
is and how many total images there are. This is useful information, but we still haven’t
done anything with it yet. How can we use this information to split the weather buoy
data between images? Recall from listing 7.1 that we define the list of data files by
specifying the array of buoy IDs:

ids = ['42001', '42002', '42003', '42020', '42035',&
'42036', '42039', '42040', '42055']

To break down the data, we need to split this array into nearly equal pieces and assign
each piece to an image. For example, if we work with two images, image 1 should have
ids = ['42001', '42002', '42003', '42020', '42035'], and image 2 should have ids
= ['42036', '42039', '42040', '42055']. For three images, each should have three
buoy IDs total. You get the idea.

 For exercise, let’s implement this as an external function. (See the “Exercise 1”
sidebar.) You have all the ingredients: declaring arrays like we did in chapter 2, defin-
ing a function and input arguments like we did in chapter 3, and the built-in functions
this_image and num_images that we just covered.

 If you got the exercise right, great! Otherwise, no worries; you can take a look at
my implementation in the “Answer key” section near the end of the chapter. This
function is also a necessary ingredient for the parallel tsunami simulator, so we’ll
reuse it there. Right now, let’s see how we can use it to distribute the buoy data
between images, as listing 7.2 demonstrates.

185Parallel processing with images and coarrays
program weather_stats_parallel
...
use mod_parallel, only: tile_indices
...
integer :: is, ie, indices(2)

ids = ['42001', '42002', '42003', '42020', '42035',&
'42036', '42039', '42040', '42055']

indices = tile_indices(size(ids))
is = indices(1)
ie = indices(2)

allocate(max_wind(is:ie), mean_wind(is:ie))

do i = is, ie
call read_buoy('data/buoy_' // ids(i) // '.csv', time, wind_speed)
wind_speed = denan(wind_speed)
max_wind(i) = maxval(wind_speed)
mean_wind(i) = mean(wind_speed)

end do
...

end program weather_stats_parallel

Exercise 1: Finding the array subranges on each image
Write a function tile_indices that does the following:

 Takes an integer size of a global array. In our example, this corresponds to
size(ids), or 9.

 Returns an integer array of size 2, which contains a start and end index that
define the subset of the array on each image, or the so-called tile.

For example:

 tile_indices(9) invoked on one image should return [1, 9].
 tile_indices(9) invoked on two images should return [1, 5] and [6, 9]

on images 1 and 2, respectively.
 tile_indices(9) invoked on three images should return [1, 3], [4, 6],

and [7, 9], on images 1, 2, and 3, respectively.

Hints:

 Use integer :: tile_indices(2) to declare the result of the function.
 Use the built-in function mod(a, b) that returns the remainder of a divided by b.

For bonus points: Can this function be declared as pure?

You can find the solution to this exercise in the “Answer key” section near the end
of this chapter.

Listing 7.2 Finding a subrange for buoy IDs on each image

Imports the function from
the external module

Declares subrange
indices

Calculates and
stores subrange
indices Allocates arrays over

the local subranges

Each image loops over its
own unique subrange.

186 CHAPTER 7 Going parallel with Fortran coarrays

Alloc
a full

coa
In listing 7.2, I only included relevant additions to the serial version of the program.
How does the data distribution work here? The key line is in the invocation of
tile_indices(size(ids)). Even though each image invokes the same code, this
function will return different start and end indices for each image! This is exactly the
point at which our parallel universes start to bifurcate. At the end of the do loop, each
image will have processed a subset of data files. However, our work is not done yet.
Take a look at figure 7.5 again. We have one last step, which is to do a collective calcu-
lation over all nine elements of max_wind and mean_wind. But this may be trickier now
that we’ve scattered the data across images. Enter coarrays!

7.3.4 Gathering all data to a single image

Let’s look at how the data gathering pattern is implemented in code, as shown in the
following listing.

program weather_stats_parallel
...
real, allocatable :: gather(:)[:]
...
allocate(gather(size(ids))[*])

gather(is:ie)[1] = max_wind
sync all
if (this_image() == 1) then

print *, 'Maximum wind speed measured is ', maxval(gather),&
'at station ', ids(maxloc(gather))

end if
...

end program weather_stats_parallel

This listing includes only the added code relevant for gathering data to image 1.
There are five new elements here:

1 Declaring a coarray with real, allocatable :: gather(:)[:]. Notice the square
brackets! With regular arrays, we used only parentheses.

2 Allocating a coarray with allocate(gather(size(ids))[*]).
3 Sending the data (max_wind) from each image to image 1 with gather(is:ie)[1]

= max_wind.
4 Synchronizing all images with sync all. This will make all images wait for each

other at this point. This ensures that image 1 doesn’t calculate and print the
collective results before it receives data from all other images.

5 Use this_image() in the if statement to allow only image 1 to enter and do the
collective calculation and printing to screen.

Figure 7.7 illustrates this pattern.

Listing 7.3 Gathering distributed data to image 1

ates
-size
rray

Sends max_wind from each
image into a subrange of
gather on image 1

This forces all images
to wait for each other.

Only image 1 will enter
this if block and write
the results to screen.

187Coarrays and synchronization, explained
The full parallel program is defined in src/weather_stats_parallel.f90. You can build it
by typing make weather_stats_parallel from the weather-buoys directory. To run it
in parallel, use the cafrun command:

cafrun -n 4 ./weather_stats_parallel

Does it produce the same results as the serial program? Try to run it with different
numbers of images. How does the runtime change between running the program with
one, two, three, four, or five images?

7.4 Coarrays and synchronization, explained
In the previous section, you learned how to decompose the input data and parallelize
a simple data processing and analysis program. However, parallelizing the tsunami
simulator will present us with a unique challenge, because there we’ll need to send
and receive data between images at every time step, and carefully synchronize the
images as we iterate the solution in time. This is where things become interesting (and
challenging!) for the parallel programmer.

gather(is:ie)[1] = max_wind

sync all

maxval(gather), maxloc(gather)

do i = is, ie

call read_buoy()

wind_speed = denan(wind_speed)

max_wind(i) = maxval(wind_speed)

mean_wind(i) = mean(wind_speed)

end do

weather_stats_parallel.f90

Image 1

max_wind

mean_wind

Image 2

max_wind

mean_wind

In parallel mode, each
image works on a subset
of files.

Intermediate
results are local
in memory to each
image.

Intermediate results
max_wind and mean_wind
are gathered on image for1
collective calculation
over all buoys.

Figure 7.7 The flow of the parallel buoy processing program

188 CHAPTER 7 Going parallel with Fortran coarrays
7.4.1 Declaring coarrays

Recall from chapter 2 how we declared a regular array:

real, dimension(10) :: a

or, in shorter form:

real :: a(10)

The snippet declares a real array, a, of size 10. The attribute dimension here is key.
Declaration of coarrays works the same way, except that you’ll use the attribute
codimension instead:

real, codimension[*] :: a

Or shorter:

real :: a[*]

This snippet declares a scalar coarray, a, a copy of which will be created on every image
that runs the program. For example, on four images, each will have a local instance of
a real variable a. Two syntax rules for declaring coarrays stand out:

1 The codimension attribute uses square brackets, not parentheses. This rule
applies to indexing the elements of a coarray, as we’ll see in a bit.

2 The coarray size, indicated in square brackets, must be *, not any other literal
constant or parameter, because the total number of images is determined when
loading the program on the OS-level, and not programmatically.

Notice how I emphasized that the most recent snippets declare a scalar coarray, not an
array coarray. This may confuse you at first because arrays and coarrays have such sim-
ilar names. However, it helps to think about coarrays as completely separate entities
from arrays that share some of their characteristics. To declare a coarray that’s also an
array, combine the rules for declaring each of them:

real, dimension(10), codimension[*] :: a

or, in shorter form:

real :: a(10)[*]

This snippet will declare a real array a with 10 elements on each image.

7.4.2 Allocating dynamic coarrays

Like with regular (noncoarray) variables, coarrays can be made allocatable, which is
necessary whenever we don’t know the size or shape of the variable at compile time.

 For example, you’d declare an allocatable array coarray like this:

real, dimension(:), codimension[:], allocatable :: a

189Coarrays and synchronization, explained
Or, in shorter form:

real, allocatable :: a(:)[:]

The same rules apply as with allocating regular variables. The following snippet will
allocate a with 10 elements on each image:

allocate(a(10)[*])

Like any other allocatable variables, coarrays can also be deallocated:

deallocate(a)

This frees the memory used by a on all images.

7.4.3 Sending and receiving data

The key to sending or receiving data with coarrays is understanding how to reference
values on remote images. There are two ways to do this:

1 Without square brackets—The reference is that of the local image; for example,
the following will assign a value to coarray a on the current image:

a = 3.141

2 With square brackets—The image is indicated with a scalar integer inside the
brackets; for example:

a[2] = 3.141

When indexing a coarray, the number inside the square brackets is called a coindex. A
coindex must be within the bounds of existing images. If we run a program with
images [1, 2, 3, 4], a coarray must not be coindexed outside of that range.

 You are allowed to use a coindex that matches the local image. For example, this
snippet

if (this_image() == 1) a[1] = 3.141

is semantically equivalent to

if (this_image() == 1) a = 3.141

Synchronization on allocate and deallocate
Allocating or deallocating a coarray always triggers a synchronization of images. Think
of it as there always being an implicit sync all anytime you allocate or deallocate a
coarray.

190 CHAPTER 7 Going parallel with Fortran coarrays

Initia
to zer
all im

A

th

All i
w

each
Let’s look at a program that demonstrates various ways you can reference and copy
data between remote images. We’ll first use an integer coarray a to send the value of a
variable from image 1 to image 2, assign a new value to it on image 2, and then send it
back from image 2 to image 1. Finally, we’ll confirm from image 2 that image 1 has
updated its value of a:

caf coarrays.f90 -o coarrays
cafrun -n 2 ./coarrays
Image 1 has value 1
Image 1 sending new value to image 2
Image 2 has value 2
Image 2 sending new value to image 1
Image 2 sees that image 1 now has value 4

The following listing provides the complete code of the program.

program coarrays

implicit none

integer :: a[*]

if (num_images() /= 2) &
error stop 'Error: This program must be run on 2 images'

a = 0

if (this_image() == 1) then
a = 1
print *, 'Image ', this_image(), ' has value ', a
print *, 'Image ', this_image(), ' sending new value to image 2.'
a[2] = 2 * a

end if

sync all

if (this_image() == 2) then
print *, 'Image ', this_image(), ' now has value ', a
print *, 'Image ', this_image(), ' sending new value to image 1.'
a[1] = 2 * a

end if

sync all

if (this_image() == 2) &
print *, 'Image ', this_image(), &

' sees that image 1 now has value ', a[1]

end program coarrays

Listing 7.4 Sending and receiving data between two images

Declares an integer
scalar coarray

lizes
o on
ages

Only image 1 will
enter this if block.

ssigns a
value on
is image

Sends a value from
this image to image 2

mages
ait for
 other
here.

Only image 2 will
enter this if block.

Sends a value from
this image to image 1

191Coarrays and synchronization, explained
Compiling and running the program in listing 7.4 confirms that the sending and
receiving of data between two images works as expected.

 With this program, we exercised both assigning a value on all images using familiar
syntax and assigning a local value to a remote coarray. Notice that I also used the sync
all statement in this example. This ensures that image 2 doesn’t proceed into its if
block before it receives the coarray from image 1. Let’s see in more detail how syn-
chronization of images works.

7.4.4 Controlling the order of image execution

When executing the program on multiple images, there’s no imposed order in which
the images execute—they all run at their own pace and independently from each other.

 Any program that requires an exchange of data between processors will also
require synchronization at one or more times during the calculation. This is true of
the tsunami simulator as well! If image 2 needs data from image 1, it’s important that
image 1 send that data before it updates it with the solution in the next iteration. This is
where Fortran’s sync statement comes in. sync is used to request synchronization
between any or all parallel images. The most basic form of the sync statement is sync
all—synchronize all images. sync all basically states that no image will go past this
point until all other images have arrived (figure 7.8).

For those of you who have experience with parallel programming with MPI, the sync
all statement is equivalent to call mpi_barrier().

 To illustrate using synchronization to enforce order, the following listing demon-
strates the coarray “Hello, World!” program from before, but with a slight twist.

program hello_images_ordered
implicit none

Listing 7.5 Synchronizing the images to enforce order

program hello

...

do n = 1, num_images()

...

sync all

end do

...

end program hello

1Images:

This statement
makes all images
wait for each other.

Image 2 won’t proceed
until everybody is here.

All images run
at their own pace...
...until synchronized!2 3 4

Figure 7.8 Using the sync all statement to make images wait for each other

192 CHAPTER 7 Going parallel with Fortran coarrays

th
integer :: n
do n = 1, num_images()

if (this_image() == n) &
print *, 'Hello from image', this_image(), 'of', num_images()

sync all
end do

end program hello_images_ordered

The output of this program will be the same as what you saw in subsection 7.3.2, except
that here the images are guaranteed to report in ascending order.

7.5 Toward the parallel tsunami simulator
If you’re reading this book in order, you know that we’ve been building a tsunami sim-
ulator from scratch, and adding more to it in each chapter. In this chapter, we’ll still
refactor the tsunami code and apply what we’ve just learned. However, unlike in previ-
ous chapters, this time our simulation results will be exactly the same, because the
only change that we’ll make will be to go from serial to parallel!

7.5.1 Implementation strategy

Before we start refactoring the solver for parallel execution, let’s refresh our memory
about where we left off.

 Relative to the top-level directory of the project, the main program is located in
src/ch04/tsunami.f90. The core of our solver is the do loop to integrate the solution
in time:

time_loop: do n = 1, num_time_steps

u = u - (u * diff(u) + g * diff(h)) / dx * dt

h = h - diff(u * (hmean + h)) / dx * dt

print *, n, h

end do time_loop

As we saw in chapter 3, assignments for velocity u and water height h are whole-array
operations, and we don’t need to loop over the elements. Hopefully, we should be
able to do the same in parallel mode, except that each image will work on its own sec-
tion of the array. Now, recall what we did in section 7.3 where we parallelized the
weather buoy program. We divided the input array into a number of equal parts, a
number that matched the total number of images. Then we did the core calculation
in the same way as we did in the serial version of the program. Let’s apply the same
strategy here, keeping in mind that we need to send, receive, and synchronize data
at every step of the time_loop. This is because at each time step, the spatial differ-
ence function diff will need nonlocal data that belong to neighbor images, as shown
in figure 7.9.

Loops over the
images in order

If it’s
my turn,
print to

e screen.
Synchronizes with everybody
before moving on

Iterates in time

Solves for velocity

Solves for water

Writes the water height
array to screen

193Toward the parallel tsunami simulator
Recall from src/ch04/mod_diff.f90 how our difference function works:

do concurrent(i = 2:im-1)
dx(i) = 0.5 * (x(i+1) - x(i-1))

end do

Each element of the result of the diff function depends on the elements immediately
next to it. This is a classic example of a nonembarrassingly parallel (or communication-
intensive) function, in which we have to send and receive data between neighbor images
before doing the calculation. To better understand why, see figure 7.9.

 In serial mode (figure 7.9, top), array indices go from 1 to the total size of the array
(12, in this case), and there’s no distinction between global and local indices. In paral-
lel mode (figure 7.9, bottom), each image holds a subsection of the array, with local
indices going from 1 to the total size of the subsection of the array (4, in this case).
Each local index maps to a unique global index: local indices 1–4 on images 1, 2, and
3 map to global indices 1–4, 5–8, and 9–12, respectively.

 When invoking the diff(x) function, the calculation of each array element x(i)
depends on the two elements immediately next to it: x(i-1) and x(i+1). What hap-
pens on image 2 when we try to calculate the difference for element 5? We need

1 2 4 5 6 7 8

In serial mode, the whole array is present
in memory, and we can easily perform the
difference operation; for example:

Serial

dx(8) = 0.5 * (x(9) - x(7))

3 10 11 129

1 3 4

Dashed boxes are halo cells.
They are needed for calculation
and must be received from
neighbor images.

In parallel mode, each image must
communicate its first and last
element with its neighbors.

Parallel Image 1

Image 2

Image 3

2

1 3 42

1 3 42

Figure 7.9 Communicating data between neighbor images. The numbers in each box are array
indices. Each image computes the solution for the elements in solid boxes; however, values from
dashed boxes are needed for the computation and must be received from neighbor processors. The
far-end communication between images 1 and 3 is to satisfy the periodic boundary condition.

Loops over all elements
except first and last

Takes centered
difference in space

194 CHAPTER 7 Going parallel with Fortran coarrays
elements 4 and 6, but the problem is that element 4 is computed by image 1, so image
2 doesn’t have it in its local memory! This is a new challenge that we didn’t encounter
before, and it requires performing the communication pattern before each invoca-
tion of the diff function.

 This is where the concept of halo cells becomes useful. Halo cells refer to array ele-
ments that belong to neighbor images, but are needed locally to perform the calcula-
tion. In the example of the diff function, if index i points to the first array element
on the local image, x(i-1), which belongs to a neighbor image, must be received and
stored into an array element on the local image.

 Another important concept to understand is that of global and local indices. Global
indices are the array indices that cover the whole array, like in the serial program. In
figure 7.9, global indices go from 1 to 12. Local indices are the indices of the array
subsets that each image sees in its local memory. In this case, the local indices go from
1 to 4 on each of the three images. However, to accommodate halo cells, we need to
add one element on both ends, so the local indices in memory will go from 0 to 5, but
only elements 1 through 4 will be computed locally.

 To make the tsunami simulator work in parallel, each image must carry out the fol-
lowing steps:

1 Determine neighbor images.
2 Determine start and end indices on each image, and allocate the coarrays

accordingly.
3 Update the halo cells and compute the solution.

Let’s go over these steps one at a time. You can follow the next few subsections and
build the parallel code together with me if you want.

7.5.2 Finding the indices of neighbor images

Looking back at figure 7.9, it’s obvious who the neighbors are for each image. For
image 1, the left and right neighbors are images 3 and 2, respectively. For image 2,
they’re images 1 and 3. And for image 3, they’re images 2 and 1. Let’s generalize this
rule so that it works for any number of images. Try to implement it as an external
function! It’s a necessary ingredient for getting the parallel tsunami simulator to work,
so you can also skip ahead and use it out of the box. I defined it in the mod_parallel
module in src/ch07/mod_parallel.f90.

Exercise 2: Writing a function that returns the indices of neighbor images
To exchange data with the neighbors, we need to know who they are! Write a function
that can be invoked on any image and that returns the image numbers of the neigh-
bors to the left and to the right. The right neighbor of the last image should be the
first image, and the left neighbor of the first image should be the last image, to sat-
isfy the periodic boundary condition.

195Toward the parallel tsunami simulator

Gl
a

Gl
ind
In the the main program, each image will invoke this function and store the neighbor
image indices in local variables:

integer(int32) :: neighbors(2)
integer(int32) :: left, right

neighbors = tile_neighbors()
left = neighbors(1)
right = neighbors(2)

Now that we know who our neighbors are, the next step is to determine the start and
end indices on each image and to allocate the coarrays.

7.5.3 Allocating the coarrays

To allocate the water height and velocity as coarrays over appropriate sections, we
need to know their start and end indices on each image. Sounds familiar? We already
did this in section 7.3 and exercise 1! All we have to do here is properly call that func-
tion and store the start and end indices in local variables. I called the function
tile_indices, and you can find it both in the “Answer key” for Exercise 1 near the
end of this chapter and in the tsunami repository in src/lib/mod_parallel.f90.

 The following listing provides the relevant section of src/app/tsunami.f90 that cal-
culates the start and end indices on each image and allocates the coarrays accordingly.

integer(int32), parameter :: grid_size = 100
...
real(real32), allocatable :: h(:)[:], u(:)[:]
real(real32), allocatable :: gather(:)[:]
real(real32), allocatable :: hmean(:)
...
integer(int32) :: indices(2)
integer(int32) :: is, ie
integer(int32) :: ils, ile

Hints:

 The function should take no input arguments.
 All you need is the this_image and num_images functions to work out the logic.
 Use integer :: tile_neighbors(2) to store the results into a single variable.

The solution is given in the “Answer key” section near the end of this chapter, and is
included in src/ch07/mod_parallel.f90.

Listing 7.6 Allocating the coarrays with the correct start and end indices

Temporary array to store
results of tile_neighbors()

Variables that will
hold the indices

Invokes the function and stores the
result into a temporary array

Copies from the temporary
array into target variables

obal
rray
size

Declares water height
and velocity as
allocatable coarrays

Will be used to gather
and write water height
data to screenTemporary

array to store
tile indicesobal

ices Local indices,
excluding halo

196 CHAPTER 7 Going parallel with Fortran coarrays

L
mem
ind

inclu
integer(int32) :: ims, ime
...
indices = tile_indices(grid_size)
is = indices(1)
ie = indices(2)

tile_size = grid_size / num_images()
ils = 1
ile = tile_size
ims = ils - 1
ime = ile + 1

allocate(h(ims:ime)[*])
allocate(u(ims:ime)[*])
allocate(hmean(ims:ime))

allocate(gather(grid_size)[*])

There’s an important distinction between local start and end indices ils and ile and
memory indices ims and ime. The former are the indices over each image that will
compute and update the solution at each step. The latter include the halo points and
are the indices that each image must have in memory to do the computation over the
ils:ile range. Let’s see how exactly that works out in the implementation of our
main time loop.

7.5.4 The main time loop

We’re now ready to apply the parallel skills we learned in this chapter: referencing
coarray elements from other images to exchange data, and synchronizing the images.
Following the halo exchange pattern in figure 7.9, for both the water height and
velocity arrays, we’ll copy the elements from each end into the halo cells of each of
our neighbors. An example of sending the first element from the local image to the
left neighbor’s halo cell is illustrated in figure 7.10.

ocal
ory

ices,
ding
halo

Calculates
global indices

Calculates local indices

Calculates memory
indices, including halo cells

Allocates water height and velocity
over local memory indices

Allocates over
full domain size

1 3 4

Local start index on
this_image()

Last memory index
on image left

this_image() sends the value
of h(ils) to its left neighbor,
which stores it into its end
element, ime:.

Remote copy

Image left ime

ils

this_image()2

1 3 42

h(ime)[left] = h(ils)

Figure 7.10 Sending a value from the local image to our left neighbor’s halo cell

197Toward the parallel tsunami simulator
This pattern is the main addition to the existing code to make it run in parallel. The
sequence is

1 Update halo cells.
2 Synchronize images.
3 Solve the equation.

Since we’ve been solving for both water height and velocity, we need to repeat this
sequence twice, once for each equation (figure 7.11).

1 3 4

Water height

2 1. We start the loop with the water
height array having halo cells
out of sync.

1 3 4

Velocity

2 4. Updating the velocity
now makes halo cells
out of sync.

1 3 42

2. Update halo points for
water height on our
neighbors.

h(ime)[left] = h(ils)

h(ims)[right] = h(ile)

sync all

1 3 42

5. Update halo points
for velocity on our
neighbors.

u(ime)[left] = u(ils)

u(ims)[right] = u(ile)

sync all

7. Both water height and velocity are
now updated for the next time level.
Gather the water height results on
image for writing to screen.1

3. We can now safely update velocity:

6. We can now safely update water height:

gather(is:ie)[1] = h(ils:ile)

u = u - (u * diff(u) + g * diff(h)) / dx * dt

h = h - diff(u * (hmean + h)) / dx * dt

Figure 7.11 Tsunami time integration loop from the perspective of this_image

198 CHAPTER 7 Going parallel with Fortran coarrays
The following listing shows what this looks like in actual code.

time_loop: do n = 1, num_time_steps

h(ime)[left] = h(ils)
h(ims)[right] = h(ile)
sync all

u = u - (u * diff(u) + g * diff(h)) / dx * dt

sync all

u(ime)[left] = u(ils)
u(ims)[right] = u(ile)
sync all

h = h - diff(u * (hmean + h)) / dx * dt

gather(is:ie)[1] = h(ils:ile)
sync all
if (this_image() == 1) print *, n, gather

end do time_loop

Notice that before solving for water velocity, u, we update the halo points for the water
height, h, and vice versa! We do so because we only need to update the halo points for
the variable that was updated in the previous iteration. After each halo update, we
sync all images. This ensures that a neighbor image doesn’t proceed to the equation
before the current image gets its halo update. In concurrency, this is commonly called
a race condition. Because each image runs at its own pace, solving the equations and
updating its local data, we need to ensure that each image updates its halo points with
the correct data. Synchronizing images ensures this order of operations. Finally, we
gather the water height array to image 1 at the end of the loop to write the output to
screen in the same format as we did with the serial version of the program.

That’s it; we made it! Our tsunami simulator now runs in parallel and produces bit-
for-bit the same results as the serial version. This means that if you run the program
on different numbers of images, you’ll get the exact same results every time. This is an
important milestone for the development of our app. In the next chapter, we can

Listing 7.7 The main time loop of the parallel tsunami simulator

Run it yourself!
If you’ve cloned the application’s Git repository on GitHub, you can build and run the
application from this chapter like this:

make ch07
cafrun -n 4 src/ch07/tsunami

Updates halo cells
for water height

Waits for all images
before proceeding

Updates the solution
for water velocity

Waits for all images
before proceeding

Updates halo
cells for velocity Waits for all images

before proceeding

Updates the solution
for water height

Gathers the water
height on image 1 and
prints it to screen

199Answer key

Arra
store
resu
expand the solver from one to two dimensions and visualize the tsunami from a top-
down view, like when you throw a pebble into a pond. Because expanding to two
dimensions will demand much higher processing power, parallelism will prove to be
crucial in getting to our results faster.

 At this point, you have the working knowledge to parallelize simple programs. For
problems that require communication between images to get to the final solution,
coarrays provide a familiar array-like syntax for sending and receiving data between
remote images. For many problems, clever synchronization is key to avoid race condi-
tions. On their own, each of these concepts is relatively simple, but, to be honest, par-
allel programming is hard! The main difficulty comes from the fact that many things
are happening all at once, and they’re often difficult to keep track of. Practicing these
patterns on various problems will get you a long way.

 In the next chapter, we’ll dive into derived types, which is Fortran’s concept of
classes. Derived types will allow you to make high-level abstractions of your data,
beyond the basic numeric, logical, and character types. In the context of the tsunami
simulator, we’ll use derived types to cast our variables in a form that can be easily
expanded to two dimensions, while maintaining the same arithmetic operators and
writing code that looks like math on a chalkboard. Having refactored the tsunami sim-
ulator into a parallel version, we’ll move forward in parallel and won’t look back!

7.6 Answer key
This section contains solutions to exercises in this chapter. Skip ahead if you haven’t
worked through the exercises yet.

7.6.1 Exercise 1: Finding the array subranges on each image

We need a function that returns a start and end index for each image, given the inte-
ger size of the global array to be decomposed. For example, for an input 100 and total
number of images 2, the result should be [1, 50] on image 1 and [51, 100] on image 2.
When the input is divisible by num_images(), the solution is straightforward. However,
we also need to handle a special case when the input isn’t divisible by num_images();
for example, if input is 100 and num_images() == 3. The following listing provides
the solution.

pure function tile_indices(dims)

integer, intent(in) :: dims
integer :: tile_indices(2)
integer :: offset, tile_size

tile_size = dims / num_images()

tile_indices(1) = (this_image() - 1) * tile_size + 1
tile_indices(2) = tile_indices(1) + tile_size - 1

Listing 7.8 Calculating start and end indices on each image

Input integer scalar, size
of array to decompose

y to
 the
lt in

First guess for tile size;
correct only if dims is
divisible by num_images() First guess for

start index

First guess for
end index

200 CHAPTER 7 Going parallel with Fortran coarrays

Ne
i

offset = num_images() - mod(dims, num_images())
if (this_image() > offset) then

tile_indices(1) = tile_indices(1) &
+ this_image() - offset - 1

tile_indices(2) = tile_indices(2) &
+ this_image() - offset

end if

end function tile_indices

This function is also an important piece of the parallel tsunami simulator and is avail-
able there as a function in src/ch07/mod_parallel.f90.

7.6.2 Exercise 2: Writing a function that returns the indices
of neighbor images

If you’ve practiced using the this_image and num_images built-in functions long
enough, the solution will be straightforward. For any image that calls this function, its
left neighbor will be this_image() - 1, and its right neighbor this_image() + 1. (Except
when this_image() is at the boundary, that is, this_image() == 1 or this_image() ==
num_images().) The following listing provides the solution.

pure function tile_neighbors()

integer :: tile_neighbors(2)
integer :: left, right

if (num_images() > 1) then
left = this_image() - 1
right = this_image() + 1
if (this_image() == 1) then
left = num_images()

else if (this_image() == num_images()) then
right = 1

end if
else

left = 1
right = 1

end if

tile_neighbors(1) = left
tile_neighbors(2) = right

end function tile_neighbors

This is also a function that’s essential for the tsunami simulator and is defined in
src/ch07/mod_parallel.f90.

Listing 7.9 Calculating the index of neighbor images

If dims is not divisible by
num_images(), distribute
the remainder accordingly.

Two-element integer
array to store the resultighbor

ndices

General case

Special
case for
the first

image
Special case for
the last image

Special case if we’re working
with only one image

Stores the indices
in the result array

201Summary
7.7 New Fortran elements, at a glance
 this_image and num_images built-in functions that return the current image

number and the total number of images, respectively
 codimension[] attribute for declaring coarrays
 Bracket syntax [] for indexing coarrays
 sync all statement to synchronize all images

7.8 Further reading
 Chapter 17 (“Coarrays”) of Modern Fortran Explained: Incorporating Fortran 2018,

by Michael Metcalf, John Reid, and Malcolm Cohen, Oxford University Press.
 Parallel Programming with Co-arrays, by Robert W. Numrich, Chapman and Hall/CRC.

Summary
 Fortran refers to any parallel process as an image, whether it’s a physical core or

an operating system thread.
 All images execute the same copy of the program in parallel, independent from

one another.
 The built-in functions this_image and num_images allow you to identify differ-

ent images.
 Use these functions in if branches to control the flow of the program for

each image.
 Coarrays are the key mechanism for copying data between images.
 Use the sync all statement to synchronize all images.
 The higher the ratio of computation versus communication between images,

the more efficient your parallel program will be.

Working with abstract
data using derived types
So far in this book we’ve worked only with the core Fortran data types: integer,
real, complex, logical, and character. Although even with just these data types
we’ve been able to do quite a few useful things, such as analyze time series of stock
prices or buoy measurements, or write a parallel tsunami simulator, we’re still
somewhat limited in what we can do. This becomes more obvious as we encounter
more complex problems with abstract and unstructured data that are ubiquitous in
real-world applications. So far, all of the examples we’ve worked on have been
structured and thus easy to tackle with the core numeric types and arrays alone.
However, this is just a small subset of problems, and real-world applications and
data will require more complex and abstract data structures in our code. Such
applications include machine learning, web and mobile apps, and more sophisti-
cated physics simulations.

This chapter covers
 Using derived types to create new collections

and data types

 Binding procedures to derived types

 Refactoring the tsunami simulator to two
dimensions using derived types
202

203Recasting the tsunami simulator with derived types
 In this chapter, we’ll get our feet wet with a new kind of data type—a derived type. In
its most basic form, a derived type is nothing more than a collection of variables. As
you may guess from its name, it allows you to design and build arbitrary data types of
any level of complexity, using core data types (or other derived types) as components.
You’ll be able to create different instances of the same derived type, and even attach
functions and subroutines to operate on their state. If you have prior experience with
object-oriented programming, you’ll recognize that I’m really talking about classes.
That’s exactly right—a derived type is a Fortran term for what’s widely known as a class
in many programming languages. The features that we’ll cover in this chapter will
thus form a basis for object-oriented programming techniques.

 To learn how derived types work at a basic level, we’ll first look into a simple exam-
ple of modeling a person, a kind of data entry that you’d find in applications that deal
with user data, civic or school records, contact books, and similar. I’ll show you how
you can define completely new data types from scratch, access and modify their com-
ponents, and even assign functions and subroutines to them. We’ll gently transition to
applying derived types to model physical fields, and see how this will help us write
more clear and expressive simulation apps. We’ll apply this knowledge to the tsunami
simulator to abstract away much of the low-level boilerplate we’ve built up over the
past few chapters. This will open new doors and greatly simplify more advanced fea-
tures of the tsunami simulator that we’ll develop in the remainder of the book.

8.1 Recasting the tsunami simulator with derived types
The main goal of this chapter is to apply derived types toward refactoring our parallel
tsunami simulator. Specifically, we’ll use them to abstract away the low-level code to
allocate and manipulate data arrays, as well as to black-box much of the tedious code
used for setting up the data structures. Derived types will help us write more expres-
sive and concise code, which will be ever more important as we work toward making it
more general and user-friendly. They’ll also allow us to expand the solver from one to
two dimensions without compromising the simplicity of the main program.

 At the end of the previous chapter, we left off with the core of the tsunami simula-
tor as shown in the following listing.

time_loop: do n = 1, num_time_steps

h(ime)[left] = h(ils)
h(ims)[right] = h(ile)
sync all

u = u - (u * diff(u) + g * diff(h)) / dx * dt

sync all

Listing 8.1 The main time loop of the parallel tsunami simulator

Updates halo cells
for water height

Waits for all images
before proceeding

Updates the solution
for water velocity

Waits for all images
before proceeding

204 CHAPTER 8 Working with abstract data using derived types

t

it
en
u(ime)[left] = u(ils)
u(ims)[right] = u(ile)
sync all

h = h - diff(u * (hmean + h)) / dx * dt

gather(is:ie)[1] = h(ils:ile)
sync all
if (this_image() == 1) write(unit=output_unit, fmt=*) n, gather

end do time_loop

In each iteration of the time loop, this code computed new values for water velocity, u,
and height, h; synchronized the data with the neighboring parallel images; and wrote
the water height data to the screen. This solver produced a fairly realistic-looking sim-
ulation of a propagating water wave (figure 8.1).

 Although working directly with coarrays has served us well so far, and helped us
learn how they work, this approach may not be ideal in the long run. That’s the case
because each piece that we needed for the solver to work led to quite a bit of boiler-
plate code, specifically

 Calculating start and end indices on each parallel image
 Explicitly allocating coarrays
 Updating the halo points between neighboring images
 Synchronizing images to prevent race conditions
 Gathering and writing data into a file

This is bound to get worse as we extend the solver from one to two dimensions. We’ll
go from two to three equations (two for each of the x- and y-velocity components and
one for water height), and each of the equations will have additional terms in the y
dimension. Since most of these operations are the same for each of the variables, we
can express most of this code as derived type components and methods once, and
reuse it whenever we need it.

 Here are the main advantages of formulating our fields as derived type instances
instead of bare multidimensional coarrays:

 We can use type-bound procedures for operations that are common to all fields.
 We can abstract away a lot of the low-level code, such as partitioning the compu-

tational domain, calculating start and end indices, setting initial conditions,
and synchronizing the tiles in parallel mode.

 If we decide to implement more features in the future, we can write them
directly in the definition of the type and its methods, keeping the main pro-
gram concise and clean.

Updates halo
cells for velocity

Waits for all images
before proceeding

Updates the solution
for water height

Gathers the
water heigh
on image 1
and prints
to the scre

205Recasting the tsunami simulator with derived types
At the end of this chapter, the tsunami simulator will produce a solution of a water
wave radiating outward from the center of the domain, just as if we threw a pebble in
a pond (figure 8.2).

 In the next section, we’ll go over the basic syntax and rules for defining, declaring,
and initializing derived types. At each step, we’ll tie the new knowledge into the tsunami

Water elevation [m], time = 0.0 s

H
e

ig
h

t
[m

]
1.2

–0.2

0.0

0.2

0.6

1.0

0.4

0.8

Water elevation [m], time = 1.6 s

H
e
ig

h
t

[m
]

1.2

–0.2

0.0

0.2

0.6

1.0

0.4

0.8

Water elevation [m], time = 63.0 s

H
e
ig

h
t

[m
]

1.2

–0.2

0.0

0.2

0.6

1.0

0.4

0.8

Water elevation [m], time = 97.2 s

H
e
ig

h
t

[m
]

1.2

–0.2

0.0

0.2

0.6

1.0

0.4

0.8

Initialize the
blob like in the
previous chapter.

The wave splits into two
packets, propagating
in opposite directions.

They slosh
back and forth...

Eventually, new,
smaller waves form.

Distance [m]

100755025

Figure 8.1 Simulation of water height initialized as a bell-shape 1 m high and about 20 m wide

206 CHAPTER 8 Working with abstract data using derived types
application and gradually build a derived type to model a physical field, such as water
height and velocity.

8.2 Defining, declaring, and initializing derived types
Perhaps the greatest strength of an object-oriented approach to development is that it offers
a mechanism that captures a model of the real world.

 —Grady Booch (1986)

Let’s start with a small program that makes use of a derived type. We’ll define a Person
type and assign to it a greeting subroutine, which will do nothing more than print the

Water height @ time = 0.0 s
D

is
ta

n
c
e

 [
m

]

40
0.9231

0.8205

0.7179

0.6154

0.5128

0.4103

0.3077

0.2051

0.1026

0.0000

20

0

–20

–40

Distance [m]

–40 –20 0 20 40

Water height @ time = 1.0 s

D
is

ta
n

c
e

 [
m

]

40 0.2147

0.1626

0.1105

0.0585

0.0064

–0.0457

–0.0977

–0.1498

–0.2019

–0.2539

20

0

–20

–40

Distance [m]

–40 –20 0 20 40

Water height @ time = 2.0 s

D
is

ta
n
c
e
 [

m
]

40 0.1603

0.1283

0.0964

0.0644

0.0325

0.0005

–0.0314

–0.0633

–0.0953

–0.1272

20

0

–20

–40

Distance [m]

–40 –20 0 20 40

Water height @ time = 3.0 s

D
is

ta
n
c
e
 [

m
]

40
0.1486

0.1236

0.0986

0.0736

0.0486

0.0236

–0.0013

–0.0263

–0.0513

–0.0763

20

0

–20

–40

Distance [m]

–40 –20 0 20 40

Figure 8.2 Two-dimensional solution of a ripple wave radiating away from the center. The color is scaled to the
minimum and maximum values of water height in each panel.

207Defining, declaring, and initializing derived types

Sep
compo

me

th
def
greeting message to the screen. We’ll then declare an instance of the new type and
call the greeting method. Compiling and running this program will yield

gfortran hello_derived_types.f90 -o hello_derived_types
./hello_derived_types
Hello, my name is Jill!

Let’s dive straight in. The following listing provides the complete code for the hello_
derived_types program.

module mod_person
type :: Person

character(len=20) :: name
contains

procedure, pass(self) :: greet
end type Person

contains
subroutine greet(self)

class(Person), intent(in) :: self
print *, 'Hello, my name is ' // trim(self % name) // '!'

end subroutine greet
end module mod_person

program hello_derived_types
use mod_person, only: Person
implicit none
type(Person) :: some_person = Person('Jill')
call some_person % greet()

end program hello_derived_types

Quite a few new things are going on in this program:

1 We defined a simple Person type, with a character(len=20) name as a
component.

2 We also specified that a Person type contains a procedure, greet, defined in
the same module. This way, we effectively bound (attached) this procedure to
the Person type.

3 In the main program, we imported the Person type from the module, declared
a new instance, some_person, and initialized it as Person('Jill').

4 Finally, we called this instance’s greeting method, some_person % greet().

Each of these steps includes at least one new language or syntax element, so let’s take
it slowly as we go over each one. The first thing to get used to is some new terminol-
ogy. I’ll be talking a lot about classes, instances, components, and methods. These are
all closely related to the so-called object-oriented programming (OOP) style. If you’re
familiar with OOP from some other language, feel free to skim through, or jump
straight ahead to the next section.

Listing 8.2 A hello world program expressed using a derived type

Opens a new
type definition

Type will have only
this component
(a variable)

arates
nents
from

thods
Type will have only this
method (a procedure)

Closes
e type
inition
block

Type-bound procedure has the
type itself as input argument

Imports the type
from the module

Declares and
instantiates the type

Invokes the
greet method

208 CHAPTER 8 Working with abstract data using derived types
 These are the specific terms that we’ll adopt in this chapter:

 Class—I’ll use the terms class and derived type interchangeably. The word class is
commonly used in general programming and computer science lingo, while
derived type is a Fortran-specific term. In OOP terminology, a class is a recipe for
creating objects.

 Instance—Once you define a class (or import its definition from a module), you
can declare as many different instances of that class as you want. The word
instance thus always refers to a concrete realization of a class in the program,
an object.

 Component—What’s unique about classes is that they can have any number of
variables of any type, be it numeric types, such as integer or real, scalar or array,
or even an instance of the same or some other class. I’ll refer to all these as class
components. In short, a component is what a class has.

 Method—Much like we can define variables as components of a class, we can
bind procedures (functions or subroutines) to a class to two great effects. First,
they always come with the class instance and don’t need to be imported sepa-
rately. Second, methods have access to all of a class’s components and methods.
In simple terms, a method is what a class does.

At first, if you look at listing 8.2, you may protest and say, “Hey, this is so much code
and complexity for just a simple greeting message!” I hear you, and I agree that this is
a trivial example. However, a simple example like this will help us understand how
derived types work at their core, and for what kind of problems they may be useful.
Bear with me, and soon you’ll see some of the powerful capabilities of this approach.
As we work through this chapter, we’ll use these tools to refactor the tsunami solver
and extend it to two dimensions.

 At the same time, notice that a derived type is yet another layer of abstraction over
fundamental data types. Introducing it can be justified only if its benefits outweigh the
cost. In this case, the benefit is that if a more complex data structure will be used
often, using a derived type can do away with much of the boilerplate code. The cost is
associated with added complexity and opaqueness. A casual reader may ask, “What’s
inside this Person instance?” or, “Does Person % greet() really just print a message to
the terminal, or does it have other side effects?” You get the idea. Figure 8.3 illustrates
the most basic use of a derived type.

NOTE A Fortran derived type is analogous to a C struct or a Python or Java-
Script class.

209Defining, declaring, and initializing derived types
8.2.1 Defining a derived type

Now that you see where we’re going, let’s take a few steps back and start simple and
slow. The following snippet demonstrates the syntax to define a new derived type:

type :: Person
character(len=20) :: name
...

end type Person

The type definition block always opens with type :: <type-name> and closes with end
type <type-name>, akin to program/end program, function/end function, and oth-
ers. All the component declarations go inside the type definition block, and you can
have as many as you want. Components aren’t limited to built-in numeric, character,
or logical types. You can include components that are instances of derived types, and,
in some special cases, even those of the same type. Specifically, having derived types
with pointers to components of the same type is a popular pattern used to build a
linked list.

 Like with all other variable declarations we’ve covered so far, you must place a
derived type definition within the declarative section of the code; that is, before the
executable section.

TIP Define a new derived type in a dedicated module, in a dedicated source
file. It will keep you organized and will help maintain a mental map of where

Define a derived type and
give it some components.

Declare and initialize

Prints “Jill” to screen

Prints the greeting
to screen

type :: Person

character(20) :: name

end type Person

subroutine greet(self)

...

end subroutine greet

type(Person) :: some_person

some_person = Person('Jill')

print *, some_person % name

type(Person) :: some_person

some_person = Person('Bob')

call some_person % greet()

type :: Person

character(20) :: name

contains

procedure, pass(self) :: greet

end type Person

We can bind a procedure
to a derived type and
make it a type-bound
method.

Each instance gets thePerson
greet() method attached to it.

Figure 8.3 Defining, declaring, initializing, and invoking a method of a derived type

Specifies derived type name
Declares a
component variable

We can have as many
of these as we want.

Closes the type
definition block

210 CHAPTER 8 Working with abstract data using derived types
different types are defined. For example, if I want to define a Field derived
type, I’ll define it and all its methods in a mod_field module, and store it in a
mod_field.f90 file. In some cases, it makes sense to define closely related
derived types in the same module. There are no hard rules here—do what
makes the most sense to you, and be consistent. No matter what your conven-
tion is, it’s good to have one.

How about a derived type to represent a physical quantity, such as water height or
velocity? We could define this type simply as Field:

type :: Field
character(len=:), allocatable :: name
integer :: dims(2)

end type Field

For now, our Field type can be as simple as just the name and an integer array of two
elements that will contain the size of the domain for this field. In the previous version
of tsunami, we specified these dimensions as im and jm, so the dims component will
correspond to [im, jm]:

integer(int32), parameter :: im = 101, jm = 101

DEFINITION In math or physics, a field represents an assignment of values of
some quantity (such as water height or velocity) to points in space.

We’re now getting more comfortable with defining a new derived type. However, this
is just a recipe for creating data structures. Let’s see how we can declare and initialize
an instance of a brand new derived type.

8.2.2 Instantiating a derived type

Defining a derived type was the first necessary step, but to actually use it, we need to
instantiate one. Instantiating means nothing more than creating a new instance. It’s
kind of an unwieldy word, but the more you use it, the more natural it becomes. In
listing 8.2, I used a shortcut to declare and initialize a derived type instance in a single
statement:

type(Person) :: some_person = Person('Jill')

This is equivalent to a more explicit, two-step process:

type(Person) :: some_person
some_person = Person('Jill')

Begins Field type definition Field name; for example,
“water_height” or
“velocity”

Domain dimensions
in x and y

Ends Field type definition

Domain sizes
in x and y

Declares an instance
of the Person type

Initializes the
new instance

211Defining, declaring, and initializing derived types
Now we get to our second new syntax element for this chapter—initializing a derived
type instance by invoking the name of the type, and passing the values of its compo-
nents in parentheses: Person('Jill'). This is the default way to initialize a derived
type, which requires all components to be passed to the type constructor as argu-
ments, much like we did in procedure calls. For a refresher on invoking Fortran pro-
cedures, see section 3.2.1.

 Take, for example, a slightly richer type with three components, as shown in the
following listing.

type :: Person
character(len=20) :: name
integer :: age
character(len=20) :: occupation

end type Person

type(Person) :: some_person

some_person = Person('Bob')

If you try to initialize this type with just the name, like in listing 8.3, the compiler will
yell back at you:

$ gfortran derived_type_init.f90
derived_type_init.f90:20:16:

some_person = Person('Bob')
1

Error: No initializer for component ‘age’ given in the structure constructor
at (1)

Here, the compiler expected to receive parameters for all three type components, not
just the name. This means that the code won’t compile until we provide all input
parameters to match all derived type components:

some_person = Person('Bob', 32, 'Engineer')

Back in the tsunami app, our Field type could be initialized as

integer(int32), parameter :: im = 101, jm = 101
type(Field) :: h
h = Field('Water height', [im, jm])

Currently, our new Field type still doesn’t do anything interesting, nor does it contain
much useful data. We just gave it a name and assigned it a size in each of the two
dimensions. However, we’ll be able to use this information for all the setup work, such

Listing 8.3 Attempting to initialize a derived type instance

This type has
three components.

Declares a new
Person instance

Tries to initialize with
just the name argument

Grid size in x and y directions

Declares a
field instance

Instantiates using default constructor

212 CHAPTER 8 Working with abstract data using derived types
as decomposition of the domain into parallel tiles, determining start and end indices
of data arrays, and allocating the arrays.

 Now that we’ve created new instances of the Person and Field types, let’s see how
we can access their components.

8.2.3 Accessing derived type components

Once we have a class instance declared and initialized, in most cases we’ll want to
access its components, often to read their values, sometimes to modify them. After all,
if we use type components to store data that’s specific to the instance, there’s no use
for it unless we can access it in some way.

 To access derived type components, we’ll place a % symbol immediately after the
type instance name, and before specifying the component name: some_person % name.
The type instance name acts a lot like a namespace. If you had a regular variable
declared as name, some_person % name wouldn’t conflict with it because it’s specific to
the some_person instance.

 Let’s say you want Bob from listing 8.3 to tell us more about himself; for example

Hi, I am Bob, a 32 year old Engineer

To print this to screen, you’d access the type components using the % syntax, and
connect them with a few character string literals using the string concatenation
operator //:

print *, 'Hi, I am ' // trim(some_person % name) // ', a ', &
some_person % age, 'year old ' // some_person % occupation

Don’t worry about the awkward blank space in the middle of the greeting message.
This is due to default formatting when mixing strings and integers in the print state-
ment, like we saw back in chapter 6.

 Similarly, we can access the ‘Field’ instance we initialized before using

print *, 'Initialized field ' // trim(h % name) // &
' with size ', h % dims

NOTE The Fortran derived type component access operator % is analogous to
the dot operator (.) in C, Python, or JavaScript.

8.2.4 Positional vs. keyword arguments in derived type constructors

As you’ll recall from chapter 3, we can invoke a procedure by passing either positional
or keyword arguments, or a combination of the two. The same rules apply here. If you
use strictly positional arguments, you must provide them in the order of their declara-
tion in the derived type definition (thus the name positional). However, if you use key-
word arguments, you can specify them in any order, as long as they appear after any
positional arguments. Several of the following examples illustrate this rule:

213Defining, declaring, and initializing derived types
some_person = Person('Bob')
some_person = Person('Bob', 'Engineer', 32)
some_person = Person(occupation='Engineer', age=32, 'Bob')
some_person = Person('Bob', 32, 'Engineer')
some_person = Person(occupation='Engineer', name='Bob', age=32)
some_person = Person('Bob', 32, occupation='Engineer')

In summary, these are the rules for default type constructor parameters:

 If a component doesn’t have a default value (more details to come), it must be
passed as an argument in the constructor.

 Any positional arguments in the type constructor must be listed in the same
order as they’re defined in the type definition and must appear before any key-
word arguments.

 Any keyword arguments can appear in any order.

Using the default type constructor is easy for relatively small derived types like the one
in this example. However, how would we do this with more complex derived types that
may have tens or even hundreds of components of different types? For example, a
derived type used to model a bank customer may have a long list of components that
hold their personal information, as well as component types holding the data of multi-
ple bank accounts, each of which would hold a list of transactions (figure 8.4). Com-
plex types like this will, more often than not, also have components whose values or
size (in the case of arrays) are not known at initialization time, but are determined
later, either as user input or based on some calculation.

 Figure 8.4 illustrates a few prototype classes that could form the basis for a banking
app. The top-level class, Customer, nests an array of Account instances. Since every

Caution when passing positional arguments
Be careful of the order of positional arguments. The only way the compiler can tell
that 32 isn’t a valid occupation, or Engineer isn’t a valid age, is based on their data
types being distinct. However, if the types of conflicting components are the same,
and the compiler can’t make that distinction, it will happily compile the program, and
you can only hope that the error will become apparent at runtime and not much later!
This is a common source of errors in heavy numeric and simulation software, where
a few of many numeric input parameters could be swapped by mistake. Such errors
can go unnoticed by the compiler, the programmer, and the end user of the program
for years—and in some cases even decades—before being discovered.

Illegal: missing input arguments
'age' before occupation

Illegal: occupation
given before age

Illegal: keyword arguments
before positional

Legal: All positional
arguments given in order

Legal: All keyword
arguments in any order

Legal: Positional arguments
first, keyword argument last

214 CHAPTER 8 Working with abstract data using derived types
customer starts without any open accounts, but they can open as many as they want
over time, I defined the accounts component as an allocatable array. Each account
can have any positive number of transactions, which is again modeled using an allocat-
able array of Transaction instances. Customer, Account, and Transaction types each
have ID, name, and status components, and one or more components of a datetime
type. This is an example of a pattern in which one derived type has components of
another derived type.

 How could we initialize a Customer instance if we also needed to provide all its
components as arguments to the type constructor, which means all the Account
instances and all the Transaction instances for each account? There are two ways to
tackle this. In one approach, we can assign default values for components in the
derived type definition, thus removing the requirement to provide these values at ini-
tialization. In another approach, we’d write a custom constructor function that would
override (which we’ll discuss soon) the default one. While the latter is a general solu-
tion for derived types of any level of complexity, default values for components will
work for the simplest cases, as we’ll see in the next subsection.

8.2.5 Providing default values for derived type components

Fortran allows you to set a default (initial) value of any component in the derived type
definition itself. The following listing provides an example.

type :: Person
character(len=20) :: name

type :: Customer

character(len=:), allocatable :: name

integer :: id, status

type(datetime) :: time_created

type(Account), allocatable :: accounts(:)

end type Customer

type :: Account

character(len=:), allocatable :: name

integer :: id, status

type(datetime) :: time_opened, time_closed

type(Transaction), allocatable :: transactions(:)

end type Account

type :: Transaction

character(len=:), allocatable :: name

integer :: id, status

type(datetime) :: time_created, time_processed

real :: amount

end type Transaction

type :: datetime

integer :: year, month, day

integer :: hour, minute, second

end type datetime

Figure 8.4 A prototype of Customer, Account, Transaction, and datetime types as base
elements of a banking app

215Defining, declaring, and initializing derived types

n
t

em
st
integer :: age
character(len=20) :: occupation = 'Programmer'

end type Person

With the Person type defined like this, only the name and age components are required
to be passed to the constructor. If the occupation argument is given, it will override
the default value:

some_person = Person('Allison', 28)
print *, some_person % occupation
other_person = Person('Richard', 32, 'Accountant')
print *, other_person % occupation

Obviously, this approach works only for components that have meaningful default val-
ues, which is not always the case. For example, if you wanted to have a Person type
that you could initialize as some_person = Person(), and set the component values at
a later time, you’d initialize all its components in the type definition block:

type :: Person
character(len=20) :: name = ''
integer :: age = 0
character(len=20) :: occupation = ''

end type Person

Note that in this case, both the name and occupation component will be character
strings of length 20 but will be initialized to blank characters (empty spaces). For age,
a zero or a negative number could serve as the default value if an argument isn’t pro-
vided to the constructor.

 As I mentioned earlier, the other, more general approach is to write a custom
derived type constructor function to override the default one. This will become
important whenever we want to work with the input parameters, such as validate the
input, allocate dynamic data, or call any number of other procedures, before return-
ing the new instance to the caller.

8.2.6 Writing a custom type constructor

Fortran provides a simple mechanism to override the default type constructor with a
user-defined function or subroutine. This gives you the power to do any prep work
with type components such as allocation, initialization, input validation, and others.

 Let’s first define the function that returns an instance of the type whose construc-
tor we’re overriding. For example, we could write a custom greeting message that
depends on the occupation of the person. Let’s say Bob is an engineer, and Davey is a
pirate. Their respective greetings could sound something like

Bob says Hi, there.
Davey says Ahoy, matey!

Sets the
default value

Will print “Programmer”

Will print “Accountant”

Sets
ame
o an
pty

ring

Sets age to an invalid
value, such as zero

216 CHAPTER 8 Working with abstract data using derived types
We’ll write our custom constructor to accept name, age, and occupation as mandatory
arguments, and to test for the value of occupation. The complete code for this cus-
tom constructor is shown in the following listing.

pure type(Person) function person_constructor(&
name, age, occupation) result(res)
character(len=*), intent(in) :: name
integer, intent(in) :: age
character(len=*), intent(in) :: occupation
res % name = name
res % age = age
res % occupation = occupation
if (occupation == 'Pirate') then

res % greeting_message = 'Ahoy, matey!'
else

res % greeting_message = 'Hi, there.'
end if

end function person_constructor

First, the function that will override the default type constructor must result in that
same type, in this case Person. It’s not required (and sometimes not possible) for the
constructor function to be pure; however, here it’s a reasonable choice, since we don’t
cause any side effects from within the function. Second, any components that we want
to set at the initial time, we can pass as input arguments to this function. In this case,
we pass and explicitly assign the name, age, and occupation components. In general,
you’re not required to initialize any or all components, in which case they’ll be left
undefined, and you’ll need to be careful not to reference them in expressions before
first defining them. Also note that here we declare the input character strings as char-
acter(len=*), which instructs the compiler to accept character strings of any length
as input. Finally, we assign a custom greeting message to the type instance depending
on the value of occupation.

 Now that we have a function that will override the default type constructor, we
need to tell the compiler to invoke the person_constructor function whenever we
use the type instance creation syntax, in this case Person(). This is done by specifying
the interface to the derived type of the same name:

interface Person
module procedure :: person_constructor

end interface Person

We use the module procedure statement inside the interface block to indicate which
procedure to call to create an instance of the derived type Person. This interface
block must be placed in the declarative section of the module after the definition of
the derived type, but before the contains statement, as shown in the following listing.

Listing 8.4 Custom constructor for a derived type

The function result must
have the Person type.

Input
arguments

Setting type components
to instance values

Depending on input,
sets custom value
for a component

Creates an interface
to the Person type

Points to the
procedure to be used

Closes the
interface block

217Defining, declaring, and initializing derived types
module mod_person

type :: Person
...

end type Person

interface Person
module procedure :: person_constructor

end interface Person

contains

pure type(Person) function person_constructor()
...

end function person_constructor

end module mod_person

To successfully override the type constructor, you need to make sure of the following:

 The name of the interface matches the name of the derived type.
 The interface points to a valid function defined in the module.
 The function result is of the same type as the derived type.

To see this in action, from the main program, we’d do something like this:

type(Person) :: some_person
some_person = Person('Bob', 32, 'Engineer')
print *, trim(some_person % name) // &

' says: ' // trim(some_person % greeting_message)
some_person = Person('Davey', 44, 'Pirate')
print *, trim(some_person % name) // &

' says: ' // trim(some_person % greeting_message)

Note that to be able to assign to the greeting_message component, it needs to have
been declared in the derived type definition, which I’ve omitted here for brevity.

Listing 8.5 Order of type definition, its interface, and the custom constructor function

Resolving the constructor interface
When a custom constructor function overrides the default one, the compiler will first try
to use the custom function and will check that all the actual arguments (those passed
in the function call) match all the dummy arguments (those defined in the function defi-
nition) by type and kind. If the arguments are incompatible, the compiler will then
attempt to revert to the default type constructor. If the arguments are then incompatible
with any of the type components, the compiler will abort with an error message.

This makes Fortran a strongly typed, and a bit more verbose, language, but it also
makes it more reliable and robust once compiled and running.

First define
the type.

Then specify
the interface.

Finally, define the
custom constructor
function.

218 CHAPTER 8 Working with abstract data using derived types
Let’s apply the custom constructor technique to our tsunami Field derived type.
Inside the constructor function, we’ll have the chance to do all the necessary prep
work, such as calculating start and end indices of the data array, allocating the array in
memory, and initializing its values.

8.2.7 Custom type constructor for the Field type

Recall that in the previous version of the tsunami simulator, we did quite a lot of prep
work before allocating the data arrays. Now that we know how to write a custom con-
structor, let’s apply this technique to initializing the Field type. For the time being,
let’s focus on just finding the start and end indices, allocating the data array, and ini-
tializing its values.

 Continuing from where we left off in section 8.2.1, we’ll now add two more integer
components to keep track of the lower and upper bounds of the array, and a real, two-
dimensional array to hold the actual values of the field:

type :: Field
character(len=:), allocatable :: name
integer(int32) :: dims(2), lb(2), ub(2)
real(real32), allocatable :: data(:,:)

end type Field

Relative to the earlier Field definition, we now have three additional components:
integer length-2 arrays lb and ub to represent lower and upper array bounds, respec-
tively, and the data array itself, the allocatable two-dimensional array of real numbers.
The goal for our custom constructor is to compute the lower and upper bounds given
input dimensions dims, use these bounds to allocate the array data(:,:) with correct
extents (start and end indices), and initialize it to zero. Figure 8.5 illustrates the rela-
tionship between the global dimensions dims = [im, jm] and lower and upper bounds
(lb and ub, respectively) of the array after the parallel decomposition of the domain.

Tracks the global array
size and lower and upper
bounds of this tile

Dynamic 2-D array to
hold the field values

1

jm

im

1

lb(2)

ub(2)

lb(1) ub(1)

Global dimensions
in x and y

Lower and upper
bounds in x and y

Image 1

Image 3

Image 2

Image 4

Figure 8.5 Global dimensions and local bounds in a parallel decomposition of a
two-dimensional field

219Defining, declaring, and initializing derived types
The large rectangle in figure 8.5 represents the whole domain that the tsunami simu-
lator is solving for. This domain extends from 1 to im in the x direction and from 1 to
jm in the y direction. When decomposed between four parallel images, each tile
extends from lb(1) to ub(1) in the x direction, and from lb(2) to ub(2) in the y
direction. The following listing shows the first version of our new constructor.

type(Field) function field_constructor(name, dims) result(res)
character(len=*), intent(in) :: name
integer(int32), intent(in) :: dims(2)
integer(int32) :: indices(4)
res % name = name
res % dims = dims
indices = tile_indices(dims)
res % lb = indices([1, 3])
res % ub = indices([2, 4])
allocate(res % data(res % lb(1)-1:res % ub(1)+1,&

res % lb(2)-1:res % ub(2)+1))
res % data = 0

end function field_constructor

This constructor function does a few things. First, we pass the field name and domain
dimensions (dims) as arguments, and these are assigned to its respective components,
res % name and res % dims. If we left it at this, the constructor would be semantically
equivalent to the default constructor from section 8.2.1. However, now that we intend
to allocate the data array, we need to do a few more operations.

 The second step is to determine the lower and upper bounds for the local image.
Recall from the previous chapter that at the beginning of the tsunami program, we
break the domain down into pieces and assign each piece to all available images. The
local array extents will thus be different for each parallel image, like tiles on a chess
board. These extents are calculated in the tile_indices function. We’ve already
worked with the one-dimensional variant of this function, and here we apply it for a
two-dimensional array. Its implementation is a bit more complex, and you can find it
in appendix C.

 Finally, once we have the start and end indices computed and stored in res % lb
(lower bounds) and res % ub (upper bounds), respectively, we can use them to allo-
cate the data array, res % data. In the allocate statement, we give one extra point on
each end to account for the halo exchange. Once allocated, we initialize the array to
zero to avoid potential undefined behavior due to uninitialized array values.

 Notice that we’ve carefully designed our custom constructor such that we can still
create a Field instance in the same way as we did at the end of section 8.2.2. Here’s an

Listing 8.6 Adding lower and upper bound indices and field values to the components

Temporary integer array to store start and end indices

Assigns input name
and dimensions to
type components

Calculates local tile indices
using an external function

Assigns lower and
upper bounds

Allocates the
data array

Initializes
data to zero

220 CHAPTER 8 Working with abstract data using derived types
example initialization of fields for water height and velocity with global dimensions
of [im, jm]:

h = Field('Water height', [im, jm])
u = Field('Water velocity in x', [im, jm])
v = Field('Water velocity in y', [im, jm])

If the benefits of derived types for our tsunami simulator haven’t been obvious before,
they should be now. Whereas before we had to calculate lower and upper bounds and
explicitly use them to allocate arrays in memory, this is now all done under the hood
for each Field instance that we create. This becomes especially powerful once we do
significantly more work in the constructor. If you take a look at the code for the Field
constructor in src/ch08/mod_field.f90, you’ll see that we actually need to do a few
more things related to the parallel decomposition of the field, which I haven’t cov-
ered in this section for brevity. Feel free to explore the code, but know that we’ll revisit
this in chapter 10 when we finish the implementation of the Field class.

8.3 Binding procedures to a derived type
Besides storing arbitrary data in type components, we can also bind functions and sub-
routines to the type, making them type-bound methods. Similar to the custom construc-
tor procedures, there are two steps to defining a type-bound method. The first is to
define the function or subroutine itself, and the second is to specify the binding in the
type definition block.

8.3.1 Your first type-bound method

Looking back at our derived-type hello world program from listing 8.2, the subroutine
we’ll bind to the type is the greeting subroutine, as shown here:

subroutine greet(self)
class(Person), intent(in) :: self
print *, 'Hello, my name is ' // trim(self % name) // '!'

end subroutine greet

Here we have another new syntax element—class. Declaring class(Person) instead
of type(Person) allows any type that’s extended (derived) from Person to be passed
to this subroutine. For now, you don’t need to know more about class than this. Just
think of class(Person) as a more general form of type(Person). This argument we’ll
call self, to refer to the type instance itself. This can be any word you want—some
people like to use this, others prefer some other keyword—it’s totally up to you.
Once we have the instance passed to the procedure, we can reference any of its com-
ponents using the self % syntax.

 The second step involves the actual binding—attaching the procedure to the type
so that it comes with it wherever the type instance is used. We’ll bind the procedure
inside the derived type definition, immediately after the contains statement:

The input argument will be
the type instance itself.

We can access type
components from here.

221Binding procedures to a derived type
type :: Person
...

contains
procedure, pass(self) :: greet

end type Person

Notice that binding a procedure to the type is somewhat similar to overriding a
default type constructor like we did in section 8.2.6. One key difference is that for
a type-bound procedure, the type must be declared as an intent(in) (if read-only) or
intent(in out) argument, rather than being the function result. The other differ-
ence is that the method is bound in the contains section of the type definition,
instead of a separate interface that’s used for custom constructors.

8.3.2 Type-bound methods for the Field type

It’s now a good time to start planning for the type-bound methods for our Field type,
as shown in the following listing.

type :: Field
...

contains
procedure, pass(self) :: gather
procedure, pass(self) :: init_gaussian
procedure, pass(self) :: sync_edges
procedure, pass(self) :: write

end type Field

Each of the methods in listing 8.7 has a specific purpose. Recall that in the previous
version of the tsunami simulator, we were carrying each of these operations explicitly
in the main program. In the derived type approach, these tasks can be defined inside
the type-bound methods and invoked when needed, analogous to the setup tasks that
we carried out in the custom Field constructor. Specifically, here’s what each of the
methods does:

 gather—Applies the gather parallel pattern to make the whole array (across all
parallel images) available on a single image. We already explored this pattern in
chapter 7 when we gathered the whole weather buoy time series array on a sin-
gle image to find the maximum value. In the tsunami simulator, we’ll use this
method prior to writing data to a file.

 init_gaussian—Sets the values of Field % data to a bell-shaped gaussian blob
centered at a desired index pair.

 sync_edges—Updates the outer edges of Field % data to be in sync with the
values on neighboring tiles.

 write—Writes the data values into a file.

Listing 8.7 Type-bound components to be defined for the Field type

Separates the components
and the methods

Binds this procedure and passes
the type as the argument self

Gathers data on
one image

Initializes a
bell-shaped
blob

Synchronizes data
between tiles

Writes data to file

222 CHAPTER 8 Working with abstract data using derived types
For brevity, I won’t go into the implementation details of each of these methods here.
However, I encourage you to explore the code and study how they work. These meth-
ods are defined in tsunami/src/ch08/mod_field.f90.

 Finally, in the next subsection, we’ll look into access control for type components
and methods.

8.3.3 Controlling access to type components and methods

So far, we’ve been able to access any type components or methods from the main pro-
gram without issues. This is also the default behavior: all type components and methods
are visible (public), unless otherwise specified. Recall from section 4.2.4 that this is the
same behavior as with module variables and procedures, where we used public and
private attributes to explicitly specify which entities can be accessed from outside of
the module, and which can’t.

 The following rules apply:

1 If no private or public attribute is specified in the declaration, all compo-
nents and methods are public by default.

2 A single private statement inside the derived type definition means that all fol-
lowing components will be declared as private by default. The same is true for
a single public statement.

An interesting caveat to private type components is that they make it impossible to use
a default type constructor. Take the type in the next listing, for example.

type :: Person
character(len=20) :: name
integer, private :: age

end type Person

If you try to initialize it as

type(Person) :: some_person
some_person = Person('Jill', 32)

the compiler will yell at you:

derived_type_private_error.f90:12:16:

some_person = Person('Jill', 32)
1

Error: Component ‘age’ at (1) is a PRIVATE component of ‘person’

If, on the other hand, you try some_person = Person('Jill'), this happens:

derived_type_private_error.f90:12:16:

some_person = Person('Jill')
1

Error: No initializer for component ‘age’ given in the structure constructor
at (1)

Listing 8.8 A derived type with a private component

223Binding procedures to a derived type
The compiler won’t budge on this. We can’t pass the age parameter because the com-
ponent is declared as private, and we can’t not pass it because the default construc-
tor needs it!

 There are two ways to work around this:

 Set a default value for the private component inside the type definition, like we
did in section 8.2.5.

 Override the default type constructor with a custom function, like we did in sec-
tion 8.2.6.

While the first approach is easier to code, it may not be suitable for derived types with
many components, and for those components that don’t have a meaningful default
value. The second approach involves more work but is more generally applicable for
anything other than the simplest toy apps. We’ll revisit private and public attributes
again in chapter 10 when we explore defining built-in operators (such as +, –, etc.) for
derived types.

Using the so-called getter and setter methods to read to and write from, respectively, a
type component is one of the pillars of object-oriented programming: encapsulation.
This approach allows you to hide the internal details of the component while allowing
access via well-defined methods. It’s especially advantageous when writing more com-
plex and robust applications. Here are some cases:

 When the internal implementation of a component changes, your getters and
setters will still work as expected without any modifications.

 If you need to check whether a type component is allocated in memory or ini-
tialized, you can do so inside the get method.

 If assigning a value to a type component requires any additional calculation or
housekeeping, such as counting the number of elements in an array, you could
include it in the setter method.

Exercise 1: Working with private components
In some applications, it may be useful to protect certain type components from being
directly accessed or modified from the client code; for example, by the user of your
software library. Sometimes, you’ll want to add some additional instructions or data
processing when setting the value of a component. Other times, you may want to val-
idate the value of the component on access.

In this exercise, take the derived type Person with the private age component from
listing 8.8, and define methods to get (read) and set (modify) the value of age. Fur-
thermore, raise an error if the input argument to the set method is invalid; for
instance, if input age is a negative number.

You can find the solution in the “Answer key” section near the end of this chapter.

224 CHAPTER 8 Working with abstract data using derived types
However, whether you’ll use encapsulation or not is totally up to you and the app that
you build.

8.3.4 Bringing it all together

So far in this chapter, we’ve covered the essentials of Fortran derived types:

 Defining a type and its components
 Declaring and initializing a type instance
 Writing a custom type constructor function
 Turning procedures into type-bound methods
 Accessing components and invoking type-bound methods

Fortran offers much more in this realm, such as extending derived types (known as
inheritance in object-oriented programming), and abstract types whose methods can
do different things depending on the concrete type of the instance. See the “Further
reading” section at the end of this chapter to learn more about these concepts.

 Before we move on to the final steps in refactoring the tsunami simulator, I have
one more exercise for you to complete (“Exercise 2” sidebar), which will tie derived
types together with the power of elemental procedures that we learned about in sec-
tion 3.5.

8.4 Extending tsunami to two dimensions
In sections 8.2 and 8.3, we learned the basic syntax of defining a derived type and its
components, and binding a method to it. We also began to apply these techniques
toward building the Field derived type, which we’ll use to model the physical quanti-
ties that the tsunami simulator predicts, namely water height and velocity. What we

Exercise 2: Invoking a type-bound method from an array of instances
In section 3.5, you learned about elemental procedures, which you define as if oper-
ating strictly on an input scalar (nonarray), but can be readily used on arrays of any
size or dimension. Can you rewrite our program from listing 8.2, such that we can
define an array of Person instances and then invoke the greet method on that array?
For example

call people % greet()

should output the following to the screen:

Hello, my name is Jill!
Hello, my name is James!
Hello, my name is Allison!

You can find the solution in the “Answer key” section near the end of this chapter.

Hint: Recall the use of impure elemental attributes from chapter 3.

225Extending tsunami to two dimensions
haven’t quite addressed is the transition from a one-dimensional solver that gave us a
profile of a water wave (see figure 8.1), to a two-dimensional solver that will give us a
top-down view in an x-y plane (figure 8.2).

8.4.1 Going from 1-D to 2-D arrays

Extending the solver from one to two dimensions carries two major implications:

 We’ll now be working on 2-D arrays instead of 1-D arrays.
 We’ll be solving for two components of velocity (one for each of x and y axes)

and water height, for a total of three equations.

In other words, whereas so far we’ve been solving for a single velocity u(:) and water
height h(:), now we’ll be solving for velocities in x and y axes (u(:,:) and v(:,:),
respectively), and for water height h(:,:). This is illustrated in figure 8.6.

Also recall the halo points from the previous chapter, which we used to synchronize
the array values along the edges with the neighboring tiles. In the 1-D solver, we were
exchanging only one value on each side of the tile. However, in the 2-D solver, each
data array has four edges and the same number of neighbors. We’ll defer this part
until chapter 10, where we’ll look into it in more detail.

h(:) h(:,:)

u(:,:)

1-d solver 2-d solver

In the -d solver, we’ve been working1
with -d arrays of water height and1
a single component of velocity.

v(:,:)

u(:)

In the 2-d solver, we’ll be working
with 2-d arrays of water height
and two components of velocity.

Halo

points

Figure 8.6 Comparison of data arrays for water height and velocity between the 1-D and 2-D tsunami
solvers

226 CHAPTER 8 Working with abstract data using derived types
8.4.2 Updating the equation set

This is the part that you’ll either enjoy very much, if you’re into math and physics, or
not care for at all, if you’re not—expanding our equation set from one to two dimen-
sions. Either way, feel free to read through or skip to the next subsection.

 Up to this chapter, our solver consisted of two equations:

u = u - (u * diff(u) / dx + g * diff(h) / dx) * dt

h = h - diff(u * (hm + h)) / dx * dt

As we saw in the previous subsection, expanding the solver to two dimensions now
requires solving three equations, two for each of the velocity components u and v, and
one for water height h:

u = u - (u * diffx(u) / dx + v * diffy(u) / dy &
+ g * diffx(h) / dx) * dt

v = v - (u * diffx(v) / dx + v * diffy(v) / dy &
+ g * diffy(h) / dy) * dt

h = h - (diffx(u * (hm + h)) / dx &
+ diffy(v * (hm + h)) / dy) * dt

While you don’t have to understand in detail how this works in terms of fluid dynam-
ics, you may notice that all the terms look familiar and have a similar shape as the orig-
inal terms. For example, the equation for u velocity now has a v * diffy(u) / dy,
which is a y direction counterpart to the u * diffx(u) / dx. Similarly, water height h is
now determined by both divergence in x and y directions.

8.4.3 Finite differences in x and y

In addition to an extra equation and a finite difference term for each of the x and y
axes, we need specific implementations of diff for each of them. diffx will return a
difference along array rows, and diffy along array columns.

 The function in the following listing served us well in the one-dimensional solver.

pure function diff(x) result(dx)
real(real32), intent(in) :: x(:)
real(real32) :: dx(size(x))
integer(int32) :: i, im
im = size(x)
dx = 0
do concurrent(i = 2:im-1)

dx(i) = 0.5 * (x(i+1) - x(i-1))
end do

end function diff

Listing 8.9 One-dimensional version of the finite difference function

Solves for water
velocity

Solves for
water height

Solves for the x
component of velocity

Solves for the y
component of velocity

Solves for
water height

Input array

Same size as
input array

Can be evaluated
in any order

Difference between
neighboring cells

227Extending tsunami to two dimensions
To extend it to two dimensions, we need to adapt the declaration of the input array x
and the result dx to both be two-dimensional arrays. Furthermore, for a finite differ-
ence in the x direction, we’ll calculate the difference between i+1 and i-1 elements
for each i, applied to the whole-array slice in the y direction, as shown in the follow-
ing listing.

pure function diffx(x) result(dx)
real(real32), intent(in) :: x(:,:)
real(real32) :: dx(size(x, dim=1), size(x, dim=2))
integer(int32) :: i, im
im = size(x, dim=1)
dx = 0
dx(2:im-1,:) = 0.5 * (x(3:im,:) - x(1:im-2,:))

end function diffx

In listing 8.10, diffx expects a two-dimensional real array x as the only input argu-
ment. This is an assumed-shape array (x(:,:)), so the function will accept a two-
dimensional real array of any size. We then use the size built-in function to declare
the result dx to have exactly the same size as the input array x. To calculate the differ-
ence in x, we apply a whole-array slice in both dimensions. Like before, the result of
each element doesn’t depend on any other element, so we can evaluate dx in any
order by applying a whole-array slice. Note that in the two-dimensional case, diffx
only returns the finite difference along the array rows. We’ll also need a diffy func-
tion to compute the finite difference along the array columns. I leave this to you as an
exercise (“Exercise 3” sidebar).

If you follow along with the code from GitHub, you can find these functions in
tsunami/src/ch08/mod_diff.f90.

 However, our job here is not done yet. We still need to be able to pass the Field
instance to diffx and diffy, which expect real arrays as input. In the next subsection, I
describe how you can make a wrapper function that will accept a Field instance as an
input argument and perform a finite difference calculation on its data component.

Listing 8.10 Two-dimensional diff function for differencing in the x direction

Exercise 3: Computing finite difference in the y direction
We just implemented a two-dimensional variant of the original diff function that we
used in the one-dimensional solver, but only for calculating the difference in x direction
(along rows). Using diffx from listing 8.10 as a template, can you implement the func-
tion diffy that will return the finite difference in y direction (along columns)? Is either
one of these two functions likely to be more efficient than the other, and why?

You can find the solution in the “Answer key” section near the end of this chapter.

The input array is now
two-dimensional.

Same shape as
input arrayLength of the first

dimension
Finite difference with
whole-array slices
along the y direction

228 CHAPTER 8 Working with abstract data using derived types
8.4.4 Passing a class instance to diffx and diffy functions

To use finite difference functions directly with our new Field instances, we’ll make sim-
ple wrappers around those functions. First, we’ll import the functions and make them
available in the mod_field module:

use mod_diff, only: diffx_real => diffx, &
diffy_real => diffy

We want to keep the original names diffx and diffy, so I’ve renamed them on
import to avoid a name conflict. In the following listing, we define the function diffx
that takes a Field instance as input and calls diffx_real under the hood to calculate
the finite difference of the input field.

pure function diffx(input_field)
class(Field), intent(in) :: input_field
real(real32), allocatable :: diffx(:,:)
diffx = diffx_real(input_field % data)

end function diffx

How about the diffy function? Its definition is the same as for diffx, except that it
invokes diffy_real under the hood. I’m omitting its listing here for brevity.

 Voilà! We can now import both the Field class and the diffx and diffy wrapper
functions from mod_field, and use them just like we would plain ol’ Fortran arrays, as
shown in the following listing.

use mod_field, only: Field, diffx, diffy
type(Field) :: h, dh_dx, dh_dy
h = Field('h', [100, 100])
dh_dx = diffx(h)
dh_dy = diffy(h)

In this snippet, I declared two instances of Field type, h and dh. I initialized h as a two-
dimensional field of 100 by 100 data points, of which I then computed the finite differ-
ences using diffx and diffy and assigned them to dh_dx and dh_dy, respectively. This
technique allows us to use the same solver code as we did with whole-array operations in

Listing 8.11 A wrapper function to pass a Field instance to diffx

Listing 8.12 Applying a finite difference function to a Field instance

Renames on import so we
can use the original names

A Field instance as
the input argument

The result is a
two-dimensional
dynamic array.Passes the data component

to the diff function that
operates on real arrays

Imports type and
functions from a
module

Declares type instances

Initializes a Field instance
with size 100 * 100

Computes finite
differences in x and y

229Extending tsunami to two dimensions
the previous versions of the tsunami simulator. For example, when computing the
value of water height at the next time step, we can write

h = h - (diffx(u * (hm + h)) / dx &
+ diffy(v * (hm + h)) / dy) * dt

In this snippet, all prognostic variables (that is, variables that we’re calculating the
solution for) are Field instances—h, hm, u, and v.

8.4.5 Derived type implementation of the tsunami solver

Finally, we’re getting close to the home stretch. The following listing provides the
(almost) complete code of the derived type implementation of the tsunami simulator.
I’ve omitted the declaration section for brevity.

u = Field('u', [im, jm])
v = Field('v', [im, jm])
h = Field('h', [im, jm])
hm = Field('hm', [im, jm])

call h % init_gaussian(decay, ic, jc)
call h % sync_edges()

hm = 10.

call h % write(0)

time_loop: do n = 1, num_time_steps

if (this_image() == 1) &
print *, 'Computing time step', n, '/', num_time_steps

u = u - (u * diffx(u) / dx &
+ v * diffy(u) / dy &
+ g * diffx(h) / dx) * dt

call u % sync_edges()

Compatibility between Field instances and real arrays
You may have noticed that in listing 8.12, we assigned the result of diffx(h) (a two-
dimensional real array) to dh, a Field instance. Normally this shouldn’t work,
because the compiler on its own doesn’t know how to assign a real array to a Field
instance. For this to work, we’ll need to define the custom assignment operator for
the Field class with a special function. We’ll explore this and other advanced derived
type topics in detail in chapter 10.

Listing 8.13 Derived type implementation of the tsunami solver

Initializes
Fields

Sets initial water height
perturbation and sync

Sets a constant
mean water depth

Writes the initial
height to the file

Solves for u
and syncs with
neighbors

230 CHAPTER 8 Working with abstract data using derived types
v = v - (u * diffx(v) / dx &
+ v * diffy(v) / dy &
+ g * diffy(h) / dy) * dt

call v % sync_edges()

h = h - (diffx(u * (hm + h)) / dx &
+ diffy(v * (hm + h)) / dy) * dt

call h % sync_edges()

call h % write(n)

end do time_loop

How did we achieve with derived types the same form of the code for evaluating u, v,
and h inside the time loop as we did with plain arrays? Before we used familiar arith-
metic operators +, -, *, and / and applied them on whole arrays at once. Now, since u,
v, and h are derived type instances and not arrays, something else must be going on
here. The answer is in user-defined operators for derived types, which we haven’t cov-
ered yet and will explore in detail in chapter 10.

Although I didn’t go into detail with the specific implementation of methods such as
Field % sync_edges and Field % write, feel free to explore the code in src/ch08/
mod_field.f90. You can find the main program in src/ch08/tsunami.f90.

 Running the tsunami simulator in two dimensions now produces a circular ripple.
(See figure 8.2.) This will be our end result for this chapter. The effect of the initial
blob in the center of the domain is the same as if we dropped a pebble in a pond. The
perturbation creates a circular ripple that radiates away from the center. If you let the
ripple go long enough, it will propagate through the edge and appear on the other
side because of the periodic (circular) boundary conditions that are built into the
Field % sync_edges method. Like in the one-dimensional case, the pond is 10 meters
deep, and the perturbation is about 20 meters wide. After 3 seconds, the wave has
propagated about 30 meters.

Why diffx(u) and not u % diffx()?
You may be wondering why we made all external procedures such as init_gaussian,
sync_edges, and write type-bound methods of Field, except the finite difference
functions diffx and diffy. The answer is simply style preference! Since diffx(u)
more closely resembles the mathematical form than u % diffx(), which we certainly
could’ve done, I chose to leave diffx and diffy as regular functions that take an
instance of Field as an input argument.

Solves for v
and syncs with
neighbors

Solves for h
and syncs with
neighbors

231Answer key
That’s it for now! In the next chapter, we’ll explore generic procedures, which will
allow us to use the same procedure with different input data types. We’ll also dig into
redefining built-in arithmetic operators (+, -, *, /, **) for arbitrary derived types. For
example, in the tsunami simulator, this will allow us to treat Field instances just like
numeric arrays, and do arithmetic operations directly on them.

8.5 Answer key
This section contains solutions to exercises in this chapter. Skip ahead if you haven’t
worked through the exercises yet.

8.5.1 Exercise 1: Working with private components

The solution to this exercise involves defining the so-called getter and setter, methods
to get and set type components, respectively. Recall our rule of thumb from section 3.3.2
about when to use functions over subroutines. In this case, the get method is read-only
and returns a single value, making it a perfect candidate for a pure function. On the
other hand, the set method will modify the value of a component, causing a side
effect. For this reason, we’ll use a subroutine for the setter. The following listing pro-
vides the complete solution.

Did you know?
The theoretical phase speed of a shallow water wave—that is, the speed at which
its crest moves—is equal to the square root of the gravitational acceleration (about
9.8 m/s2 in most places on Earth) times water depth. For our wave, this gives us
a phase speed of 9.9 m/s, consistent with what we saw in figure 8.2. This is just
one example of an emerging pattern from basic laws of physics implemented in
code. Nowhere in the code did we specify how fast the wave should move, but
expressing the physical laws in code on a grid-point level brought up a natural phe-
nomenon on a larger scale. This is exactly how sophisticated dynamic models can
predict a hurricane’s track days ahead without there even being a concept of a hur-
ricane in the equation set.

Run it yourself!
If you’ve cloned the application’s Git repository on GitHub, you can compile and run
it like this:

make ch08
cafrun -n 4 src/ch08/tsunami

232 CHAPTER 8 Working with abstract data using derived types
module mod_person

implicit none

type :: Person
character(len=20) :: name
integer, private :: age = 0

contains
procedure, pass(self) :: get_age
procedure, pass(self) :: set_age

end type Person

contains

pure integer function get_age(self)
class(Person), intent(in) :: self
get_age = self % age

end function get_age

subroutine set_age(self, age)
class(Person), intent(in out) :: self
integer, intent(in) :: age
if (age < 0) error stop 'Age must not be negative.'
self % age = age

end subroutine set_age

end module mod_person

program derived_type_private
use mod_person, only: Person
implicit none
type(Person) :: some_person = Person('Jill')
print *, 'Age before set_age():', &

some_person % get_age()
call some_person % set_age(33)
print *, 'Age after set_age():', &

some_person % get_age()
print *, 'Setting age to a negative number.'
call some_person % set_age(-5)

end program derived_type_private

Note that I’ve set the default value for age to avoid having to write a custom type con-
structor function here. Thus, if we try to get its value before setting it to anything else,
it will still have its initial value.

 Compiling and running this program yields

Age before set_age(): 0
Age after set_age(): 33
Setting age to a negative number.
ERROR STOP age must not be negative.

Listing 8.14 Using getters and setters to access a private type component

Sets default
value for brevity

Type-bound
get method

Type-bound
set method

Reads age from
the component

Raises an error
if bad input

Sets the component
from input

Will return the
default value

Sets a new
value for age

Will return 33

Bad input will
trigger an error.

233Answer key

Ge
size

s
dim
8.5.2 Exercise 2: Invoking a type-bound method from an array
of instances

To allow invoking the greet() method on arrays of type instances, the main trick is to
declare it as elemental. Not so fast, though! Recall from section 3.5 that the elemental
attribute also implies pure, which would be violated in this case because printing a
message to the screen is a side effect. To work around this, we have to specify the
impure attribute alongside elemental, as shown in the following listing.

module mod_person
type :: Person

character(len=20) :: name
contains

procedure, pass(self) :: greet
end type Person

contains
impure elemental subroutine greet(self)

class(Person), intent(in) :: self
print *, 'Hello, my name is ' // trim(self % name) // '!'

end subroutine greet
end module mod_person

program hello_derived_types
use mod_person, only: Person
implicit none
type(Person) :: people(3) = &

[Person('Jill'), Person('James'), Person('Allison')]
call people % greet()

end program hello_derived_types

The other necessary change to the program is to declare an array of Person instances.
Here, I used an array constructor that we learned about back in section 5.2.2.

8.5.3 Exercise 3: Computing finite difference in y direction.

Most of the code for this function is the same as in diffx. However, we need to be
careful to get the correct loop length, and to calculate the difference over the second
index instead of the first, as shown in the following listing.

pure function diffy(x) result(dx)
! Centered finite difference in y.
real(real32), intent(in) :: x(:,:)
real(real32) :: dx(size(x, dim=1), size(x, dim=2))
integer(int32) :: j, jm
jm = size(x, dim=2)
dx = 0
dx(:,2:jm-1) = 0.5 * (x(:,3:jm) - x(:,1:jm-2))

end function diffy

Listing 8.15 Invoking a type-bound method from an array of instances

Listing 8.16 Computing finite difference in y direction

Declares as elemental
to work on both
scalars and arrays

Declares and
initializes an array of
Person instances

ts the
 of the
econd
ension

Computes the finite
difference along the
second dimension
using whole-array
arithmetic

234 CHAPTER 8 Working with abstract data using derived types
Is one of these two functions likely to be more efficient than the other, and why? Let’s
take a look at the order of indexing in each case. In diffx we’re solving for dx(i,:)
for i = 1:im, whereas in diffy we’re solving for dx(:,j) for j = 1:jm. Recall from
chapter 1 that Fortran arrays are sequentially laid out in memory with the leftmost
index varying the fastest (column-major), unlike C or Python, where the rightmost
index varies the fastest (row-major). This means that the elements of dx(:,j) are all
contiguous in memory, which most CPUs can take advantage of. On the other hand, the
elements of dx(i,:) are strided with an equal offset of im, which can cause the CPU to
load the values from RAM on each iteration. Figure 8.7 illustrates this situation.

diffy may thus perform better in some cases, depending on the hardware, compiler,
and/or size of input array x. You can read more about the implications of column-
and row-major ordering here: http://mng.bz/wB5W.

 While unrelated to derived types, I hope this exercise served as a refresher on func-
tions, array indexing, and whole-array arithmetic that we covered in chapters 3–5.

8.6 New Fortran elements, at a glance
 type/end type—Defining a new derived type.
 type(Person) :: some_person—Declaring a new instance of a derived type.
 some_person = Person('Jill')—Initializing a new instance of a derived type.
 some_person % name—Accessing a type component.

5

1 2

diffx()

3

i i

4 5

4

3j j

2

1

In , the elements of each arraydiffx()
slice aren’t contiguous in memory, but
are strided by an offset of im .

dx(i,:) = 0.5 (x(i+1,:) - x(i-1,:))∗

5

1 2

diffy()

3 4 5

4

3

2

1

In , the elements of eachdiffy()
array slice are contiguous in memory.

dx(:,j) = 0.5 (x(:,j+1) – x(:,j-1))∗

Figure 8.7 Layout of two-dimensional arrays in memory and implications for finite
difference functions. The dashed lines indicate the layout of data in memory.

http://mng.bz/wB5W

235Summary
 call some_person % greeting()—Invoking a type-bound method.
 public and private—Attributes to allow or restrict access to a type component

or method. (They work the same way as in modules.)

8.7 Further reading
 Chapter 15 (“Object-oriented programming”) of Modern Fortran Explained:

Incorporating Fortran 2018, by Michael Metcalf, John Reid, and Malcolm Cohen,
Oxford University Press.

 Scientific Software Design: The Object-Oriented Way, by Damian Rouson, Jim Xia, and
Xiaofeng Xu, Cambridge University Press, 2011.

 “Object-oriented programming” on Fortran Wiki, http://mng.bz/qM0E.

Summary
 Derived types allow you to model complex data structures.
 A derived type is defined inside the type/end type construct, in the declarative

section of the code.
 A derived type can contain any number of variables (called components) and

procedures (called methods) bound to it.
 A derived type can contain other derived type instances as components, as well

as extend other derived types.
 Derived types are the basic element for object-oriented programming in Fortran.

http://mng.bz/qM0E

Generic procedures and
operators for any data type
Every useful computer program takes some input data, performs a number of oper-
ations on that data, and outputs the results. The data that the program works with
is stored in variables of various types. Different languages handle different types
with different strictness. Fortran, being a strongly typed language, is quite strict
about how you pass input arguments to functions and subroutines. Specifically, the
data types of arguments between the procedure invocation and definition must
match, or else the compiler will abort with an error message. This strong typing dis-
cipline has its pros and cons. On the one hand, it can be tedious to have to write
the same procedure for multiple different data types. On the other hand, Fortran’s
strong typing pushes you to write correct and robust code. Fortunately, Fortran pro-
vides a mechanism to use the same procedure name to invoke different specific
procedures that operate on different data types. This mechanism is the generic
procedure, which is also the main topic of this chapter.

This chapter covers
 Writing generic procedures that work on any

data type

 Using custom operators for cleaner code

 Redefining built-in operators
236

237Analyzing weather data of different types
 This is where several elements of the language come to work together. In chapter
2, we wrote our first arithmetic expressions with built-in numeric types such as inte-
ger and real. In chapter 3, we learned how to write functions and subroutines to
define these expressions as reusable miniprograms that we can invoke as many times
as needed. In chapter 5, we worked with arrays, Fortran’s fundamental data collection.
In chapter 7, we focused mostly on the concept of images and coarrays for parallel
processing—we’ll take a break from these for this chapter. Finally, in chapter 8, you
learned how to define your own custom data types of arbitrary complexity. In this
chapter, we’ll tie these elements together in a powerful concept called generic proce-
dures that will help you write cleaner and more expressive code. Generic procedures
allow you to define a function or subroutine that accepts input arguments of different
data types or shapes. We’ll wrap up the chapter with an intro to custom operators and
overriding built-in operators, which will serve as a hook for chapter 10, where we’ll
explore the power of user-defined operators for derived types.

9.1 Analyzing weather data of different types
Consider the following scenario: You’re fresh out of school, or perhaps ready to move
on to the next step in your career. You’re looking into a number of cities around the
world to live in: Seattle, New York City, Miami, London, Mexico City, and a few others.
For many people, myself included, weather is an important factor for a place to live,
especially if you’re looking to settle down and build a nest. In this exercise, we’ll pro-
cess a relatively long weather dataset and look for the most pleasant climate to live in.
I know, this is subjective, but bear with me for the sake of this exercise.

 What makes a climate pleasant to live in? The answer is different for everybody.
Personally, I like it dry, warm, and breezy, with clear skies. I often wonder which city
on earth has the ideal climate for me. This question is difficult to answer because of so
many different factors that contribute to weather and climate. Some cities are cool
and rainy, others are warm and sunny. Some cities have a relatively steady breeze,
allowing for good ventilation and clean air, while others can suffer from pollution and
smog. For example, Miami (Florida) has gorgeous (warm and dry) winters but gets
hot and humid in the summer. On the other hand, Los Angeles (California) is known
for its clear and sunny days, but is overall colder throughout the year.

 To get to a quantitative and more objective answer, we’ll analyze the time series
of weather measurements such as air temperature, humidity, wind speed, and num-
ber of clear sky days. In other words, we’ll quantify the climate of different cities
around the world.

What is climate?
I often see people confusing weather and climate with each other. Weather is the
actual state of the atmosphere at any given time. As I write this sidebar, it’s the eve-
ning before New Year’s Eve, and my wife and I just got back from a walk in one of the

238 CHAPTER 9 Generic procedures and operators for any data type
What’s the connection between generic procedures and this exercise? The weather
parameters in the dataset will be of different types: temperature and humidity are
floating-point values (degrees Fahrenheit), wind speed is an integer (in knots), and
clear sky data is indicated as a Boolean True or False. In this exercise, we’ll first
implement the function to average an array of each of the different types. Then we’ll
override these specific functions with a single generic function. Finally, we’ll use the
same generic function in the main program to average data of different types.

9.1.1 About the data

The dataset that we’ll work in this chapter is based on weather data collected at auto-
mated ground stations all over the world and gathered every hour to a central database.
The specific weather parameters, their units, and their data types are summarized in
table 9.1.

The key factor here is that the dataset consists of three different data types: integer,
real, and logical. Don’t worry about the specific units—since we’ll be looking
for minimum and maximum values of the averages, the units are irrelevant for
the analysis.

(continued)

wildlife preserves here in South Florida where we live. The weather was clear with few
clouds (which made for a beautiful sunset), relatively warm and dry, with a decent
breeze. What the atmosphere is like right here and now: that’s weather.

On the other hand, climate is the weather averaged over long periods of time. It’s a
statistical concept—you never directly experience climate itself. There are many
games you can play or questions you can ask in the context of climate. For example,
what were the warmest and coldest temperatures ever measured in New York City on
December 31, of all the years on record? Although these are two weather extremes,
determining their values requires processing the complete time series of tempera-
tures in that location. You could also ask, Which city on Earth was warmest on aver-
age in 2018? The list goes on. In this exercise, we’ll focus on the simplest statistical
metric used in climate analysis—the arithmetic average.

Table 9.1 Variables and their units and data types in the weather dataset

Column Variable Units Data type Example value

1 Temperature Fahrenheit real 57.9

2 Humidity % real 93.0

3 Wind speed Knots integer 10

4 Clear sky None logical False

239Analyzing weather data of different types
 Here’s a sample of the post-processed data that we’ll be working with—the first 10
lines of a post-processed data file for London Heathrow:

head data/processed/EGLL.csv
44.6,81.2,16,True
44.6,75.68,16,True
44.6,75.68,14,True
42.8,81.07,13,True
44.6,75.68,17,True
42.8,75.5,12,True
42.8,75.5,11,True
42.8,81.07,12,False
42.8,75.5,13,False
42.8,75.5,9,True

Here I used the Linux utility head to print the first 10 columns of the data file
EGLL.csv. EGLL is the international airport code for Heathrow Airport in London,
England. This data is significantly reduced from its original content to minimize the
data volume in the source code repository. If you’re interested in seeing what the com-
plete dataset looks like, type make download from the data directory.

 In this exercise, we’ll work with the weather data for the year 2018. If you want to
apply this code to a larger dataset, or data from a different year, you can use the scripts
included in the repo to get more data.

An example plot of temperature, humidity, and wind speed measured at the Miami
International Airport is shown in figure 9.1.

 There’s a lot of data in this figure—one data point for every five minutes for wind
speed, and every hour for temperature and humidity. In this chapter, we’ll crunch all
of it for 10 different cities around the world. Most of these are from airport weather
stations, local or international, but some automated weather stations could be located
in city parks or in the countryside.

Getting the code and data
If you want to download the whole source code to follow along as you read the chap-
ter, you can do so by cloning the repository from GitHub:

git clone https://github.com/modern-fortran/generic-procedures

The repository also includes the sample data we’ll use in this exercise, as well as
scripts to download more data; for example, for different cities and/or time periods.

Lists first 10
lines of a file

240 CHAPTER 9 Generic procedures and operators for any data type
70

T
e
m

p
e

ra
tu

re
 [

F
]

60

50

80

90

2018–01 2019–012018–112018–092018–07

MIA

2018–052018–03

60

R
e
la

ti
v
e
 h

u
m

id
it
y
 [

%
]

40

20

80

100

2018–01 2019–012018–112018–092018–072018–052018–03

90

70

50

30

15

W
in

d
 s

p
e
e
d
 [
k
ts

]

5

0

20

25

2018–01 2019–012018–112018–092018–072018–052018–03

10

Figure 9.1 Measurements of temperature, relative humidity, and wind speed at the Miami International
Airport in 2018

241Analyzing weather data of different types
9.1.2 Objectives

As I said earlier, we’re looking to parse weather data to identify the city with the most
pleasant climate (average weather). What is the most pleasant climate? The answer
will likely vary depending on who you ask, but for me, that means

1 Highest average temperature—I prefer to avoid cold winters if possible. Of course,
high average temperatures would also come from hot summers, which can be
unpleasant for many. However, it’s a trade I’m willing to make.

2 Lowest average humidity—I like it warm but don’t like to sweat profusely. Warm
and dry weather is my favorite for spending time outdoors.

3 Highest average wind—The more wind on average, the better ventilated the area,
which reduces the chance of stagnant and polluted air. Large cities with weaker
winds on average are known for higher occurrences of smog (a term coined by
blending smoke and fog).

4 Clear days—The more the better.

To be fair, these are quite crude and arbitrary criteria, but they will do for the sake of
this exercise. For each city, we’ll calculate the score for each of the four variables: tem-
perature (the higher the better), humidity (the lower the better), wind speed (the
higher the better), and the clear sky frequency (the higher the better). The total score
is simply an arithmetic average of the four specific scores. I’ll defer the interpretation
of these scores to the end of the exercise later in this chapter. At the end, we’ll end up
with a neat little score table like this, showing the results of our final weather averag-
ing program:

City | Temp. | Humidity | Wind | Clear | Total
Code | Score | Score | Score | Score | Score
-----+-------+----------+-------+-------+------
EGLL 0.02 0.04 1.00 0.97 0.51
LAX 0.45 0.14 0.72 1.00 0.58
LYBE 0.15 0.13 0.80 0.05 0.28
MIA 1.00 0.00 0.77 0.86 0.66
MMMX 0.41 0.57 0.68 0.47 0.53
NYC 0.10 0.13 0.00 0.41 0.16
OIII 0.55 1.00 0.63 0.41 0.65
SEA 0.00 0.10 0.86 0.58 0.39
SKBO 0.14 0.01 0.50 0.00 0.16
ZGSZ 0.90 0.03 0.80 0.27 0.50

The city code is the unique international code for each weather station. The cities are
London, United Kingdom (EGLL); Los Angeles, California (LAX); Belgrade, Serbia
(LYBE); Miami, Florida (MIA); Mexico City, Mexico (MMMX); New York City, New
York (NYC); Tehran, Iran (OIII); Seattle, Washington (SEA); Bogota, Colombia (SKBO);
and Shenzhen, China (ZGSZ). I chose these ten locations for this exercise; however, if
you want, you can follow the direction from the previous subsection and download
data for your location, or as many other locations as you want.

242 CHAPTER 9 Generic procedures and operators for any data type
9.1.3 Strategy for this exercise

To find the city with the optimal climate, we’ll go through the following steps:

1 For each city, read the time series data of temperature, humidity, wind speed,
and clear/cloudy skies.

2 For each city, compute the average value of each weather parameter.
3 Assign scores to each city using the criteria from the previous subsection.
4 Sum up the scores to find the winner.

Sounds easy, right? We covered most of the logistics around reading and processing
time series data in chapters 5 and 7. Here, we’ll focus on implementing the generic
average function that can operate on integer, real, or logical data.

9.2 Type systems and generic procedures
Before jumping into writing our first generic procedure, let’s briefly introduce a few
new concepts that will get us there:

 Strong typing—As I mentioned earlier, Fortran is a strongly typed language,
which means that the variables and expressions you pass as input arguments to
procedures must match the data type of arguments declared in the function or
subroutine definition.

 Specific procedure—A specific procedure is the implementation of a function or
subroutine that’s specific to the input data type. For example, if you’re writing a
function to average integer or real numbers, you’d write specific functions—for
example, average_int and average_real.

 Generic procedure—A generic procedure is the interface that can refer to a num-
ber of different specific procedures. If you define a generic interface average
that overrides specific average_int and average_real functions that operate
on integers and reals, respectively, then you’ll be able to invoke average with
either data type.

Although Fortran is both statically and strongly typed, don’t confuse the two. I’ll explain
the difference in the following subsection.

9.2.1 Static versus strong typing

Static and strong typing are often confused and used interchangeably. However, they
describe two different properties of a programming language.

 A statically typed language assumes that all variables must have either a manifestly
declared data type (like in Fortran or C) or a data type inferred from their use (like in
Julia, Nim, or Rust) at compile time. The opposite of static typing is dynamic typing,
where the types of all variables are evaluated at runtime. Python, JavaScript, and Lisp
are a few examples of dynamically typed languages. Static versus dynamic typing is
thus about when (at compile time or runtime) the types of variables and expressions
are determined.

243Writing your first generic procedure
 Strong typing refers to the level of type checking that’s done when combining vari-
ables of different types in expressions, or when passing an argument of one type to a
function that expects another type. For example, Fortran allows type coercion, or
so-called mixed-mode arithmetic (see section 5.2.2), where lower numeric types such
as integers are promoted to real or complex. On the other hand, passing an argument
of one type to a procedure that expects another is not allowed. This very property
makes Fortran a strongly typed language. The opposite of strong typing is weak (or
loose) typing. JavaScript is a typical example of a weakly typed language, since you can
pass any variable to any function.

 It’s worth noting that whereas static and dynamic typing are clearly defined and
distinct, the difference between strong and weak typing is more fuzzy. I give a couple
of examples in table 9.2.

Many other languages would fit in one of the cells in this table. For simplicity, I
include only the characteristic languages that a scientist or engineer is likely to have in
their arsenal.

 To be honest, you don’t need generic procedures and custom operators to sur-
vive as a Fortran developer. However, they’ll make your code easier to understand,
use, and extend. This is aligned with our case for functions, modules, or derived
types. Although none of these language elements are absolutely necessary to solve
any programming problem, they allow you to design elegant solutions to difficult
problems.

9.3 Writing your first generic procedure
In this section, you’ll learn how generic procedures work, how to implement them,
and how to apply them to data of different data types. We’ll start by identifying the
problem with strong typing, as we attempt to pass data of one type to a procedure that
expects a different type.

9.3.1 The problem with strong typing

In the previous section, we learned that Fortran’s strong typing discipline prohibits
passing arguments of incompatible data types to procedures. This means that when
you write a function that expects a real number as input, you can’t simply pass an
integer as an input argument. This would trigger a compile-time error. You can see

Table 9.2 Examples of languages and their type systems

Typing Static Dynamic

Strong Fortran Python

Weak C JavaScript

244 CHAPTER 9 Generic procedures and operators for any data type
this for yourself right now. Start with a basic function to compute the average of a
one-dimensional real array:

pure real function average(x) result(res)
real, intent(in) :: x(:)
res = sum(x) / size(x)

end function average

Attempting to invoke average with an array of integers—say, average([1, 6, 4])—
the compiler will report an error:

gfortran mod_average_incompatible.f90
mod_average_incompatible.f90:20:10:

print *, average([1, 6, 4])
1

Error: Type mismatch in argument ‘x’ at (1);
passed INTEGER(4) to REAL(4)

In this case, the error message is quite helpful. The compiler tells us that there’s a type
mismatch for argument x, as well as which data type was passed (INTEGER(4)) and
which was expected (REAL(4)). Here, the number 4 corresponds to the default type
kind of 4 bytes—int32 and real32 literal constants from the iso_fortran_env mod-
ule. We could do due diligence and make sure that we pass an argument with a match-
ing type to every procedure. However, being able to pass data to a function without
having to worry about the type is convenient and will help you write shorter and more
correct code.

 To implement a generic function to compute an average of arrays of different data
types, we’ll go through the following steps:

1 Write the specific functions for each data type; these functions must have
unique names.

2 Write the interface (generic procedure) that points to the specific functions.
3 Make the interface publicly available in the module.
4 Apply the generic procedures to the data.

9.3.2 Writing the specific functions

In this subsection, we’ll implement all three specific functions, one for each data type
that we intend to parse: integer, real, and logical. We’ll need the following specific
functions:

 average_real(x)—Returns an average value of a one-dimensional real array x.
This function will operate on temperature and humidity time series.

 average_int(x)—Returns a real average value of a one-dimensional integer
array x. This function will operate on wind speed time series.

Real 1-D array

Sum of all elements divided
by the number of elements

File name, row, and column
where the error occurred

The source code that
triggered the error

The error message

245Writing your first generic procedure
 average_logical(x)—Returns a real average value of a one-dimensional logi-
cal array x, where True values are represented as ones, and False values as
zeros. This function will operate on time series of clear sky data.

Let’s write the first specific function, which will operate on real arrays. Note that we
already wrote this function in section 5.3, when analyzing stock price time series.

THE REAL IMPLEMENTATION

The implementation of the average function for real numbers is the simplest of the
three. As noted, it’s simple enough that we already implemented one in chapter 5.
The following listing reproduces that function.

pure real function average_real(x) result(res)
real, intent(in) :: x(:)
res = sum(x) / size(x)

end function average_real

This function takes a real, one-dimensional array x as input, computes the sum of all
its elements (sum(x)), and divides it by the total number of elements (size(x)) to get
us to the arithmetic average. Recall the rules about type coercion and mixed mode
arithmetic from section 5.2.2. When you mix different numeric types (such as integer
and real) in an expression, a variable or expression of a lower type is always promoted
to the higher type (integer < real < complex) before evaluating the operation. Here,
sum(x) evaluates to a real number because x is a real array, while size(x) always
returns an integer. However, since here we’re dividing a real number by an integer,
the integer is promoted to a real before the division operation is evaluated. Unlike
before, I’ve appended the name of the input type (real) to the function name so we
can set it apart from other specific functions.

THE INTEGER IMPLEMENTATION

The analogous averaging functions on integers should work the same way as for reals,
thanks to both sum and size functions supporting either type. However, unlike with
average_real, here we have to be careful about integer division when evaluating
sum(x) / size(x). For example, if x is [1., 1., 2.] (real numbers), sum(x) / size(x)
will evaluate to 1.66666663, as expected. However, if x is [1, 1, 2] (integers), sum(x)
/ size(x) will evaluate to 1, because dividing one integer with another always returns
an integer. Now that x is an integer array, we can’t rely on automatic type coercion to
get the correct result. We need to do some extra work to make sure we don’t fall prey
to unintended integer division, like in the example we just considered.

 A dilemma comes up about whether the result should be an integer or a real, con-
sidering the integer array as input. Ultimately, this depends on your application and
how the result will be used. In certain applications, an integer average result is desired

Listing 9.1 A function to average real arrays

Assumed size, one-
dimensional real array

Divides the sum by the
number of elements

246 CHAPTER 9 Generic procedures and operators for any data type
(for example, passing an average age of a population to a function that expects an
integer). For our example, we’ll just stick to a real-typed result for all specific imple-
mentations of the average function, as shown in the following listing.

pure real function average_int(x) result(res)
integer, intent(in) :: x(:)
res = real(sum(x), kind=kind(res)) / size(x)

end function average_int

While at its core similar to the average_real implementation, here we need to take
special care with the conversion from integer to real. For an integer array x, both
sum(x) and size(x) return an integer by definition. As integer division always returns
an integer, we’d actually get an incorrect result in any case where sum(x) is not divisi-
ble by size(x). We can work around this by explicitly promoting sum(x) to a real
number before dividing by size(x).

 Here we’ve used two built-in functions:

 real—Given input variable or expression x, real(x) returns its value as a real
number. x must be of type integer, real, or complex. This function accepts an
optional kind parameter, where you can specify the desired type kind of the
result (for example real32, real64, or real128). Note the distinction between
the built-in function real() and the real data type.

 kind—Given input variable or expression x, kind(x) returns the type kind
value of x. Use this whenever you need to make sure that the function real pro-
motes to the kind that you need, rather than the default one (real32 on most
compilers and architectures).

In listing 9.2, I used the built-in function real to explicitly promote the integer to a
real number. If you remember the type coercion rules from section 5.2.2, I could’ve
done this implicitly:

res = (1.0 * sum(x)) / size(x)

Here, we implicitly promote sum(x) to a real number by multiplying it by 1.0 (a real
number). We carefully enclose this operation in parentheses to ensure that it evaluates
before the division with size(x), which would otherwise return an integer—not what
we intended. Whether you choose to promote types explicitly or implicitly is a mat-
ter of style. Implicit usually leads to more concise code, while explicit clearly com-
municates the intent. Although it may take a few thought cycles to understand why
we’re multiplying a number by 1.0, real(sum(x)) is as clear as you can get. This
especially makes a difference when the person reading the code is your colleague
from the office next door, your open source contributor in Japan, or yourself a few
years from now.

Listing 9.2 A function to average an array of integers

Assumed size, one-
dimensional real array

Explicitly promotes the
sum to a real number
before dividing

247Writing your first generic procedure
TIP We repeat Tim Peters’s mantra from the Zen of Python: “Explicit is bet-
ter than implicit.” Explicit type promotion, while more verbose, will almost
always be clearer and easier to understand.

This takes care of integer and real data. On to logical.

THE LOGICAL IMPLEMENTATION

For the logical average implementation, we need to do something a little bit differ-
ent. This is because the average value of a logical array is not well defined. The most
intuitive interpretation of an average of True or False values is perhaps the probabil-
ity of occurrence. If an array has 99 elements that are False and one that’s True, the
average value could be interpreted as 0.01 truth probability, or 1%. For our weather
average application, where we want to quantify how often the skies are clear or cloudy,
this is just the right meaning, as shown in the following listing.

pure real function average_logical(x) result(res)
logical, intent(in) :: x(:)
res = real(count(x), kind=kind(res)) / size(x)

end function average_logical

Here, we’re using the built-in function count, which returns the number of elements
in a logical array x (whether a variable or an expression) that evaluate as .true.. By
counting the number of True elements and dividing that by the size of the array, we
effectively define our average of the logical array as a real number between 0, if all ele-
ments are .false., and 1, if all elements are .true..

 And that’s all as far as specific procedures are concerned. Our next step is to write
the generic interface that will override these procedures. If you’re following along
with the code checked out from the GitHub repo, these functions are implemented in
src/mod_average.f90.

9.3.3 Writing the generic interface

At this point, we have our specific procedures implemented. Now we need to define the
interface such that we can simply invoke average(temperature), average(wind_speed),
and so on, rather than having to match the data types, like average_real(temperature),
average_int(wind_speed), and so on.

 To do so, we’ll open an interface block at the top of the module, before the contains
statement, that will look like the following listing.

module mod_average
...
private
public :: average
...

Listing 9.3 A function to average an array of logical values

Listing 9.4 Defining a generic interface to specific procedures

Counts the number of
True elements, casts
it to real, then divides
by the total number

Declares everything
as private by default

Makes only the generic function
“average” publicly accessible

248 CHAPTER 9 Generic procedures and operators for any data type

Beg

in
interface average
module procedure :: average_int
module procedure :: average_real
module procedure :: average_logical

end interface average
...

contains
...

end module mod_average

The interface specifies the name of our new generic procedure, average, and lists
the specific procedures that are to be overridden. Recall the interface that we wrote
in the previous chapter (section 8.2.6) to override the default type constructor with
a custom function:

interface Person
module procedure :: person_constructor

end interface Person

We opened the interface block with the name that we’ll use to invoke the construc-
tor (the name of the type, Person), and inside we specified the name of the function
that will be called whenever we use the type name. Here, we’re using the exact same
syntax rules, but for a slightly different purpose. We’re listing all the specific proce-
dures that can be accessed with a generic name. Note that you can list all your spe-
cific procedures inside the interface block on the same line or a separate module
procedure line:

interface average
module procedure :: average_int, average_real, average_logical

end interface average

In essence, we’re using the same mechanism here as we did for a custom type con-
structor, this time for a new concept. You could use the same mechanism to define
multiple type constructors that could take different sets of input arguments.

Which specific procedure will be invoked?
You may be wondering, If I define my generic interface to point to many different spe-
cific procedures, how does the compiler know which specific procedure to invoke?
The simple answer is that it has to be obvious! All specific procedures that are over-
ridden by a generic interface must be uniquely distinct. The Fortran standard
defines clear rules on this matter. Two functions f1 and f2 can be distinguished in
the following ways:

inning
of the

terface
Lists all the specific
procedures to be accessible
by the generic name

End of interface

Specific procedure
definitions go here.

Opens the interface block with
the name of the type to override Specifies the

procedure name
that will override the
default constructorCloses the

interface block

249Writing your first generic procedure
At this point, we can import this function in our main program and invoke it with inte-
ger, real, or logical data, as shown in the next listing.

program weather_average
...
use mod_average, only: average
...
do n = 1, nm

dataset = weather_data('data/processed/' &
// trim(cities(n)) // '.csv')

temperature(n) = &
average(denan(dataset % temperature))

humidity(n) = average(denan(dataset % humidity))
wind_speed(n) = average(denan(dataset % wind_speed))
clear_sky(n) = average(dataset % clear_sky)

end do
...

end program weather_average

I’ll just touch on two items here for brevity. The first is the weather_data derived type
that I use to read the data from the post-processed CSV files and store arrays into
type components. We covered derived types in chapter 8, and this type is fairly straight-
forward. I encourage you to take a look at its implementation in src/mod_weather_
data.f90. The second item is the denan function, which I use to remove any NaN (not
a number) values from the arrays before passing them to the average function. (See
also section 7.2.4 and src/mod_arrays.f90.)

 Number of positional arguments—f1(x) and f2(x, y) are distinct because
they expect a different number of arguments.

 Type—f1(x) and f2(i), where x and i are declared real and integer, respec-
tively, are distinct because their arguments have different types.

 Rank (number of dimensions)—f1(x(:)) and f2(x(:,:)) are distinct
because they expect arrays of different ranks (1 and 2, respectively) as input
arguments.

 Number of optional arguments—Prior to Fortran 2018, the compiler wasn’t
expected to distinguish between procedures that expect a different number of
optional arguments, but now it is.

Listing 9.5 Importing and applying the generic procedure in the main program

What’s a NaN?
A NaN is a special value for a real number that can’t be represented otherwise. Try
doing something naughty like dividing by zero—you’ll get a NaN. The square root of
a negative real number? NaN!

Reads data from the
file into a custom
structure

Removes NaNs
from the array
and averages it

Averages
the array

250 CHAPTER 9 Generic procedures and operators for any data type
Figure 9.2 illustrates what goes on under the hood when you pass, for example, an
array to a generic function that’s just an interface to a few different specific functions.

We start with a real array of air temperature values. We pass this array to a generic
average function. Thanks to static typing, the compiler knows the type of the input
array (real), and it has a list of specific procedures that the interface average
overrides:

interface average
module procedure :: average_int
module procedure :: average_logical
module procedure :: average_real

end interface average

The compiler then goes in order and checks whether the type, rank, and number of
arguments in the specific procedure definition match the input arguments passed to
the generic procedure. Integer? No. Logical? No. Real? Match! The specific function
average_real is thus matched at compile time with this particular invocation of the
generic average(temp).

(continued)

NaNs were introduced to widespread use by the IEEE 754 standard for floating-
point numbers in 1985, along with a few other special values, such as infinities of
either sign.

We pass a real data array
to a generic function.

The compiler looks through all
specific functions, and finds the
one that matches the type
of input array.

The result is computed
by the matched specific
function.

average(temp) average_logical(temp) result

average_int(temp)

average_real(temp)

Generic function

Specific functions

temp = [60.1, 59.8, ... , 73.4]

result = average(temp)

Figure 9.2 From the real input array to the result of a generic function

251Writing your first generic procedure
9.3.4 Results and complete program

Finally, we approach the home stretch. Here’s how the output of our program appears:

City | Temp. | Humidity | Wind | Clear | Total
Code | Score | Score | Score | Score | Score
-----+-------+----------+-------+-------+------
EGLL 0.02 0.04 1.00 0.97 0.51
LAX 0.45 0.14 0.72 1.00 0.58
LYBE 0.15 0.13 0.80 0.05 0.28
MIA 1.00 0.00 0.77 0.86 0.66
MMMX 0.41 0.57 0.68 0.47 0.53
NYC 0.10 0.13 0.00 0.41 0.16
OIII 0.55 1.00 0.63 0.41 0.65
SEA 0.00 0.10 0.86 0.58 0.39
SKBO 0.14 0.01 0.50 0.00 0.16
ZGSZ 0.90 0.03 0.80 0.27 0.50

From this table, we can see which city has the highest score for each respective vari-
able. For example, Miami (MIA) is the warmest but also the most humid city in the
group, yielding scores of 1 and 0 for temperature and humidity, respectively. Tehran,
Iran (OIII), has the lowest humidity, yielding the best humidity score, and gets all
around decent scores for all other variables. Despite the high humidity, the overall
winner is Miami, with a total score of 0.66, followed closely by Tehran, with a total
score of 0.65. New York City (NYC) and Bogota, Colombia (SKBO), share the bottom
place on the scoreboard, with a score of 0.16. New York City has the lowest score for
wind speed and is overall cold relative to the other cities in the group. Bogota, on the
other hand, is predominantly cloudy and humid.

Exercise 1: Specific average function for a derived type
We just went through implementing the specific average function for three built-in
types: real, integer, and logical. This will make for quite a flexible generic func-
tion. However, more complex and real-world apps will likely require encapsulating the
arrays in custom derived types, such as the type Field that we’re now using in the
tsunami simulator. Consider this type definition:

type :: Field
real, allocatable :: data(:)

end type Field

Your goal for this exercise is to implement the specific average function that will
accept a type(Field) instance as the input argument and return the average value
of its data(:) component. Can you write this function such that it works regardless
of whether the type of Field % data(:) is real, integer, or logical?

You can find the solution to this exercise in the “Answer key” section near the end
of this chapter.

252 CHAPTER 9 Generic procedures and operators for any data type
 To compute these scores, we’ll normalize the values of each variable such that the
lowest value between all stations corresponds to a zero, and the highest value corre-
sponds to a one. To normalize values means to bring them to some common scale. In
this exercise, we normalize all values to a scale from 0 to 1. For example, a value of 20
in the range 0 to 50 corresponds to a normalized value of 0.4. The choice here for a
normalized range is arbitrary and my personal choice. You could pick any other
range, as long as the score that you build makes sense to you and your users.

 The following listing shows the complete main program (src/weather_average
.f90), including the code that computes the scores for each city and variable.

program weather_average

use mod_arrays, only: denan, normalize
use mod_average, only: average
use mod_weather_data, only: weather_data
implicit none

type(weather_data) :: dataset
character(len=4), parameter :: cities(*) = &

['EGLL', 'LAX ', 'LYBE', 'MIA ', 'MMMX', &
'NYC ', 'OIII', 'SEA ', 'SKBO', 'ZGSZ']

integer :: n
integer, parameter :: nm = size(cities)
real :: temperature(nm), humidity(nm), &

wind_speed(nm), clear_sky(nm)
real :: temperature_score(nm), humidity_score(nm), &

wind_score(nm), clear_score(nm), &
total_score(nm)

do n = 1, nm
dataset = weather_data('data/processed/' // trim(cities(n)) // '.csv')
temperature(n) = &

average(denan(dataset % temperature))
humidity(n) = average(denan(dataset % humidity))
wind_speed(n) = average(denan(dataset % wind_speed))
clear_sky(n) = average(dataset % clear_sky)

end do

temperature_score = normalize(temperature)
humidity_score = 1 - normalize(humidity)
wind_score = normalize(wind_speed)
clear_score = normalize(clear_sky)
total_score = (temperature_score + humidity_score &

+ wind_score + clear_score) / 4

print *, 'City | Temp. | Humidity | Wind | Clear | Total'
print *, 'Code | Score | Score | Score | Score | Score'
print *, '-----+-------+----------+-------+-------+------'
do n = 1, nm

Listing 9.6 The complete program to compute climate scores for 10 cities

Imports utility functions
to work on arrays

Imports the
generic “average”

Derived type for reading
the data from files

Station codes
to process

Arrays to store
the averages

Arrays to store
the scores

Denans then
averages each
weather parameter.

Computing the
scores for each
variable

Total score

253Built-in and custom operators
write(*,'(1x, a4, 3x, 5(f4.2, 5x))') cities(n), temperature_score(n),&
humidity_score(n), wind_score(n), clear_score(n), total_score(n)

end do

end program weather_average

We take several steps in the main program. First, we loop through each station code,
read the data from the file into the weather_data type, remove NaNs, and average the
arrays. We then normalize the values to the range from 0 to 1—these are our scores.
The total score is calculated as the arithmetic average of individual scores. Finally, we
print the score table to the standard output.

9.4 Built-in and custom operators
Now that we understand how generic procedures work, we can take the next step
and dig deeper into operators—what they are, how they work, and how you can
make your own. This is a big topic, and in this chapter we’ll take only a small bite.
Here, we’ll learn how to express the generic functions that we wrote for the weather
average calculations as custom operators. This will also serve as a warm-up for the
big and powerful topic of custom operators for derived types, which we’ll explore in
the next chapter.

9.4.1 What’s an operator?

An operator is a special creature in most programming languages. All expressions are
made of some combination of literal constants, variables, function calls, and, you
guessed it, operators. Like in math, operators are used to combine values (numeric or
otherwise), to compute a new value. In fact, we’ve been working with operators since
chapter 2 without giving them any special mention. Now we’ll start paying more atten-
tion to them because we’ll want to tweak them for special capabilities.

 Operators can be unary or binary, depending on whether they take one or two
operands, respectively. Take, for example, the arithmetic multiplication operator *.
This is a binary operator because it’s only meaningful to apply it to two numbers; for
example, 3 * 5. Unary operators apply to a single operand. For example, the subtrac-
tion operator can be unary (-5) or binary (3 - 5).

9.4.2 Things to do with operators

There are four main aspects to Fortran operators:

 Working with built-in operators as is—We’ve been doing this throughout this book
without hiccups. In fact, the tsunami simulator, and every other miniproject
we’ve worked on so far, relied heavily on number crunching with built-in arith-
metic operators. It’s no surprise, as that’s where Fortran really shines.

 Invoking a procedure using a custom operator—You can express a function or a sub-
routine that takes one or two input arguments as a custom unary or binary

254 CHAPTER 9 Generic procedures and operators for any data type
operator, respectively. This doesn’t unlock any special powers but may be used
to make your code more concise and expressive.

 Redefining operators for built-in types—Fortran’s strong typing prohibits mixing
numerical and character values, unlike, for example, JavaScript, where an
expression such as 99 + "problems" is not only allowed but common. Redefin-
ing operators for existing built-in types allows a more flexible, weaker type sys-
tem in Fortran.

 Custom operators for derived types—This is the big and powerful one that we’ll
explore in the next chapter. As you build your derived types, such as the Person
type from the previous chapter or the Field type from the tsunami simulator,
defining built-in operators for these types will allow you to construct whole new
sets of rules, essentially extending Fortran’s core syntax.

In this chapter, we’ll cover the built-in operators (item 1) in more detail, and we’ll
learn how to express a function or subroutine as a custom operator (item 2). We’ve
used built-in operators extensively since chapter 2 throughout the book but haven’t
given much attention to what exactly operators are and how they work. Overriding a
procedure with a custom operator is more syntactic sugar than anything else. That is,
it doesn’t add any notable functionality but may make your code easier to read or
write, or just prettier. A programmer’s happiness matters. Finally, we’ll touch on rede-
fining operators for built-in types (item 3) in exercise 2 of this chapter. Custom opera-
tors for derived types (item 4), a powerful and interesting feature in their own right,
we’ll defer until the next chapter.

 Back to our weather data analysis app. When we implement the average and denan
functions from listing 9.6 as custom operators, we’ll be able to express our main data
loop as that shown in the following listing.

do n = 1, nm
dataset = weather_data('data/processed/' // trim(cities(n)) // '.csv')
temperature(n) = &

.average. (.denan. dataset % temperature)
humidity(n) = .average. (.denan. dataset % humidity)
wind_speed(n) = &

.average. (.denan. dataset % wind_speed)
clear_sky(n) = .average. dataset % clear_sky

end do

Here, .average. and .denan. are custom operators with the same functionality as
functions with the same name. The semantics didn’t change, only the syntax—we
traded some parentheses for some periods. Note that .average. .denan. x (where x
is the input array) is not a valid syntax. When chaining multiple unary operators, you

Listing 9.7 Applying custom operators to remove NaNs from and average the data

Applies .denan.
first, .average.
second

We can omit the parentheses
for a single unary operator.

255Built-in and custom operators
must use parentheses to separate two operators. Binary operators don’t run into this
issue, as they’re always separated by operands.

9.4.3 Fortran’s built-in operators

Fortran comes with a number of built-in operators. Each falls into one of four catego-
ries, depending on what type of result they produce:

 Arithmetic—These are the most common kind of operators in almost any com-
puter program. They allow you to do arithmetic calculations, such as add, sub-
tract, multiply, and divide numbers. Arithmetic operators work on numeric
values and produce a numeric value as a result.

 Comparison—These operators let you compare the values of variables to yield
logical values, such as True (.true.) or False (.false.). You can compare
numeric or character values (character string comparisons are evaluated based
on the integer encoding of Unicode symbols), and the result is always a logical
.true. or .false..

 Logical—These allow you to form logical (Boolean) expressions from two fun-
damental logical states, True and False. For example, if you’d require both
expressions a and b to be True, you’d test for the value of a .and. b. If you’d
need at least one of them to be True, you’d test it with a .or. b. Logical opera-
tors always operate on logical operands and produce logical results. In con-
trast to all other built-in operators, logical operators are always enclosed in
period symbols: .and., .or., .not., etc.

 Character—Fortran offers only one operator that works on character strings, the
concatenation operator //.

There’s also the special assignment operator =. What’s special about it is that rather
than returning a value of some data type, it acts to store the result on the right side
into the variable on the left side. The assignment operator is by default available for
use with all built-in types, as well as user-defined derived types, if the type of the
expression on the right side matches the type of the variable on the left side. The
assignment can be redefined, just as any other operator can, and to great effect. We’ll
dig deeper into this in the next chapter, where we’ll redefine the assignment for
Field types in the tsunami simulator to automatically synchronize parallel processors
on assignment.

 Due to the nature of these operators, there are typical scenarios in which you’ll use
them. Arithmetic operators are most commonly used in numerical calculations with
assignments to new variables. Comparison and logical operators are often used
together to test for conditions and criteria in if/else statements. Finally, character
string concatenation is almost exclusively used for text manipulation and I/O.

 Table 9.3 summarizes the built-in operators.

256 CHAPTER 9 Generic procedures and operators for any data type
In total, Fortran provides five arithmetic operators, six comparison operators, five log-
ical operators, and one character string operator.

Table 9.3 Summary of Fortran’s built-in operators, and their meanings

Operator Kind
Unary or
binary

Meaning Supported types

= Assignment Binary Assign integer, real, complex,
logical, character, derived types

+ Arithmetic Both Add integer, real, complex

- Arithmetic Both Subtract integer, real, complex

* Arithmetic Binary Multiply integer, real, complex

/ Arithmetic Binary Divide integer, real, complex

** Arithmetic Binary Power integer, real, complex

== Comparison Binary Equals integer, real, complex,
character

/= Comparison Binary Does not equal integer, real, complex,
character

> Comparison Binary Greater integer, real, complex,
character

>= Comparison Binary Greater or equal integer, real, complex,
character

< Comparison Binary Lesser integer, real, complex,
character

<= Comparison Binary Lesser or equal integer, real, complex,
character

.eqv. Logical Binary Equivalent logical

.neqv. Logical Binary Nonequivalent logical

.and. Logical Binary Logical AND logical

.or. Logical Binary Logical OR logical

.not. Logical Unary Logical NOT logical

// Character Binary Concatenate character

Comparing logical expressions
Note that Fortran doesn’t allow comparing logical expressions with the == or /=
operators. Use .eqv. (equivalent) or .neqv. (not equivalent) instead.

257Built-in and custom operators
9.4.4 Operator precedence

An important aspect of operators, and a common source of bugs for novice program-
mers, is operator precedence. In other words, which operation gets to go first, and
which last? Fortran has a few simple rules for arithmetic operator precedence:

1 Exponentiation (**) takes precedence over multiplication (*) and division (/).
Example: 2**3 * 2 evaluates to 16 (exponentiation first, multiplication second).

2 Multiplication (*) and division (/) take precedence over addition (+) and sub-
traction (-). Example: 2 + 3 * 4 evaluates to 14 (multiplication first, addition
second).

3 For operators with equal precedence (* and /, and + and -), the operations are
evaluated left to right. The order of operations will matter for floating-point
arithmetic.

4 Parentheses can be used to control the precedence. Example: (2 + 3) * 4**2
evaluates to 80 (addition in parentheses and exponentiation first, multiplica-
tion last).

Comparison operators don’t suffer from precedence ambiguity because they operate
on numeric or character values, and return a logical value as a result. It’s thus illegal
to test, for example, 0 < x < 1, like you can in Python; instead you have to test for 0 <

x .and. x < 1. Parentheses are not needed in this case, as the order of operations can be
determined by the compiler based on the input data types for different operators.

9.4.5 Writing custom operators

A custom operator is essentially a procedure under the hood, with an extended syntax
that allows it to be used in expressions much like built-in operators:

result = a .op. b

Once we have a function or a subroutine, it’s straightforward to implement it as a cus-
tom operator.

TIP Don’t confuse the custom operator syntax, .op. with the logical literal
constants .true. or .false.. The latter are reserved words and not opera-
tors, and they have periods in them for historical reasons.

These are the naming rules for custom operators:

 Operator names must be enclosed by periods: .op..
 Names are restricted to the same character set as variable or procedure names:

lower- or uppercase alphabet letters and decimal numbers. Operator names
also must not begin with a number.

The main restriction to operators is that they can be either unary, operating on one
operand, or binary, operating on two operands. You can’t express procedures that
operate on three or more arguments as custom operators.

258 CHAPTER 9 Generic procedures and operators for any data type
 To make a function available as an operator, we write the same interface as we
did for a generic procedure, except that for the name of the operator, we use the
word operator, with the operator name in parentheses, as shown in the following
listing.

module mod_average
...
public :: operator(.average.)
...
interface operator(.average.)

module procedure :: average_int
module procedure :: average_real
module procedure :: average_logical

end interface average
...

contains
...

end module mod_average

As you can see, this is almost identical to what we did with generic procedures. The
main difference is the special word operator, which we need to use to specify that the
interface is going to be the operator, and not just a procedure.

9.4.6 Redefining built-in operators

To wrap up the chapter, in this section we’ll practice redefining Fortran’s built-in
operators to do something more or other than originally intended. For example, this
could involve either of the following:

 Performing the same operation, but operating on custom types—For example, we could
define the arithmetic addition operation (+) for the derived type Person from
the derived type. Depending on the application, the result of adding two
instances of Person type either could be an instance of some new type—for
example, People or Team—or could yield an array of Person instances.

 Modifying the intended operation—For example, you could redefine the addition
operator so it doesn’t add numbers but instead multiplies them.

I leave this one as an exercise for you (“Exercise 2” sidebar). It’s a fairly new concept,
but we’ve already covered all the pieces you’ll need, and it’s a matter of putting them
together in the correct order.

Listing 9.8 Invoking functions with a custom operator

Makes the custom operator
publicly accessible

Interface block with
the operator name

Specific procedures
to be overridden by
the operator

259Generic procedures and operators in the tsunami simulator

Decl
the F
insta
9.5 Generic procedures and operators in the tsunami
simulator
As of the previous chapter, we were already using some generic procedures and cus-
tom operators in the tsunami simulator. We’ll explore their implementation in depth
in the next chapter. For now, I’ll give you a taste of what’s to come.

9.5.1 Writing user-defined operators for the Field type

In chapter 8, we implemented the tsunami solver using the Field derived type to
model physical fields such as water height and velocity. This allowed us to initialize the
fields and express the solver equation cleanly and concisely, as shown in the follow-
ing listing.

use mod_field, only: Field
...
type(Field) :: h, u, v, hm
...
u = Field('u', [im, jm])
v = Field('v', [im, jm])
h = Field('h', [im, jm])
hm = Field('hm', [im, jm])
...
time_loop: do n = 1, nm

...
u = u - (u * diffx(u) / dx + v * diffy(u) / dy &

+ g * diffx(h) / dx) * dt

v = v - (u * diffx(v) / dx + v * diffy(v) / dy &
+ g * diffy(h) / dy) * dt

h = h - (diffx(u * (hm + h)) / dx
+ diffy(v * (hm + h)) / dy) * dt

...
end do time_loop

Exercise 2: Defining a new string concatenation operator
The way we concatenate strings in Fortran is with the // operator. Coming from
Python, where it’s done with the + operator, it may be convenient to be able to do the
same in Fortran. Implement the + operator so that you can concatenate Fortran
strings with it:

print *, 'Hello' + ' world!'

should print Hello world! to the screen.

You can find the solution to this exercise in the “Answer key” section near the end
of this chapter.

Listing 9.9 Main tsunami solver using the Field derived type

Imports the type
from the module

ares
ield

nces Initializes fields
for water velocity
and height

Computes the water
velocity in x direction

Computes the water
velocity in y direction

Computes the
water height

260 CHAPTER 9 Generic procedures and operators for any data type
If you worked through chapter 8, you learned how to use derived types to abstract
away complex code into type components and methods. Specifically, in the tsunami
simulator, we designed the Field type so that each instance carries all the metadata
required for tedious bookkeeping, such as array start and end indices, the image indi-
ces of parallel neighbor tiles, and so on.

 However, what’s not immediately obvious from listing 9.9 is how the computation
of field instances u, v, and h works under the hood. Notice that here we’re using the
same code as we did in chapter 7, where we worked directly with coarrays. As you can
probably guess by now, my use of built-in arithmetic operators (+, -, *, and /) with
Field instances didn’t come for free. In fact, each of these operators needed at least a
few specific functions defined. The following listing provides a sneak peek at imple-
menting the addition (+) operator to add two instances of the Field type.

type :: Field
...

contains
...
generic :: operator(+) => field_add_field
...

end type Field

This is the familiar derived type definition block, with one new syntax element—the
generic :: operator() statement, which specifies a built-in or custom operator and
the specific procedure that the operator will invoke. This is just a taste of what’s
coming.

 In the next chapter, we dig deep into defining custom operators for derived types.
You’ll learn how to use intrinsic operators together with your own custom types to sig-
nificantly augment the base rules of the language. For the tsunami simulator, this will
mean exciting and powerful capabilities, such as applying familiar arithmetic opera-
tors directly to instances of the Field type, automatically synchronizing parallel
images on assignment, and more.

9.6 Answer key
This section contains solutions to exercises in this chapter. Skip ahead if you haven’t
worked through the exercises yet.

9.6.1 Exercise 1: Specific average function for a derived type

The solution to this exercise relies entirely on what we just learned about writing
specific and generic functions, and the syntax about derived types that we covered
in chapter 8. If you need to brush up on how to declare derived types and access
their components, go back to section 8.2. Here I present the solution and explain
how it works.

Listing 9.10 Defining the addition operator for the Field type

Components are
declared here.

Type methods are
listed here.

Defines the addition
operator to invoke
the field_add_field
procedure

261Answer key
 First, here’s the specific function that accepts a Field instance as the input
argument:

pure real function average_field(f) result(res)
class(Field), intent(in) :: f
res = average(f % data)

end function average_field

It may surprise you that this specific function is actually simpler than any of the other
three (average_real, average_int, and average_logical). This is thanks to the
average of a Field type simply being the average of its data component. Note that
here we don’t have to use the specific function name average_real. Instead, we can
just use the generic average and let the compiler do the work of matching the spe-
cific function with the input data type. This is a powerful feature of the language—if
Field % data was declared as an integer or logical array, the code in listing 9.9
would work as is.

 Now that we have the specific function, the rest is easy—we add its name to the
generic interface:

interface average
module procedure :: average_int
module procedure :: average_real
module procedure :: average_logical
module procedure :: average_field

end interface average

We can now apply the generic average to a Field instance, just as we did to built-in
data types before, as shown in the following listing.

program test_average

use mod_average, only: average
use mod_field, only: field

type(Field) :: f

f % data = [1., 6., 4.]

print *, average([1., 6., 4.])
print *, average(f)

end program test_average

This program creates a Field instance f and assigns a small real array to its data com-
ponent. It then applies the generic average to both the real array and the Field

Listing 9.11 Averaging a real array and a derived type instance

Like with other specific functions,
we give this one a unique name. Accepts a Field type-

based instance as the
input argument

Applies the average to
the data component

New specific
function added
to the interface

Assigns data
to the Field
instance

Averages a
real array

Averages a Field
instance

262 CHAPTER 9 Generic procedures and operators for any data type
instance. Compile and run it for yourself to confirm that the two function calls return
the same result. You can find the complete program in src/ch09/average_generic.f90
in the listings repo at https://github.com/modern-fortran/listings.

9.6.2 Exercise 2: Defining a new string concatenation operator

Like before, we follow the three steps to overriding a function with an operator:

1 Define the specific function (strcat).
2 Define the generic interface, this time, to the built-in operator +; point it to the

specific procedure strcat.
3 Import the new operator from the module into the main program.

The full program is shown in the following listing.

module mod_strings

implicit none

private
public :: operator(+)

interface operator(+)
module procedure :: strcat

end interface

contains

function strcat(s1, s2) result(res)
character(len=*), intent(in) :: s1, s2
character(len=:), allocatable :: res
res = s1 // s2

end function strcat

end module mod_strings

program strcat
use mod_strings, only: operator(+)
print *, 'Hello' + ' world'

end program strcat

We start by writing the specific function strcat. This function takes two assumed-
length character strings (character(len=*)), s1 and s2, as input arguments. The
result, res, is also a character string, best declared as an allocatable string (charac-
ter(len=:), allocatable). To evaluate the result, we simply use the built-in concate-
nation operator //. We don’t have to allocate the result explicitly—we can let the
automatic allocation on assignment (introduced in Fortran 2003) do its magic. Once
this function is defined, we just need to write an interface for the + operator and let it
point to strcat.

Listing 9.12 Concatenating strings with a + operator

Makes only the +
interface accessible

Generic interface
to operator +

Assumed-length
character strings

Allocatable character
string as result

Concatenates using the
built-in operator; result is
allocated on assignment

Accesses the + operator
from a module

We can now concatenate
strings using the + operator.

https://github.com/modern-fortran/listings

263Summary
 Voilà! From the main program, we import operator(+) from the module and use
it to concatenate two strings. While intended more as a fun exercise than a useful one,
this solution required a variety of syntax elements from this and earlier chapters. I
hope you enjoyed redefining your first built-in operator. What’s next?

9.7 New Fortran elements, at a glance
 interface/end interface—Writing an interface block to define a generic proce-

dure name and list all the specific procedures that it can invoke under the hood
 interface operator()—Using a custom operator instead of a function
 .op. x, x .op. y—Unary and binary custom operators in action

Summary
 Generic procedures allow you to invoke specific procedures that operate on dif-

ferent data types using the same name.
 Handling different data types requires writing a specific procedure for each type.
 Procedures can be overridden by custom operators for cleaner code.
 Generic procedures are your second layer of abstraction, on top of procedures

introduced in chapter 3; use them only when they clearly make your code simpler.

User-defined operators
for derived types
Almost any app working with real-world data, or any program more complex than a
toy model, will use derived types (classes) to handle abstract data. Operators for
arithmetic (+, -, *, /, **) and comparison (==, /=, >=, <=, >, <) are available out of
the box for built-in numeric types (integer, real, complex), but not for derived
types. For example, to keep track of the calendar date and time in an app, you’d
need to compare, add, and subtract datetime instances (data structures that repre-
sent date and time). This is where derived types from chapter 8 and generic proce-
dures and custom operators from chapter 9 come together to form a powerful
feature of the language: user-defined operators for derived types. Combining these
two capabilities will allow you to define what the built-in (and custom) operators
mean for any derived type, and in a way extend the syntax of the language.

This chapter covers
 User-defined operators for derived types

 Writing a minimal countdown app

 Validating user input

 Synchronization on assignment in the tsunami
simulator
264

265Happy Birthday! A countdown app
 In this chapter, we’ll start by writing a simple command-line app that counts the
time between now and some arbitrary date in the future; for example, your birthday.
The implementation of the app is centered around a single concept—how to apply an
arithmetic operator such as addition or subtraction to a derived type. On this journey,
you’ll also learn how to parse command-line arguments, validate user input, and work
with dates and times. Once done, we’ll apply this knowledge to implement an almost
complete arithmetic operator set for the Field class in the tsunami simulator. Besides
being able to express our physics equation in an elegant way like before, we’ll also
abstract away the synchronization logic in parallel execution mode by defining a cus-
tom assignment operator for the Field class. You’ll leave this chapter with powerful
new knowledge that will allow you to extend the built-in arithmetic to arbitrary data
types and beyond.

10.1 Happy Birthday! A countdown app
Do one thing and do it well.

 —A UNIX philosophy

Our project for this chapter is a minimal countdown app for the command line. Fol-
lowing the old UNIX philosophy, it will do one thing and do it well. The app will read
a year, month, and day as command-line arguments input by the user. If the date input
is today (according to the local machine time), the app will wish the user happy birth-
day. Otherwise, it will display the number of days, hours, minutes, and seconds
remaining until the user’s birthday.

 My birthday is on December 10, and running the app on the day of this writing
gives me

$./countdown 2020 12 10
305 days, 4 hours, 41 minutes, and 16 seconds remaining until your Birthday!

However, if I wait 305 more days and run the app then, it will greet me as I expect it to:

$./countdown 2020 12 10
Happy Birthday!

Um, that’s the whole app. What more do you expect of something that does only
one thing?

10.1.1 Some basic specification

For the app to do well the one thing it’s supposed to do, it helps to set some specifica-
tions so we can plan the implementation:

1 Read a date from user input in the year, month, day form.
2 If the input date matches today’s date, print “Happy Birthday!” on the screen.
3 Otherwise, print the number of days, hours, minutes, and seconds until the

user’s birthday.

266 CHAPTER 10 User-defined operators for derived types
4 The app should handle the most likely user input errors, such as no arguments
provided, or bad values for year, month, or day arguments.

This specification list is plenty for this exercise. Now for the difficult part—how do we
get this thing to work?

10.1.2 Implementation strategy

From our specifications list, it looks like we’ll need some clever way to handle date
and time data, as well as the time difference. In chapter 8, we learned how to define
arbitrary data structures using derived types. We can thus model dates, times, and
time difference structures as derived types (or classes)—let’s call these datetime
and timedelta, respectively.

 Once we have a datetime class, we’ll need a way to load an instance from user-
input command-line arguments, and another from local machine time. Fortran packs
a few subroutines that we can use for these tasks. As noted, for the time difference,
we’ll make the timedelta class. We’ll also need a way to take the difference between
two datetimes. This item is twofold—one is a syntax to define the arithmetic (-) oper-
ator for the datetime class, and the other is the actual algorithm to do the calculation.

 In section 10.2, we’ll tackle the date and time data structure (the datetime derived
type) and how to create datetime instances from both user input and current
machine time. Then, in section 10.3, we’ll implement the time difference or interval
structure, the timedelta class, and we’ll get into the nitty-gritty of defining custom
operators.

10.2 Getting user input and current time
In the first part of the implementation, we’ll define a datetime class and learn how to
load it from command-line arguments and from local machine time.

10.2.1 Your first datetime class

The simplest way to model human-readable date and time is by defining a data struc-
ture with integer components for each date and time unit. I say human-readable
because most of us are quite used to thinking of dates in terms of years, months, and
days, and times in terms of a 24-hour clock. A notable example of a simpler, but not
human-friendly, time is so-called UNIX time, which is a single integer value indicating
the number of seconds since 00:00:00 UTC on January 1, 1970. Linux and UNIX-like
systems such as macOS use this kind of time internally for timekeeping.

 If you’re on such a system, you can get the current UNIX time by typing date +%s
on the command line. Indeed, we’ll use a similar measure to implement the differ-
ence between two times later in this chapter. Since our app will both expect input
from command-line arguments and produce output for a human user, we’ll program
a date and time structure following the Gregorian calendar, also standardized as ISO
8601 in 1988. Derived types, which we learned about in chapter 8, are the obvious
choice for such a data structure. Here’s your first datetime class:

267Getting user input and current time
type :: datetime
integer :: year, month, day
integer :: hour = 0, minute = 0, second = 0

end type datetime

This is a rather simplified version of a date and time record. It stores time with preci-
sion of up to a second, so any fractions of a second are neglected. The same goes for
time zones, which we’ll ignore for simplicity. Daylight savings? Forget about it. You get
the idea—we’ll work with the simplest datetime instance to accomplish our goal:
counting the time between now and the date input by the user.

 Note that in the snippet, we initialize the time components (hour, minute, and sec-
ond) to zero but leave the date components (year, month, and day) uninitialized. This
is strictly a UI (user interface) design choice. The user should be allowed to work with
the datetime class to handle just dates, if time components aren’t needed. For exam-
ple, this approach allows creating a datetime instance as just datetime(2019, 12,
10), where the hour, minute, and second components are initialized to zero as the
default value. In contrast, there’s no obvious sane default value for year, month, or
day, if omitted, so we leave them as required components.

 With just this one derived type definition, we can import it, declare it, and initialize
it to any date we’d like, and print it back to the screen:

2019 12 10 0 0 0

The following listing shows a program that does that.

program countdown
use mod_datetime, only: datetime
implicit none
type(datetime) :: birthday = datetime(2019, 12, 10)
print *, birthday

end program countdown

This is our first step toward the countdown app. It’s a simple, but essential, step—we
now have a date and time data structure to work with. Our next stop is reading user
input from the command line, and creating the datetime instance accordingly.

10.2.2 Reading user input

There are a few different ways for a program to get input from the user. One is the
so-called standard input, where the program waits for the user to enter data through
the keyboard. This approach is useful when the program’s flow depends on users’
input. If you’re old enough to have grown up with old text adventures such as Colossal

Listing 10.1 Creating a datetime instance and printing it to screen

Year, month, and day
are required.

Hour, minute, and
second are optional.

Imports the datetime
class from the module

Declares and
initializes a
datetime instance

Prints the datetime
instance to screen

268 CHAPTER 10 User-defined operators for derived types

Retu
dat
ins

In
valu

conve
char

string
Cave Adventure or Zork, or if you’ve ever read a choose-your-own-adventure book,
they work exactly like this:

 The program asks you a question, and you type in the answer.
 The program then processes the input and acts accordingly.

We explored reading from standard input in chapter 6.
 Another approach is to instruct the program to read the input data from files on

disk that have been prepared beforehand. We used this liberally in chapters 5, 7, and
9. This approach is necessary when the input data is much bigger than a handful of
scalar parameters or character strings; for example, initial fields to a complex simula-
tion program or satellite data streams that come in at set times of the day.

 Finally, you can provide input data to the program as command-line arguments,
like with many Linux and UNIX command-line programs. This approach is suitable
when the input data consists of up to several parameters. A program with a command-
line interface can be used as a stand-alone program or as part of a larger, scripted
pipeline. Fortran provides subroutines to inquire and read data from the command
line, no matter what your operating system is—Linux, Windows, or a UNIX-like sys-
tem such as macOS. The key subroutine is get_command_argument, introduced by the
Fortran 2003 standard. It allows you to parse the command-line arguments by position
number and store their values into a character string variable. See it in action in the
following listing.

subroutine get_date_from_cli(date)

type(datetime), intent(out) :: date
character(len=4) :: year_arg
character(len=2) :: month_arg, day_arg
integer :: year, month, day

call get_command_argument(1, year_arg)
call get_command_argument(2, month_arg)
call get_command_argument(3, day_arg)

read (year_arg, *) year
read (month_arg, *) month
read (day_arg, *) day

date = datetime(year, month, day, 0, 0, 0)

end subroutine get_date_from_cli

This subroutine has no input arguments, and only one output argument, date. It’s a
rather short subroutine; however, it uses two new concepts that we haven’t encountered
so far in the book. First, we use the get_command_argument subroutine to read the argu-
ments from the command-line interface (CLI). What’s new about this concept is that it

Listing 10.2 Reading the date from the command line

A subroutine that will
return date to the caller

rns a
etime
tance

Character strings to store command-
line arguments, length 4 for year,
and length 2 for month and dayteger

es to
rt the
acter
s into

Reads each
argument into a
character string

Converts each argument
from character string to
an integer

Creates a new
datetime instance
from input values

269Getting user input and current time
will allow you to provide input parameters to the program at runtime, without needing
to recompile the program. The first argument to get_command_argument is an integer
and refers to the position of the argument on the command line, starting immediately
after the program name. The second argument is a character string in which we store
the value of the command-line argument. You can see the full description of this sub-
routine in the following sidebar.

We now have our CLI arguments stored into character string variables. To create a
new datetime instance, we need them as integers. How do you convert a string to an
integer in Fortran? This is where we encounter the second new concept—reading a
value from an internal unit. This is one of the historical features of Fortran that hails
from way back. See, you’d think that you could just do something like int('42') or
real('3.1415925') to get an integer or a real number from a string. However, it’s not
that easy. To make the conversion, you actually need to read a number from a charac-
ter variable, like you’d do from a text file:

read (unit=string, fmt=fmt) var

Here, we use the read statement to convert a character string, stored in the string
variable, into a numerical (integer, real, or complex) or logical variable var. The sec-
ond argument, fmt, is the formatting string to be used to parse string. We’ll look into
formatting strings in the next chapter in more detail, but for now a default value (*) is

Using the get_command_argument subroutine
get_command_argument is a built-in subroutine that queries information about
command-line arguments passed to the program. It takes at least one and up to four
arguments:

 number—A non-negative integer number indicating the position of the com-
mand-line argument to query.

 value—An optional character string in which the value of the command-line
argument will be stored. If number == 0, the name of the program is stored
into value.

 length—An optional integer that will be set to the number of characters in
the command-line argument.

 status—An optional integer status. If getting the command-line argument
fails, status is set to a positive number. If the argument is truncated to fit
into value (second argument from this list), it’s set to -1. Otherwise (suc-
cess), status is set to zero.

Note that there’s no implicit conversion of data types from the command line to our
program. If you pass integers or reals to the program, get_command_argument will
always receive them as character strings. You, the programmer, are responsible for
explicitly converting them to the data type that you need.

270 CHAPTER 10 User-defined operators for derived types
good enough. Thus, to convert a character string year_arg to an integer variable
year, you’d write read (year_arg, *) year, and similarly for month and day argu-
ments. If you’re feeling adventurous, you could also write a custom constructor for
the datetime type that accepts character strings as input, as well as integers.

 Note that this subroutine could’ve been expressed as a function, albeit not a pure
one. I chose a subroutine because using a function may imply that no side effects
occur. Even though get_date_from_cli doesn’t modify any other variable in our pro-
gram, it’s not pure by definition because it receives information from the program’s
environment.

 Back to our main program, which we can now write as shown in the following listing.

program countdown
use mod_datetime, only: datetime, get_date_from_cli
implicit none
type(datetime) :: birthday
call get_date_from_cli(birthday)
print *, birthday

end program countdown

At this point, we can import the datetime class and get_date_from_cli parser sub-
routine from the module, declare the datetime instance, and initialize it with user-
input values. Our app is useful already! However, let’s look back at our specification
from section 10.1. We need to be able to handle typical cases of invalid user input,
such as not enough command-line arguments provided, or values for year, month, or
day that aren’t meaningful. This will be good to tackle in an exercise, such as the one
in the “Exercise 1” sidebar.

Listing 10.3 Receiving a date from the CLI and printing it to screen

Exercise 1: Validating user input
Edit the get_date_from_cli subroutine from listing 10.2 to check for the following:

1 Has the user passed at least three command-line arguments to the program?
If not, the app should print a short usage message and stop. Hint: use com-
mand_argument_count to get the integer number of arguments provided to
the program.

2 Do each of the year, month, and day arguments have a valid value? If not,
print an informative error message and stop. Note that to test for the value of
the day, you’ll need to determine the number of days given the month and
year values. A function to do this is found in mod_datetime.f90 in the source
code repository.

The solution to this exercise is given in the “Answer key” section near the end of this
chapter.

Imports the class and
command-line parser
from the module

Declares our
datetime instance

Parses the command-
line argumentPrints the datetime

instance to the screen

271Getting user input and current time

Arra
e

inte
In this section, we used the built-in get_command_argument subroutine to write a
simple command-line argument parser. Just using this can get you quite far, but writ-
ing a more sophisticated CLI app with many optional arguments and rich documen-
tation can become tedious. Fortunately, there are libraries out there that you could
use for this purpose. I describe my favorite in the next sidebar.

10.2.3 Getting current date and time

We got the date from the user input, and now we need to get the current date and
time. Fortran provides a subroutine date_and_time that gives you access to the cur-
rent local machine time. Here’s how it works, wrapped in a function to return a
datetime instance:

type(datetime) function current_time() result(res)
integer :: values(8)
call date_and_time(values=values)
res = datetime(year = values(1), month = values(2),&

day = values(3), hour = values(5),&
minute = values(6), second = values(7))

end function current_time

This function is short and sweet. We first call the built-in date_and_time with the
integer array values with eight elements. Then, we use several of these elements to
create a datetime instance and return it as the result. Why is values an array with
exactly eight elements, and why do we use only six? See the next sidebar for more
information.

Want to write more serious CLI apps?
command_argument_count and get_command_argument are often more than enough
for many simple apps. However, these procedures are low-level tools. If you need your
CLI app to receive several different arguments of different types (some of them
optional) and to print sophisticated use instructions on the screen, you’re better off
with a library dedicated to doing exactly that. The Fortran command Line Arguments
Parser (FLAP, https://github.com/szaghi/FLAP) is an easy-to-use library for building
rich CLI interfaces and docstrings. It’s developed and maintained by Stefano Zaghi,
an Italian physicist and a true Fortran wizard.

The date_and_time built-in subroutine
date_and_time gets the date and time information from the real-time system clock.
This is the clock in your computer. There are a few different ways you could use
date_and_time. The full syntax is

date_and_time(date, time, zone, values)

y of
ight
gers

Gets the date and time
values and stores them
into the array

Creates a new
datetime instance
using these values

https://github.com/szaghi/FLAP

272 CHAPTER 10 User-defined operators for derived types
10.3 Calculating the difference between two times
Finally, we get to the meat of the countdown app: calculating the difference between
the two times. There are three necessary ingredients for this to work:

 A data structure to represent a time interval—a timedelta class
 A syntax to define a subtraction operator for datetime instances
 An algorithm to calculate the difference

At the end of this section, we’ll be able to initialize two datetimes and take their differ-
ence, which should look something like this:

type(datetime) :: now, birthday
type(timedelta) :: td

call get_date_from_cli(birthday)
now = current_time()
td = birthday - now

We’re already able to declare datetime instances and initialize them either from the
command line (get_date_from_cli) or from machine time (current_time). What
we don’t know how to do yet, and neither does the compiler, is take the difference
between two datetimes using nothing but an arithmetic subtraction (-) operator and
make it return a timedelta instance. The next section tackles that problem.

(continued)

where

 date is a character string of length 8 or larger. If provided, it’s populated with
the current date in the form YYYYmmdd (year, month, day).

 time is a character string of length 10 or larger. If provided, it’s populated
with the current time in the form hhmmss.sss (hour, minute, second, millisec-
ond).

 zone is a character string of length 5 and has the form (+-)hhmm, represent-
ing the difference relative to the Coordinated Universal Time (UTC).

 values is an integer array of size 8, whose elements are year, month, day,
time difference from UTC in minutes, hour, minute, second, and millisecond,
respectively.

All four arguments to this subroutine are optional.

Two datetime instances
One timedelta
instance

Gets the date from
the command line

Gets the current
date and time

Takes the difference using the
arithmetic operator -

273Calculating the difference between two times
10.3.1 Modeling a time interval

Let’s first design a data structure to represent a time interval, or difference. How do
we think of time intervals? They can be expressed as a number of days, hours, min-
utes, seconds, or any combination thereof. You may ask, Why not simply express the
time difference as a finite number of days or seconds, like the UNIX time I mentioned
earlier? While this is certainly useful for internal calculations, we also need a human-
readable format for a time interval to display it as the output of the program. This is
where the timedelta class comes in. We can use the familiar syntax to create a derived
type timedelta to model this data structure:

type :: timedelta
integer :: days = 0, hours = 0, &

minutes = 0, seconds = 0
end type timedelta

A timedelta class is even simpler than the datetime class. Here we have only four
integer components (days, hours, minutes, and seconds), and all are optional. This
makes timedelta more flexible than datetime as well. If no arguments are provided
to the timedelta constructor, a zero timedelta instance will be created. You may ask
why we haven’t included the months or years as components as well. It’s because both
months and years can be of different absolute time lengths. For example, February is
always shorter than March in terms of absolute time, and they’re both exactly one
month. The same goes for leap and nonleap years.

10.3.2 Implementing a custom subtraction operator

We have our datetime and timedelta classes. The question remains: How can we take
the difference between two datetimes using nothing but an arithmetic subtraction
operator? Doing just td = birthday - now won’t work out of the box because a date-
time is an arbitrary data structure. To the compiler, it has no intrinsic meaning and is
just a sequence of numbers in memory. If we try this, we won’t get far:

$ gfortran mod_datetime.f90 countdown.f90 -o countdown
countdown.f90:8:7:

td = birthday - now
1

Error: Unexpected derived-type entities in binary
intrinsic numeric operator ‘-’ at (1)

We need to somehow tell the compiler that the operator - has a special meaning for
these types, and instruct it on what to do when we try to use it in code. We can do so by
associating an operator such as addition (+) or subtraction (-) with a user-defined

All optional, integer
components

File name, line number, and column
where the error occurred

The code that
triggered the error

Approximate position where
the error occurred

Error
message

274 CHAPTER 10 User-defined operators for derived types
procedure. Figure 10.1 illustrates the sequence of operations that occur when apply-
ing the custom subtraction operator (-) on two datetime instances, a and b.

We first invoke the subtraction operator with the two datetime instances. The com-
piler determines that a and b are not of built-in numeric types. It looks for any proce-
dure that the - operator is associated with and that matches these data types, and finds
datetime_minus_datetime. Under the hood, the compiler replaces the code a - b
with datetime_minus_datetime(a, b). This function returns a timedelta instance as
the result.

 In the previous chapter, you learned how to override operators for built-in (nonde-
rived) data types, as well as how to define your own custom operators. Now we get to
see how to associate an operator with a derived type-bound procedure, as shown in
the following listing.

type :: datetime
integer :: year, month, day
integer :: hour = 0, minute = 0, second = 0

contains
procedure, pass(d1) :: datetime_minus_datetime
generic :: operator(-) => datetime_minus_datetime

end type datetime

There are two ingredients here. First, we specify the procedure that will associate the
operator with a type-bound procedure, just like we did back in chapter 8. The keyword
pass specifies the name of the argument that will correspond to the type instance that’s

Listing 10.4 Implementing the - operator for the datetime class

1. datetime instances a
and b are passed to the
subtraction operator.

2. The subtraction operator
is overloaded by a function.

3. The overloading
function calculates and
returns the result.

datetime

timedelta

–

datetime

datetime_minus_datetime(a, b)

Figure 10.1 Implementing arithmetic operators for derived types in
three steps

Type-bound procedure
that will be invoked by
the operator

Operator “-” is now
associated with this
procedure.

275Calculating the difference between two times
bound. For a refresher on type-bound methods, take a look at section 8.3. Second, we
use the generic :: operator() => syntax to specify which operator will be replaced by
which procedure. Defined like this, whenever the compiler encounters the - operator
being applied to datetime instances, it will refer to the datetime_minus_datetime
procedure.

 Simple, right? Of course, we still need to write that datetime_minus_datetime
procedure….

10.3.3 Time difference algorithm

The simplest algorithm for calculating a difference between two times is to recast the
times into a single, common axis, such as number of days since some point in the past.
(Recall UNIX time from earlier in the chapter?) Once there, it’s straightforward to
calculate the difference—it’s just a matter of subtracting one numerical value from
another. We can then convert this result to a whole number of days, hours, minutes,
and seconds, for a user-friendly display.

CONVERTING A DATETIME TO A NUMERICAL VALUE

The trickiest part of this calculation is casting the datetime instance to a single
numerical value. A floating-point number of days since some fixed point in time is a
candidate, because a day always consists of exactly 86,400 seconds. (Let’s ignore leap
seconds for the sake of this exercise.) Neither a number of months nor a number
years would be appropriate because they contain a variable number of days. Real val-
ues of hours or minutes could work in theory, but we risk losing floating-point preci-
sion for large values (more on this in a bit). An integer number of seconds is another
good way to express a time difference, though we’d need to resort to a higher integer
kind such as int64 to avoid overflows. For this exercise, I’ll express the time differ-
ence as a floating-point number of days since 00:00 January 1 of year 1 AD, as it makes
for shorter code. I encourage you to implement a time difference based on an integer
number of seconds afterward.

 To convert a datetime instance to a number of days, we need to go through the
following steps:

1 Sum the number of days from all years from year 1 AD up to the previous year.
Why not include the current year in this calculation? In this step, we’re counting

How about custom operators?
In chapter 9, I introduced the concept of custom operators enclosed in periods; for
example, .sub.. The mechanism used in listing 10.4 isn’t restricted to built-in oper-
ators and can be used for custom operators as well; for example

generic :: operator(.sub.) => datetime_minus_datetime

would be a valid statement as well.

276 CHAPTER 10 User-defined operators for derived types
the days only from whole years. Since the current year is in progress, we’ll need
to account for it in a separate step. Given a datetime instance d1, this calcula-
tion can be expressed as

sum([(days_in_year(year), year = 1, d1 % year - 1)])

Do you remember the syntax for array constructors (or implied do loops) from
chapter 5? We’re using that trick here again. For each value of year from 1 to
d1 % year - 1 (previous year), we evaluate days_in_year(year) as each element
of the array. In the end, we apply the sum to the array. This kind of expression is
a concise way to express accumulators (constructs that accumulate values) in
Fortran. We haven’t implemented days_in_year yet, but we’ll get to it soon
enough.

2 Calculate the current day of the year. We’ll implement another function, year-
day, to do with this task. At this point, we have the total number of days up to
today, excluding the current time of the day in hours, minutes, and seconds.

3 In this step, we need to express the current time of day in hours, minutes, and
seconds as a fraction of the day. This one is relatively straightforward—all we
need to do is convert hours, minutes, and seconds each to a unit of days and
add them up.

4 We sum the results of steps 1–3. For modern dates, the number of days since
year 1 is quite large, over 700,000 days. At this scale, small numbers such as a
second in day units (1/86400) are lost because of the internal representation of
floating point numbers in the default (32-bit) real representation. To work
around this issue, we cast the whole expression to 64-bit real values by multiply-
ing the result from step 1 by a literal constant 1.0_real64. This way, small val-
ues such as the result of step 3 will be promoted to a real64 type before being
added to the other terms. For a refresher on how type casting (or coercion)
works, take a look back at section 5.2.2.

The whole expression then looks like this:

ndays1 = 1.0_real64 &
* sum([(days_in_year(year), &

year = 1, d1 % year - 1)]) &
+ yearday(d1 % year, d1 % month, d1 % day) &
+ d1 % hour * h2d &
+ d1 % minute * m2d &
+ d1 % second * s2d

In this snippet, h2d, m2d, and s2d are constant real numbers used to convert hours,
minutes, and seconds, respectively, to a fraction of the day. Although we could spell

The literal constant 1.0
as a 64-bit real number

Sums days from
all previous years

Current
day in

the year
Converts current
hours to a fraction
of the dayConverts current

minutes to a
fraction of the day

Converts current seconds
to a fraction of the day

277Calculating the difference between two times
them out as literal constants (for example, h2d is just 1.0/24.0), it’s useful to have
them as named constants, as we’ll use them a few more times in this subroutine.

 How does the days_in_year function work? Simple—if it’s a leap year, return 366,
and 365 otherwise:

pure elemental integer function days_in_year(year)
integer, intent(in) :: year
if (is_leap_year(year)) then

days_in_year = 366
else

days_in_year = 365
end if

end function days_in_year

This function would be more complex if I didn’t abstract away the leap year test in
its own function, is_leap_year. I’ll leave it as an exercise for you. See the following
sidebar.

The yearday function (step 2 of the number-of-days algorithm) works in a similar way
as the accumulator from step 1, except that it accumulates the number of days in the
months, up to the previous month, and adds to the result the current day of the month.
Here’s how the function returns the day of the year:

pure elemental integer function yearday(year, month, day)
integer, intent(in) :: year, month, day
integer :: m
yearday = sum([(days_in_month(m, year), &

m = 1, month - 1)]) + day
end function yearday

Exercise 2: Leap year in the Gregorian calendar
Two of our functions, days_in_month and days_in_year, need the information
about whether a given year is a leap year or not. A leap year is a calendar year that
contains one additional day, February 29. How do you determine whether a year is a
leap year? A leap year occurs every four years, with a few exceptions. From the United
States Naval Observatory website:

Every year that is exactly divisible by four is a leap year, except for years
that are exactly divisible by 100, but these centurial years are leap years if
they are exactly divisible by 400. For example, the years 1700, 1800, and 1900
are not leap years, but the year 2000 is.

Using this description, write a function that returns .true. if the input year is a leap
year, and .false. otherwise. For convenience, you can use the built-in remainder
function mod.

The solution to this exercise is given in the “Answer key” section near the end of the
chapter.

Leap year

Nonleap year

Year, month, and day are
the input arguments.

Sums up the days in the months
up to the previous month, and
adds the current day of the
month to the result

278 CHAPTER 10 User-defined operators for derived types
Combining an array constructor with the sum function is an elegant way to write accu-
mulators in Fortran. For brevity, I don’t include the function days_in_month as a list-
ing here, but if you’re curious, take a look at the code in the datetime module in
mod_datetime.f90 in the repository.

CASTING THE DIFFERENCE TO A TIMEDELTA INSTANCE

Now that we have the code to cast the datetime instances as numerical values, it’s easy
to take the difference of the two as days_diff = ndays1 - ndays2. However, now we
have the opposite problem: we need to cast days_diff as a timedelta instance. Recall
that to create a timedelta instance, we need integer values of days, hours, minutes,
and seconds. The following snippet from the code casts a number of days into a time-
delta instance:

days_diff = ndays1 - ndays2

sgn = sign(1.0_real64, days_diff)

days = int(abs(days_diff))
hours = int((abs(days_diff) - days) * d2h)
minutes = &

int((abs(days_diff) - days - hours * h2d) * d2m)
seconds = int((abs(days_diff) - days - hours * h2d &

- minutes * m2d) * d2s)

t = timedelta(sgn * days, sgn * hours, &
sgn * minutes, sgn * seconds)

The procedure here is reversed relative to the one in the previous subsection. First
you get the whole number of days, then the whole number of hours in the remainder,
and so on for the hours and seconds. It’s a bit tedious, but it works. Once we have
days_diff expressed as integer values of days, hours, minutes, and seconds, creating
and returning a timedelta instance is easy. Note that we use the built-in sign and abs
functions to keep track of whether the time difference is positive or negative, and cre-
ate a timedelta instance accordingly.

Using the sign and abs functions
The built-in function sign takes two arguments that must both be of integer or real
type. sign(x, y) returns the value of x with the sign of y. For example, sign(2, -3)
returns -2.

abs returns the absolute value of an integer or real number, which is the non-negative
value of the number regardless of its sign. For example, abs(-2) is 2, and abs(7.4)
is just 7.4.

Takes the difference in days

Gets the sign of days_diff

Converts days_diff to
whole values of days,
hours, minutes, and
seconds

Creates a timedelta instance,
preserving the sign

279Calculating the difference between two times
THE COMPLETE FUNCTION

We now have all the pieces we need for a calculation of a timedelta instance given
two input datetime instances, and we can put these together into a complete func-
tion, as shown in the following listing.

pure elemental type(timedelta) function datetime_minus_datetime(d1, d2) result(t)

class(datetime), intent(in) :: d1, d2
real(real64) :: days_diff, ndays1, ndays2, sgn
integer :: days, hours, minutes, seconds, year

real, parameter :: d2h = 24. ! day -> hour
real, parameter :: h2d = 1. / d2h ! hour -> day
real, parameter :: d2m = d2h * 60 ! day -> minute
real, parameter :: m2d = 1. / d2m ! minute -> day
real, parameter :: s2d = m2d / 60. ! second -> day
real, parameter :: d2s = 1. / s2d ! day -> second

ndays1 = 1.0_real64 &
* sum([(days_in_year(year), &

year = 1, d1 % year - 1)]) &
+ yearday(d1 % year, d1 % month, d1 % day) &
+ d1 % hour * h2d &
+ d1 % minute * m2d &
+ d1 % second * s2d

ndays2 = 1.0_real64 &
* sum([(days_in_year(year), &

year = 1, d2 % year - 1)]) &
+ yearday(d2 % year, d2 % month, d2 % day) &
+ d2 % hour * h2d &
+ d2 % minute * m2d &
+ d2 % second * s2d

days_diff = ndays1 - ndays2

sgn = sign(1.0_real64, days_diff)

days = int(abs(days_diff))
hours = int((abs(days_diff) - days) * d2h)
minutes = &
int((abs(days_diff) - days - hours * h2d) * d2m)

seconds = int((abs(days_diff) - days - hours * h2d &
- minutes * m2d) * d2s)

t = timedelta(sgn * days, sgn * hours, &
sgn * minutes, sgn * seconds)

end function datetime_minus_datetime

Listing 10.5 Calculating the difference between two datetime instances

Both input arguments
are datetime instances.

Parameters
for converting
between different
time units

Casts the
datetime
instances to
numeric values

Difference between
two datetimes in days

Casts the difference
in days to a whole
number of days,
hours, minutes,
and seconds

Creates and returns a
timedelta, preserving the sign

280 CHAPTER 10 User-defined operators for derived types
This function goes through the three steps I described earlier. First, it converts each of
the input datetime instances d1 and d2 to single numerical measures: number of days
since January 1, year 1 AD. These values are stored in ndays1 and ndays2, respectively,
and it’s straightforward to calculate the difference between the two as days_diff =
ndays1 - ndays2. This value can be positive or negative, depending on which date-
time instance is greater than the other. The difference in days is then cast to integer
values of days, hours, minutes, and seconds to be used to create and return a time-
delta instance. This function is quite complex, using several smaller functions under
the hood (figure 10.2).

This diagram shows the functions that datetime_minus_datetime invokes. datetime
_minus_datetime uses two functions for its calculations: days_in_year and yearday.
Both functions depend on is_leap_year. yearday also depends on days_in_month,
which also needs is_leap_year. This is yet another example of the usefulness of
breaking down complex calculations into smaller and smaller pieces.

10.3.4 The complete program

Finally, we’re approaching the home stretch. We now have all the ingredients that our
program needs: reading the user-input date from the command line, getting the cur-
rent local time, and taking the difference between the two times. All that’s left now is

datetime_minus_datetime returns
the difference between two datetimes;
this is the function that overloads
the subtraction operator.

days_in_year returns the number
of days in a year—366 for a leap
year, and 365 otherwise.

is_leap_year tells us
whether a year is a
leap year or not.

yearday returns the number of the
day in the year, given year, month,
and day. Example: March , 20 9, is the1 1
60th day of the year (3 + 28 +).1 1

days_in_month tells us how many
days there are in any given month,
also considering whether a year is
a leap year or not.

days_in_year

datetime_minus_datetime

yearday

days_in_month

is_leap_year

Figure 10.2 Dependency graph for the datetime_minus_datetime function

281Calculating the difference between two times

G
dat
use

Com
th

diffe
to test for the values of the two dates and print the message accordingly. The following
listing shows the full program.

program countdown

use mod_datetime, only: datetime, current_time, &
timedelta, get_date_from_cli

implicit none

type(datetime) :: now, birthday
type(timedelta) :: td

call get_date_from_cli(birthday)
now = current_time()

td = birthday - now

if (now % month == birthday % month &
.and. now % day == birthday % day) then
print *, 'Happy Birthday!'

else
print '(i3, a, 3(i2, a))', &

td % days, ' days, ', &
td % hours, ' hours, ', &
td % minutes, ' minutes, and ', &
td % seconds, &

' seconds remaining until your Birthday!'
end if

end program countdown

Since we’re testing whether the dates are matching, we actually don’t use the time-
delta instance for the test, but test for the components of the datetime instances
directly. Specifically, the month and day of both datetimes must match for the birth-
day condition to hold. To test that both the month and day match, we use the built-in
function all, which we encountered back in section 5.2.11, the “Exercise 2” sidebar.
all evaluates as .true. if all the elements in the logical array are .true., and .false.
otherwise. If the month and day of the two datetimes don’t match, we use the time-
delta instance to report the remaining time in terms of days, hours, minutes, and sec-
onds. Checking for month and day match instead of the timedelta value also saves us
from the inconvenient exception that on the day of an actual birthday, the time differ-
ence is negative.

 Finally, notice that user-defined operators (arithmetic or otherwise) over derived
types is yet another layer of abstraction. In this particular scenario, the addition oper-
ator + wraps around the type-bound method datetime_minus_datetime, which takes
two datetime instances as inputs, which are themselves an abstraction over integer

Listing 10.6 The complete program of the countdown app

Imports the classes
and procedures
from the module

Declares the datetime
instances

Declares the
timedelta instance

ets the
e from
r input

Gets the current
date and time

putes
e time
rence Prints the

birthday greeting
if same day

Prints the countdown
otherwise, specially
formatted for pretty
display

282 CHAPTER 10 User-defined operators for derived types
values of year, month, day, and so on. Remember that multiple layers of abstraction
add complexity cost to your code—use them only when there’s significant benefit to
be gained. In this case, our top-level code (the main program, countdown) is quite
simple and easy to read and understand. You can get the complete code for the
countdown app from GitHub:

git clone https://github.com/modern-fortran/countdown

If you don’t use git, you can download the whole repository as a zip file from http://
mng.bz/6QeZ.

10.4 Overriding operators in the tsunami simulator
You now have a good idea of how defining an arithmetic operator for use with
derived types works. Let’s apply this knowledge to implement the full arithmetic for
the Field type in the tsunami simulator. We implemented this derived type back in
chapter 8, where we used it to model the physical properties of the water flow, such as
water surface height and velocity. Using a derived type instead of plain Fortran arrays
allowed us to abstract away much of the boilerplate code into the constructor func-
tion and type-bound methods. Although I didn’t explain how we made the arithme-
tic operators to work with derived types, we used this concept to code our equations
of motion and continuity, just like we did with regular arrays, as shown in the follow-
ing listing.

time_loop: do n = 1, num_time_steps
...
u = u - (u * diffx(u) / dx &

+ v * diffy(u) / dy &
+ g * diffx(h) / dx) * dt

call u % sync_edges()

v = v - (u * diffx(v) / dx &
+ v * diffy(v) / dy &
+ g * diffy(h) / dy) * dt

call v % sync_edges()

Ready for more dates and times?
If you’re ready to step up your date and time game in your Fortran projects, I suggest
you check out a more fully featured datetime library at http://mng.bz/oPK2. It pro-
vides implementations of datetime and timedelta classes with complete sets of
arithmetic and comparison operators that you can start using immediately in your
own apps. It contains all the functionality that we implemented in this chapter, and
much more.

Listing 10.7 Excerpt from the Tsunami simulator main time loop

Iterates for num_time_steps
time steps

Calculates the new
value of velocity in the x
axis and synchronizes

Calculates the new
value of velocity in the y
axis and synchronizes

http://mng.bz/6QeZ
http://mng.bz/6QeZ
http://mng.bz/6QeZ
http://mng.bz/oPK2

283Overriding operators in the tsunami simulator
h = h - (diffx(u * (hm + h)) / dx &
+ diffy(v * (hm + h)) / dy) * dt

call h % sync_edges()
...

end do time_loop

This is the core of the tsunami simulator. First, two equations evaluate the water veloc-
ity components u and v in the x and y axis, respectively, based on the slope of the water
surface. The higher diffx(h) / dx and diffy(h) / dy are, the steeper the water sur-
face in the x and y directions, respectively, becomes. A steeper water surface leads to
an increase in water velocity. The third equation evaluates the water surface height,
depending on how much water is coming into or out of the grid cell.

 After updating each Field variable, we make a call to sync_edges. This method
updates (or, as we also call it, synchronizes) the edge values with those from neigh-
boring parallel tiles. sync_edges is what allows the features of the flow to propagate
through from one parallel CPU to another. There are three important points to
raise here:

 In serial mode (single core), sync_edges does nothing.
 sync_edges is required to make the parallel program work in a mechanical

sense but is not otherwise meaningful for the physics of the simulator.
 Parallel synchronization of a field is required only when we update the values of

that field, not otherwise.

Considering these points, can we find a way to abstract away the explicit synchroniza-
tion via sync_edges in parallel mode? If we’re designing tsunami as a library to allow
users to design custom fluid dynamics solvers, we shouldn’t expect them to also write
low-level synchronization calls. Natively parallel code should look the same as its serial
counterpart.

 Having worked through this chapter up to this point, you have all you need to
know to implement the arithmetic operators for the Field derived type. We’ll go over
the details of this implementation in this section. This won’t involve any new Fortran
features—we’ll just apply the existing knowledge from implementing the countdown
app to the tsunami simulator. However, we’ll also use this opportunity to take it one
step further and build the synchronization method (sync_edges) into the assignment
operator (=) itself! While this involves no new syntax elements, it’s a powerful little
hack that will allow you to build intricate functionality into mundane statements such
as assignments or arithmetic.

10.4.1 A refresher on the Field class

Before we jump into the implementation of type-bound methods operators for the
Field class, let’s refresh our memory on what this class is made of. In a nutshell, the
Field class is a wrapper around the two-dimensional data array that stores the values
of the field itself, and a few more components needed for the internal workings of the
data structure, as shown here (and in src/ch10/mod_field.f90):

Calculates the new
value of water height
and synchronizes

284 CHAPTER 10 User-defined operators for derived types
type :: Field
character(:), allocatable :: name
integer(int32) :: dims(2), lb(2), ub(2)
real(real32), allocatable :: data(:,:)

end type Field

With a proper custom constructor, which we implemented in chapter 8 (omitted here
for brevity), we declare and initialize our physical fields like this:

integer, parameter :: im = 101, jm = 101
type(Field) :: u, v, h

u = Field('u', [im, jm])
v = Field('v', [im, jm])
h = Field('h', [im, jm])

The custom Field constructor is designed to allocate the data component with the
appropriate range, and to store a few more internal variables mainly needed to
instruct the parallel synchronization via the sync_edges subroutine. Feel free to look
at the implementation of the field_constructor function in src/ch10/mod_field.f90.

10.4.2 Implementing the arithmetic for the Field class

In section 10.3, we wrote a function that takes the difference between two datetime
instances, which we then used to redefine the arithmetic operator -. Here, we take the
exact same approach, except that we need to put some more leg work in. Take a look back
at listing 10.7—we need to implement procedures to define each operator that appears in
equations for u, v, and h. We don’t need the whole arithmetic set between Field and all
other types, only those operators that we intend to use. The procedures, operand types,
and arithmetic operators that we’ll implement are summarized in table 10.1.

Table 10.1 A list of procedures, operands, and operators to be implemented for the Field class

Procedure name Left operand Right operand Operator

field_add_field Field Field +

field_add_real Field real(:,:) +

field_sub_field Field Field -

field_sub_real Field real(:,:) -

field_mul_field Field Field *

field_mul_real Field real(:,:) *

field_div_real Field real /

assign_field Field Field =

Field name

The global dimensions and
lower and upper bounds of a
parallel tileA two-dimensional array

to store the data

Total grid size in the x
and y dimensions Declares water

velocity and height
Field instances

Initializes the Field instances
by passing their names and
total grid dimensions

285Overriding operators in the tsunami simulator
The operability of Field instances with two-dimensional real arrays is necessary
because diffx and diffy functions return two-dimensional real arrays. Note that for
the division operator, we only need division of a Field with a real scalar, as we divide
with grid spacing dx and dy. If we at any point decided to allow tsunami to have a spa-
tially varying grid spacing (a common approach in both weather and ocean predic-
tion models), we’d need to treat dx and dy as two-dimensional arrays, and we’d also
need a dedicated method for that division. For the sake of this exercise, though, this
is good enough. Finally, we’ll defer the implementation of assign_field until the
next subsection.

 Let’s look at the field_add_real procedure, for example. The simplest imple-
mentation of this method is to accept a Field instance and a two-dimensional real
array, and to add the values of the array to the data component of the Field instance,
as shown in the following listing.

pure type(Field) function field_add_real(self, x) result(res)
class(Field), intent(in) :: self
real(real32), intent(in) :: x(:,:)
call from_field(res, self)
res % data = self % data + x

end function field_add_real

We use the subroutine from_field to conveniently initialize all the internal compo-
nents of the Field class. This step is important because, by default, the Field instance
res comes bare-bones—with uninitialized components and the data array not being
allocated. Although we could’ve done that explicitly for more transparency, we’ll need
to repeat it in every method associated with a user-defined operator. I’ve thus placed
this boilerplate code into a from_field subroutine in the same module in
src/ch10/mod_field.f90. Once res is initialized and its data component is allocated
with the proper range, we add to it the sum of self % data and x.

Listing 10.8 The field_add_real procedure

Exercise 3: Implementing the addition for the Field type
Now that you know how to add a two-dimensional array to a Field instance, can you
write a similar method that adds the data to two Field instances?

Hint: use the from_field subroutine to initialize metadata for the result field, like in
listing 10.8.

You can find the solution to this exercise in the “Answer key” section near the end
of this chapter.

Since this is a type-bound method, the first argument
must be of the type that we’re binding to.

The second input
argument is a two-
dimensional real array.

Copies the Field
metadata from self into
the resulting instance

Assigns values of x to
the resulting instance

286 CHAPTER 10 User-defined operators for derived types

Synchr
Like we did in section 10.3, the last step to implementing user-defined operators for
derived types is to use the generic :: operator() statement in the type definition to
instruct the compiler which operators will point to which specific type-bound meth-
ods, as shown in the following listing.

type Field
...

contains
...
procedure, private, pass(self) :: field_add_field, &

field_add_real, &
field_sub_field, &
field_sub_real, &
field_mul_field, &
field_mul_real, &
field_div_real

generic :: operator(+) => field_add_field, &
field_add_real

generic :: operator(-) => field_sub_field, &
field_sub_real

generic :: operator(*) => field_mul_field, &
field_mul_real

generic :: operator(/) => field_div_real
end type Field

This is the same approach that we took in section 10.3.2 and listing 10.4, but now
expanded to multiple operators and even more type-bound methods. A user-defined
operator can point to multiple different type-bound methods, following the same
rules as for generic procedures we covered in chapter 9.

 Still missing from listing 10.9 is the implementation of custom assignment (=) that
I promised a bit earlier. I’ll cover that in the following subsection.

10.4.3 Synchronizing parallel images on assignment

The steps for implementing a custom assignment are the same as those for an opera-
tor, with a few minor differences. Like other arithmetic operators, assignment is an
operation with two operands, one on the left and one on the right. Unlike other arith-
metic operators that take two input arguments and return a new value as a result,
assignment modifies the value of the left operand in-place. This places a requirement
on our method definition—it must be a subroutine (not a function) with the first
argument defined as intent(in out):

subroutine assign_field(self, f)
class(Field), intent(in out) :: self
type(Field), intent(in) :: f
call from_field(self, f)
call self % sync_edges()

end subroutine assign_field

Listing 10.9 Associating operators with type-bound methods

Specifies that
these are
type-bound
procedures

Associates
arithmetic
operators with
the specific
procedures

Field that we’re assigning to and
is an input and output argument

Field that we’re
assigning to and is
an input argumentInitializes metadata

of the resulting field

onizes
edges

287Overriding operators in the tsunami simulator
Like before, here we also use from_field to initialize the field metadata. Since from_
field also copies the values of the data component from f to self, all that’s left for
us to do is synchronize with the sync_edges method. Once we have this method
defined, we bind it to the type and instruct the compiler to associate it with the assign-
ment operator:

type Field
...

contains
...
procedure, private, pass(self) :: assign_field
generic :: assignment(=) => assign_field
...

end type Field

There’s not much new here except for one tidbit—implementing an assignment
requires generic :: assignment(=) keywords instead of generic :: operator().
Otherwise, everything else works the same way as with other operators.

 The core of our solver from listing 10.7 now becomes the following listing.

time_loop: do n = 1, num_time_steps
...
u = u - (u * diffx(u) / dx &

+ v * diffy(u) / dy &
+ g * diffx(h) / dx) * dt

v = v - (u * diffx(v) / dx &
+ v * diffy(v) / dy &
+ g * diffy(h) / dy) * dt

h = h - (diffx(u * (hm + h)) / dx &
+ diffy(v * (hm + h)) / dy) * dt

...
end do time_loop

At first look, this is the same code as in listing 10.7, except for one minor difference—
we did away with the sync_edges subroutine calls after each field update. The syn-
chronization is now implicit in the assignment operations for each Field instance.
This is not only about having to write fewer lines of code! It’s about not having to
worry about when exactly we need to synchronize parallel processes, which is a big
part of what makes parallel programming hard. It’s also about being able to write
code that can run in both serial and parallel modes without any modifications.

Listing 10.10 Main loop of the tsunami simulator, with synchronization on assignment

Binds the subroutine
to the type

Associates the assignment
operator with the
assign_field method

Iterates for num_time_steps
time steps

Calculates the new
value of velocity in
the x axis

Calculates the new
value of velocity in
the y axis

Calculates the new
value of water height

288 CHAPTER 10 User-defined operators for derived types
10.5 Answer key
This section contains solutions to exercises in this chapter. Skip ahead if you haven’t
worked through the exercises yet.

10.5.1 Exercise 1: Validating user input

The best place to validate user input is in the get_date_from_cli subroutine. This
way, we don’t pollute the main program with various if statements, as shown in the
following listing.

...
if (command_argument_count() < 3) then

stop 'Usage: countdown YEAR MONTH DAY'
end if

call get_command_argument(1, year_arg)
call get_command_argument(2, month_arg)
call get_command_argument(3, day_arg)

read(year_arg, *) year
read(month_arg, *) month
read(day_arg, *) day

if (year < 1) then
stop 'YEAR must be >= 1'

else if (month < 1 .or. month > 12) then
stop 'MONTH must be >= 1 and <= 12'

else if (day < 1 .or. day > days_in_month(month, year)) then
stop 'invalid value for DAY'

end if
...

Relative to our original function, we now have two additional code blocks to validate
user input:

1 We use the built-in command_argument_count subroutine to confirm that at
least three arguments are passed to the program. Why at least and not exactly
three? If there are more than three arguments provided, we can consume the
first three and safely ignore the rest. Although this may not be the best UI
design, it’s simple and it works.

Run it yourself!
If you’ve cloned the application’s Git repository on GitHub, you can build and run it
like this:

make ch10
cafrun -n 4 src/ch10/tsunami

Listing 10.11 Validating user input and raising errors if invalid

First checks that at
least three arguments
are present

Validates the
value of the year

Then validates
the month

Finally, validates
the day

289Answer key
2 After we’ve converted the three character string values into integers, we check
that each value is within the valid range.

Let’s try it! Here’s the output:

gfortran mod_datetime.f90 countdown.f90 -o countdown
./countdown
STOP Usage: countdown YEAR MONTH DAY
./countdown -3333 1 15
STOP YEAR must be >= 1
./countdown 2020 13 15
STOP MONTH must be >= 1 and <= 12
$./countdown 2020 2 29
STOP invalid value for DAY

Congrats! Your app now gives some informative feedback when provided with
invalid input.

10.5.2 Exercise 2: Leap year in the Gregorian calendar

With the help of the built-in function mod, which returns the remainder of the integer
division, writing this function is straightforward, as long as we carefully follow the defi-
nition of a leap year. A year is a leap year if it’s divisible by 4 but not divisible by 100,
except when it’s divisible by 400.

 To test if a year is divisible by 4, we’d test whether mod(year, 4) == 0. We can then
use mod in concert with the logical operators .and., .or., and .not. to formulate the
leap year test. The following listing demonstrates.

pure elemental logical function is_leap_year(year)
integer, intent(in) :: year
is_leap_year = (mod(year, 4) == 0 &

.and. .not. mod(year, 100) == 0) &

.or. (mod(year, 400) == 0)
end function is_leap_year

This function is included in mod_datetime.f90 in the countdown app repository.

10.5.3 Exercise 3: Implementing the addition for the Field type

The solution to this exercise is similar to the field_add_real implementation from
listing 10.8. In fact, this one can be written with one fewer line of code, thanks to both
input arguments being Field instances. We follow the same steps as before, initialize
the Field metadata using the from_field subroutine, then add the data components
from two input fields and assign them to the result, as shown in the following listing.

Listing 10.12 Function that returns a logical value of whether a year is a leap year

Running without any arguments

Running with bad value of year

Running with bad value of month

Running with February 29 on a nonleap year

Elemental will allow invoking this
function with scalars or arrays.

Integer scalar year is the
only input argument.

Tests for each of
the conditions

290 CHAPTER 10 User-defined operators for derived types
pure type(Field) function field_add_field(self, f) result(res)
class(Field), intent(in) :: self, f
call from_field(res, self)
res % data = self % data + f % data

end function field_add_field

Like other similar methods, you can find this one in src/ch10/mod_field.f90 in the
tsunami source code repository.

10.6 New Fortran elements, at a glance
 generic :: operator() =>—Syntax to associate a built-in or custom operator

with a type-bound method of a derived type
 generic :: assignment(=) =>—Syntax to associate an assignment operator with

a type-bound method of a derived type
 Built-in procedures:

– command_argument_count—Returns the number of command-line arguments
provided

– get_command_argument—Parses the command-line arguments by position
number

– date_and_time—Returns the current machine time
– abs—Returns the absolute value of an integer or real variable
– mod—Returns the remainder of integer division
– sign—Returns the sign of a numerical variable

Summary
 The functionality of derived types can be greatly expanded by implementing

custom operators for them.
 User-defined operators for derived types are defined by first implementing a

type-bound procedure that takes either one (in case of unary operators) or two
(in case of binary operators) input arguments of that type.

 Once the type-bound method is defined, you can use the generic :: operator()
=> syntax to associate an operator (built-in or custom) with that method.

 For user-defined assignments, use the generic :: assignment(=) => syntax instead.
 User-defined assignment for derived types is a powerful concept, as it can be

used to abstract complex low-level tasks, such as checking the values or parallel
synchronization, whenever the data is updated.

 The same operator can invoke multiple specific procedures, following the same
rules as for generic procedure resolution from chapter 9.

Listing 10.13 Type-bound method to add data from two fields

Two Field instances as input arguments

Initializes metadata
from the self instance

Adds data components and assigns
them to the resulting Field

Part 4

The final stretch

This part of the book covers specialty topics: Fortran interoperability with C,
and advanced parallel features, such as teams, events, and collectives.

 Chapter 11 will teach you how to interface with existing C code from your
Fortran programs. You’ll do this by writing a minimal TCP client and server in
Fortran, using an existing C library for the low-level networking.

 Finally, chapter 12 builds from chapter 7 and covers advanced parallel topics:
teams, events, and collectives. Introduced in the latest edition of the language,
these features are cutting-edge and will allow you to create innovative parallel
algorithms and implementations.

 This part of the book is not for the faint of heart. Ideally, you’ve come here
after having worked through at least parts 2 and 3, or you already have signifi-
cant Fortran programming experience. Either way, you’ve come this far—the
finish line is just around the corner.

Interoperability with C:
Exposing your app

to the web
Pure Fortran is powerful for the numerical and array-oriented computation that’s
ubiquitous in physical sciences and engineering. However, quite a few things aren’t
possible in Fortran alone; fortunately, they can be done in a low-level systems pro-
gramming language such as C. They include reading and writing data to hardware
devices, drawing graphics on the screen in real time, and sending data over the
internet. Interoperability with C allows a programmer to call C functions from For-
tran programs. This is important for two reasons:

 It enables the above-mentioned low-level functionality and gives Fortran access
to the C ecosystem of libraries.

 C itself is easily called from many popular programming languages today,
such as Python, JavaScript, Go, or Rust. By using C as the interfacing lan-
guage, Fortran code can be invoked from most other languages. In the real

This chapter covers
 Why invoke C code from Fortran?

 Interfacing with C built-in types, structs, and
functions from Fortran

 Writing a minimal Fortran TCP client and server
293

294 CHAPTER 11 Interoperability with C: Exposing your app to the web
world, this allows Fortran code to be used within web servers, databases, and
real-time graphics.

In this chapter, you’ll learn how to use Fortran interoperability with C to write a mini-
mal TCP client and server in Fortran. Through this example, you’ll learn not only
how to interface C data types and functions from Fortran, but also how to implement
simple networking capabilities in your Fortran application. Whether you’re develop-
ing a remote control panel for your fluid dynamics simulation software, or you want to
command a measuring device from your Fortran code, this chapter will give you an
idea of how it can be done and show you where to learn more. Keep in mind that
this topic is big and thorny. I won’t pretend to teach the complete state-of-the-art of
Fortran-C interoperability in a single chapter. At the end of this chapter, you’ll have
the basic knowledge to call C code from Fortran, and hopefully the thirst to dig deeper
and learn more.

11.1 Interfacing C: Writing a minimal TCP client and server
Some languages are forgiving. The programmer needs only a basic sense of how things
work. Errors in the code are flagged by the compile-time or run-time system, and the
programmer can muddle through and eventually fix things up to work correctly. The C
language is not like that.

 —Nick Parlante, Essential C

C is a small yet incredibly powerful language. Created by Dennis Ritchie at Bell Labs
in the early 1970s, it was the language that took operating systems programming by
storm, and, soon after, general-purpose software development as well. It’s also one of
the most dangerous languages out there. C is infamous for being unforgiving to novice
programmers because of its minimal yet versatile syntax that can be easily misused if
not well understood. Nevertheless, the C ecosystem offers an immense treasury of
tools and libraries at your fingertips.

 Although Fortran programmers have been writing mixed Fortran and C applica-
tions for several decades, the interoperability features were officially introduced into
the standard in Fortran 2003, and further improved in later revisions (2008 and
2018). In practice, interfacing C functions with data structures from Fortran boils
down to correctly writing the interfaces, which means matching the data types of func-
tion arguments. This chapter will teach you very little C. After all, this a book about
Fortran programming, and C is a whole other beast. If you have some experience with
C, great! Otherwise, don’t worry. I’ll gently guide you through interfacing with C code
from Fortran, and you’ll learn all you need to know to do so, without having to learn C
on the side. If you want to learn more about C, near the end of the chapter I provide
references that I like.

 To get your feet wet with interfacing with C from Fortran, we’ll develop a minimal
TCP client and server. We’ll start with an existing C library that’s easy to download and
install and is well documented. One step at a time, we’ll write Fortran interfaces with

295Interfacing C: Writing a minimal TCP client and server
C functions that we’ll use. With only several function calls, we’ll have a working TCP
server running as a Fortran program and listening for incoming connections from
anywhere in the world. We’ll wrap up the chapter by writing a small TCP client, so in
the end we’ll have two Fortran programs talking to each other over the network.

11.1.1 Introducing networking to Fortran

The C programming model is that the programmer knows exactly what they want to do
and how to use the language constructs to achieve that goal. The language lets the expert
programmer express what they want in the minimum time by staying out of their way.

—Nick Parlante, Essential C

While there are easier ways to write networking applications, this example demon-
strates well the power of invoking C from Fortran. It’s simple enough that we won’t get
bogged down in the details, and yet intricate enough that we can’t implement it with
Fortran alone. Except for the native parallelism with coarrays that’s built into the lan-
guage, Fortran offers no networking capability at all. This is where C and its wide array
of systems programming libraries come to the rescue.

 A fundamental concept in the implementation of computer networks is a socket. A
socket is a resource provided by the operating system, and it allows software to access
the networking hardware, such as Wi-Fi or Ethernet adapters, to send and receive data
across the network. The data that goes through sockets is streams of bytes. A transport
layer protocol such as TCP carefully formats packets of bytes into discrete messages.
Application layer protocols such as HTTP or websockets are constructed by further
formatting of TCP messages. They allow communication with context, which allows
for richer applications, such as web pages and chat clients.

 For simplicity, we won’t interface with sockets directly on the operating system
level; we’ll use an existing high-level C library instead. There are many libraries out
there to choose from, offering various levels of abstraction. For this example, let’s use
libdill (http://libdill.org), because it’s lightweight and easy to install and use. libdill
provides a high-level user interface with low-level operations in the operating system.
Described as “structured concurrency for C,” libdill’s main feature is a coroutine, a pop-
ular concurrency model in many programming languages. Besides coroutines, libdill
also provides easy-to-use interfaces with various networking protocols, including TCP,
HTTP, websockets, and others. Perhaps most importantly, libdill is easy to download and

What is TCP?
Transmission Control Protocol (TCP) is one of the most widely used protocols that
power the internet. It allows reliable, error-checked transfer of binary data between
hosts (computers) connected on an IP (Internet Protocol) network. TCP is a base trans-
port layer for several different application layers, such as HTTP (Hypertext Transfer Pro-
tocol), commonly used to deliver content to web browsers, or websockets, used for
responsive real-time networking, such as chat clients or collaborative office tools.

http://libdill.org

296 CHAPTER 11 Interoperability with C: Exposing your app to the web
compile and has great documentation. In this chapter, we’ll focus on a small subset of
libdill—its TCP stack of functions.

 Figure 11.1 illustrates the components of our TCP client-server project. Read this
diagram from top left to bottom right. libdill-fortran, the Fortran interface with lib-
dill, will invoke C functions from our Fortran program. The libdill functions will, in
turn, make low-level function calls provided by the operating system to send or receive
data using the TCP/IP protocol.

 As you can probably guess, we’ll focus on implementing the top left component
from this diagram: libdill-fortran. The libdill C library is already available, and compil-
ing it gives us all the plumbing we need from the operating system to perform TCP
networking operations (figure 11.2).

Fortran interface

to libdill

Call C functions
from Fortran. Linux, Windows,

macOS

C library

libdill-fortran

libdill

Low-level
networking
function calls

Send/receive
data over the
network.

Network

protocol

Operating system

TCP/IP

Figure 11.1 The hierarchy in our TCP client-server stack

Initialize the IP
address data
structure.

Listen on
the socket.

Wait for the
next connection.

Close the
connection
and move on.

Fortran TCP server

ipaddr_local

tcp_listen

tcp_accept

msend

tcp_close

server.f90

Fortran TCP client

ipaddr_remote

tcp_connect

mrecv

client.f90

Initialize the IP
address data
structure.

Accept an
incoming
connection.

Send a message to
the remote client.

Connect to the
remote server.

Receive the
message from
the server.

Figure 11.2 Implementing a minimal TCP server and client programs in Fortran

297TCP server program: Receiving network connections
If the function names in this diagram seem a bit cryptic, I hear you! It will all become
much clearer as we work through the steps of implementing the interfaces with each
of these functions.

11.1.2 Installing libdill

Before we write any Fortran code, we’ll first download and compile the C library that
we’ll work with: libdill. You can download the code from http://libdill.org/download
.html. This page also includes brief installation instructions. For our work, we won’t
need to install libdill systemwide. Instead, we’ll compile it and take a copy of the com-
piled library archive file:

curl -O http://libdill.org/libdill-2.14.tar.gz
tar xzf libdill-2.14.tar.gz
cd libdill-2.14
./configure
make
cp .libs/libdill.a ..

Here I used curl instead of wget (suggested at the libdill website) because it’s more
likely to already be installed on most Linux operating systems. If you prefer wget and
have it on your system, by all means feel free to use that instead.

 At the time of this writing, 2.14 is the current libdill version, and we’ll use that version
in this book. However, it’s quite possible that you’re reading this book years after its pub-
lication. If that’s the case, you may want to use a later libdill version that may have bug
fixes and performance improvements, if available. All the code and Fortran interfaces
should still work with a later 2.xx version of libdill, assuming its API doesn’t change.

11.2 TCP server program: Receiving network connections
Perhaps the best advice is just to be careful. Don’t type things in you don’t understand.
Debugging takes too much time. Have a mental picture (or a real drawing) of how your C
code is using memory. That’s good advice in any language, but in C it’s critical.

—Nick Parlante, Essential C

Although this quote applies specifically to writing C code (which we won’t do here),
it’s nevertheless important to keep in mind as we go forward with writing the Fortran-C
interface.

Issues compiling libdill?
Specific versions of some compilers may have difficulty compiling one or more of lib-
dill’s components. If you encounter any issues, take a look at https://github.com/
modern-fortran/tcp-client-server for potential solutions.

Downloads the libdill
tarball using curl

Unpacks the libdill
source code

Moves into the libdill
source directory

Configures
for building

Compiles the code
Makes a copy of the compiled
library archive file, libdill.a

https://github.com/modern-fortran/tcp-client-server
https://github.com/modern-fortran/tcp-client-server
https://github.com/modern-fortran/tcp-client-server
http://libdill.org/download.html
http://libdill.org/download.html
http://libdill.org/download.html

298 CHAPTER 11 Interoperability with C: Exposing your app to the web
 We’ll start by implementing the TCP server first. The heavy lifting of opening and
listening on sockets, sending and receiving messages, and the TCP protocol itself will
be handled internally by libdill and the operating system, so we won’t have to worry
about the implementation details of these pieces. What we’ll focus on is correctly
implementing the Fortran interfaces with libdill functions, and understanding what
they do.

 Our server will perform the following steps:

1 Initialize the IP address data structure.
2 Open a socket on a given IP address and port number.
3 Listen patiently for incoming connections.
4 On an incoming connection, send a message to the client.
5 When done, close the connection and move on.

To implement each step, we’ll write Fortran interfaces with the appropriate C func-
tions (figure 11.3):

 ipaddr_local—Initialize the data structure that holds the IP address and port
number for the local computer (server).

 tcp_listen—Create a new socket given the input IP address structure and lis-
ten for incoming connections to it.

 tcp_accept—Accept an incoming connection on a socket.
 suffix_attach and suffix_detach—Append/remove a character string to/from

all messages on a given connection to conform to a specific protocol, in our
case TCP (not shown in figure 11.3).

Initialize the IP address and
port number data structure.

Listen on
the socket
for incoming
connections.

Wait for the
next connection.

Accept an incoming
connection.

Send a message to
the remote client.

Close the
connection
and move on.

Fortran TCP server

ipaddr_local

tcp_listen

tcp_accept

msend

tcp_close

server.f90

Figure 11.3 Fortran TCP server program, illustrated

299TCP server program: Receiving network connections
 msend—Send a message to the remote client that just connected to the server.
 tcp_close—Gracefully close the connection and move on.

As you can see in figures 11.2 and 11.3, ipaddr_local and tcp_listen will be invoked
once, when the server program starts up. tcp_accept and msend will be in an infinite
do loop, to allow accepting connections one after another, indefinitely. suffix_attach
and suffix_detach, while not included in the figures for brevity, are convenience
functions that will help us format our character strings into valid TCP messages.

 We’ll tackle these one at a time and learn Fortran-C interoperability along the way.
Let’s go in order.

11.2.1 IP address data structures

Whenever we write an interface with a C function or struct, we first look at the docu-
mentation for that function. Ideally, the C library you work with will be well docu-
mented. However, this isn’t always the case, and sometimes we need to look at the C
source code to see how the function is defined there.

 Our first step is to write a Fortran interface with the C struct ipaddr in the libdill
library. This is the first ingredient we need to get before implementing the ipaddr_local
(server) and ipaddr_remote (client) functions. A struct in C is analogous to a derived
type in Fortran (see chapter 8)—an arbitrary data structure with components of built-
in or other data types. For the most part, they have a similar syntax and behavior.

 Although the functions ipaddr_local and ipaddr_remote are described in the
documentation, the ipaddr struct that they use as an argument isn’t. To understand
how to write a Fortran interface with this struct, we need to look inside the libdill
header file. If you installed libdill following the instructions in the previous subsec-
tion, you’ll find the file here: libdill-2.14/libdill.h. The relevant snippet that gives the
definition of the ipaddr struct in libdill.h is

struct dill_ipaddr {char _[32];};

Although it may seem a bit cryptic at first, this is a relatively simple struct. It has only
one component, an array of 32 characters called _ (underscore). Our task is to define
a Fortran derived type that will match this struct. The following listing shows a work-
ing Fortran interface, defined in a new module.

module mod_dill

use iso_c_binding, only: c_char
implicit none

private
public :: ipaddr

type, bind(c, name='dill_ipaddr') :: ipaddr

Listing 11.1 A Fortran interface with the ipaddr struct

Imports the C character
type kind parameter
from iso_c_binding

Defines a new derived
type and binds its name
to a C equivalent struct

300 CHAPTER 11 Interoperability with C: Exposing your app to the web
character(c_char) :: address(32)
end type ipaddr

end module mod_dill

Quite a few things are going on here. First, like any other Fortran code that we aim to
reuse, we define this derived type in a module. I chose mod_dill as the module
name—mod_ as a prefix following my preferred convention for naming modules, and
dill because, well, we’re writing an interface with libdill (the dill library).

 Second, we import c_char from the iso_c_binding module. Like iso_fortran
_env, iso_c_binding is a built-in module that’s specified by the standard and pro-
vided by the compiler. c_char is a type kind parameter, just like int64 and real64
from iso_fortran_env. Its purpose is to provide the exact type kind to interface with
the character in the companion C compiler. A companion C compiler is simply the C
compiler compatible with your Fortran compiler, and typically from the same vendor.
For example, the companion C compiler to gfortran is gcc, and the companion C
compiler to ifort (Intel Fortran) is icc (Intel C compiler).

 Finally, we get to our derived type, ipaddr. The opening line of the type defini-
tion has a new attribute, bind(). This attribute states that this derived type is meant
to bind to an existing C struct, whose name is specified as a keyword argument,
name. If this argument is omitted, the compiler will use the name of the derived type
(in all lowercase) as the name of the matching C struct. Like its C counterpart, this
derived type has only one component, an array of 32 characters. This is where we
use the c_char as a type kind parameter to declare the component in the Fortran
implementation.

 Recall that the original C struct has a component named _ (underscore). Ideally
we’d match C variable names exactly in our Fortran interface, for clarity. Although For-
tran allows underscores in variable, procedure, and module names, it doesn’t allow
using one as the first or the only character in a name. To work around this restriction,
we can name our component something meaningful. I chose address, as this compo-
nent will internally store the address and port components of an IP address.

Figure 11.4 illustrates the interface between the Fortran derived type and a C struct.
 The ipaddr struct in libdill is used strictly internally. We won’t write data to its

component directly, and we’ll only manipulate it through functions ipaddr_local
and ipaddr_remote.

A note on C strings
C has characters, which are always of length 1. Multicharacter strings are repre-
sented as arrays of characters. A string in C is terminated with a null character, '\0'.
This is an important detail to be mindful of as we exchange character strings between
our Fortran code and the C functions.

This type has only one
component, an array
of 32 characters.Closes the type

definition

301TCP server program: Receiving network connections
You can now compile this module:

gfortran -c mod_dill.f90

The -c option means “compile only, do not link.” The compiler will produce the com-
piled module file mod_dill.mod and the binary object file mod_dill.o. Even though
we defined a derived type that binds to a C struct, no C code or compiled object came
into the picture. This module doesn’t do anything useful yet, as it just defines a simple
derived type to interface with a C struct. Let’s see how we can use this type to open a
new connection.

11.2.2 Initializing the IP address structure

Now that we have a derived type to interface with the ipaddr struct, let’s create an
instance of it. libdill provides two functions to instantiate the ipaddr struct: ipaddr
_local and ipaddr_remote. The former is used on the server side, where you want to
open up a socket to listen to incoming connections. The latter is used on the client
side, where you want to connect to a socket on a remote server.

 Unlike the ipaddr struct we had to look up in the libdill header file, ipaddr_local
is described in the libdill documentation pages (http://libdill.org/documentation).
Specifically, for ipaddr_local, here’s the prototype:

int ipaddr_local(
struct ipaddr* addr,
const char* name,
int port,
int mode);

This is the header (or, in C terminology, prototype) of the ipaddr_local function. The
first word, int, before the function name, states its type. Inside the parentheses, we
have a list of arguments, just like in Fortran functions.

A character array
with 32 elements

struct dill_ipaddr {

char _[32];

};

type, bind(c) :: ipaddr

character(c_char) :: address(32)

end type ipaddr

The C is mappedstruct
to a Fortran derived type.

Data types must be
carefully matched for
type components.

Figure 11.4 Mapping a C struct to a Fortran derived type

This function
returns an int.

The first argument is
an ipaddr struct.

The second argument is a
character string name.

The third argument is
an int port number.

The final argument
is an int mode.

http://libdill.org/documentation

302 CHAPTER 11 Interoperability with C: Exposing your app to the web
 The libdill documentation further describes the arguments:

 addr—Output argument; the IP address object
 name—Name of the local network interface, such as “eth0”, “192.168.0.111”

or “::1”
 port—Port number (Valid values are 1-65535.)
 mode—What kind of address to return (IPv4 or IPv6)

The return value is a 0 in case of a success and a -1 in case of an error.
 Unlike all the functions we’ve written before, this function has an output argu-

ment, addr. This is required so that a variable can be modified in-place. Recall that in
Fortran we use subroutines specifically when we need to modify values of arguments
in-place. As C has only functions and no separate concept of subroutines, arguments
can be modified in-place by passing them by reference instead of by value. Take note
that addr and name are declared with an * (asterisk) that immediately follows their
types (struct ipaddr* and char*, respectively), while port and mode aren’t. There’s
an important difference here that we’ll dig into shortly.

 As for the mode argument, libdill defines its possible values as compile-time con-
stants in libdill.h:

#define DILL_IPADDR_IPV4 1
#define DILL_IPADDR_IPV6 2

These constants are defined as C preprocessor macros. When we compiled libdill, the
preprocessor first parsed and manipulated the C source files before passing them to
the compiler. In this case, the preprocessor replaced any occurrence of DILL_IPADDR
_IPV4 with the literal constant 1 (and likewise with DILL_IPADDR_IPV6). For transpar-
ency in the Fortran interface with libdill, we’ll define the integer parameter with the
same name and value, declaring a compile-time constant for IP address mode:

use iso_c_binding, only: c_char, c_int

integer(c_int), parameter :: IPADDR_IPV4 = 1

Here, we encounter another C-equivalent type kind parameter, c_int. This is a Fortran
representation of C’s int type, and, like c_char, is also available from iso_c_binding.
We’ll now be able to invoke ipaddr_local by passing IPADDR_IPV4 as the mode argu-
ment, rather than having to remember to pass the value 1.

 If you’re wondering why each argument is listed on a separate line, it’s merely a
choice of style. Listing the arguments on individual lines usually makes for more read-
able documentation. However, the C code itself doesn’t require it.

 As you can probably guess, we need to define a Fortran function interface whose
return value and arguments will match those of the C function, as shown in listing 11.2.

303TCP server program: Receiving network connections

d

Im
typ

th
in

The
argu

ch
module mod_dill

use iso_c_binding, only: c_char, c_int
implicit none

private
public :: ipaddr, ipaddr_local, IPADDR_IPV4

integer(c_int), parameter :: IPADDR_IPV4 = 1
...
interface

integer(c_int) &
function ipaddr_local(addr, name, port, mode) &
bind(c, name='dill_ipaddr_local')
import :: c_char, c_int, ipaddr
type(ipaddr), intent(out) :: addr
character(c_char), intent(in) :: name(*)
integer(c_int), value, intent(in) :: port
integer(c_int), value, intent(in) :: mode

end function ipaddr_local

end interface

end module mod_dill

There’s a lot to unpack here, so I’ll go slowly. First, we use the function statement to
define the function name and its arguments. This works the same way as with all For-
tran functions we worked with before. One key difference is that here we add the bind
attribute, like we did when defining the ipaddr derived type. Here, we also specify the
name keyword argument in the parentheses, which is the name of the C function that
we’ll bind our Fortran interface to. Notice that we’re binding to the name dill_
ipaddr_local, rather than just ipaddr_local. This is because libdill by default adds a
prefix dill_ to all its functions to avoid name conflicts with any similar library that
may export functions with the same name.

 Second, recall that Fortran passes arguments by reference, meaning that no new copy
of an argument is created inside the function. In contrast, C passes arguments by
value, meaning that a new copy is created inside the function scope. This means that

Types and their representations
We could casually say that C’s int and Fortran’s integer are the same types. How-
ever, this isn’t strictly true. They belong to different languages, so even though they
seem like they could be similar or equal, they’re not. What matters for us, in practice,
is that their representation in memory is the same. Likewise for C’s float and For-
tran’s real, or C’s char and Fortran’s character.

Listing 11.2 Defining a Fortran interface to the ipaddr_local C function

Imports C-equivalent
type kinds from the
built-in module

Makes them
publicly available

Defines a compile-
time constantOpens an

interface block

This function will return
a c_int status code.

We’ll bind
this to

ill_ipaddr
_local.

ports
es into
e local
terface
scope The first argument is

an output argument.

 second
ment is

an input
aracter
string.

The third and fourth arguments
are c_int input arguments.

304 CHAPTER 11 Interoperability with C: Exposing your app to the web
when the argument in the C function definition is a pointer, we’ll interface with it
from Fortran as is, because of its default pass-by-reference behavior. However, for reg-
ular, nonpointer C arguments, Fortran provides a special attribute, value, which
instructs the compiler that the argument is to be passed by value, rather than by refer-
ence. Figure 11.5 illustrates this rule.

Finally, there’s a new statement here, import. This statement makes the listed entities
available inside the interface scope, which is otherwise local and isolated from the
module scope.

 Now that we have the Fortran interface to ipaddr_local defined and ready for
use, let’s write a program that will initialize the ipaddr data structure with the IP
address at 127.0.0.1 (local host) and port number 5555.

program server

use iso_c_binding, only: c_int, c_null_char
use mod_dill, only: ipaddr, ipaddr_local, IPADDR_IPV4

implicit none
integer(c_int) :: rc
type(ipaddr) :: addr

rc = ipaddr_local(addr, '127.0.0.1' // c_null_char, &
5555_c_int, IPADDR_IPV4)

end program server

Listing 11.3 Fortran TCP server initializing only the IP address and port number

integer(c_int) function ipaddr_local(addr, name, port, mode) &

bind(c, name='dill_ipaddr_local')

import :: c_char, c_int, ipaddr

type(ipaddr), intent(out) :: addr

character(c_char), intent(in) :: name(*)

integer(c_int), value, intent(in) :: port

integer(c_int), value, intent(in) :: mode

end function ipaddr_local

int ipaddr_local(

struct ipaddr* addr,

const char* name,

int port,

int mode

);

The type of a function
is the type of its
return value.

port and mode
are passed by
value, not by
reference!

addr and name
are pointers,
and thus passed
by reference.

Figure 11.5 Interfacing ipaddr_local from Fortran

Imports C-type kind parameters
from the built-in module

Imports Fortran
interfaces with C
struct and function

Declares a return
code as a C int

Calls ipaddr_local to
initialize the addr instance

305TCP server program: Receiving network connections
We begin by importing two constants from iso_c_binding: c_int, a C integer equiva-
lent, and c_null_char, a special constant that we’ll use to terminate C strings. From
our new module, mod_dill, we import the ipaddr type and our new ipaddr_local
interface.

 Our Fortran server program so far has only one function call to ipaddr_local,
which stores the IP address and port number parameters in an internal representa-
tion that libdill uses. It’s at this call to ipaddr_local that we need to be super careful.
First, C strings are always terminated with the null character, '\0'. From Fortran, we
can do this in a portable way by appending c_null_char to the character string that
we pass to the C function. Thus, instead of passing '127.0.0.1' as the second argu-
ment to ipaddr_local, we pass '127.0.0.1' // c_null_char. Second, recall that
ipaddr_local expects the third and fourth arguments to be of C int type, not Fortran
integers! We thus need to cast our arguments to the C int types. We do this by
appending the c_int suffix to the value: 5555_c_int. What we’re passing as the mode
argument is already declared as an integer(c_int) constant, so no explicit conver-
sion is needed here.

 Finally, we assign the result of the ipaddr_local function to rc, the integer
return code. The value of the return code indicates whether the function executed
correctly or not. For example, in C and many other programming languages, as well
as UNIX and Linux command-line tools, the return code value of zero indicates that
the function (or program) finished successfully, that is, without errors. In contrast, a
nonzero value, positive or negative, indicates an error, and the specific value of the
return code can be used to encode what kind of error it is. If we want, we can explic-
itly check the value of rc to ensure that the function call worked. This is a common
way to do exception handling in C, and we can use it in the Fortran interface as well.
The libdill documentation website lists all the error codes that you may encounter
while using this library.

You can compile and run this program. If all is good, it will output nothing. We expect
this, as the program does nothing but instantiate a data structure and stop. However,
currently we don’t know if ipaddr is initialized correctly. We’ll test that the IP address
and port number values have been stored correctly in the next section.

IP address and port number values
There’s no special meaning behind the value 5555 for the port number. The port num-
ber should be no larger than 65535, and not already in use. On most systems, values
greater than 1024 are safe to use. Various servers or web frameworks commonly use
arbitrary values in development, such as 4000, 5555, or 8080.

306 CHAPTER 11 Interoperability with C: Exposing your app to the web
11.2.3 Checking IP address values

Testing is recommended. Having made our call to ipaddr_local, we have no clue
whether it worked or not. All that we know is that the program didn’t crash with any
error message. After we initialize ipaddr, we can use libdill functions to explicitly
check for the IP address and port number values stored.

 First, let’s take a look at the IP address. libdill has a function to read its value from
an initialized ipaddr struct:

const char* ipaddr_str(
const struct ipaddr* addr,
char* buf);

From the libdill documentation, ipaddr_str formats the address as a human-readable
string.

 addr—IP address object
 buf—Buffer to store the result in, which must be at least IPADDR_MAXSTRLEN

bytes long

The function returns the ipstr argument, which is the pointer to the formatted string.
 It seems like there are two ways to obtain the IP address string: by accessing the value

through the pointer returned by the function, or by reading it directly from the charac-
ter string, buf. Let’s interface this with a Fortran subroutine that will use the character
string buffer to retrieve the IP address string, as shown in the following listing.

module mod_dill
...
public :: ipaddr, ipaddr_local, ipaddr_str

interface
...
subroutine ipaddr_str(addr, buf) &

bind(c, name='dill_ipaddr_str')
import :: c_char, ipaddr
type(ipaddr), intent(in) :: addr
character(c_char), intent(out) :: buf(*)

end subroutine ipaddr_str

end interface

end module mod_dill

This is the first interface where we use an array of characters as an argument. You may
notice a curious detail: this argument is declared with an asterisk (buf(*)), rather

Listing 11.4 Fortran interface to ipaddr_str, this time a subroutine

This function returns a pointer
to a character string.

The first argument (input)
is an ipaddr struct.

The second argument (input/output)
is a character string.

A subroutine that
takes two arguments

Let’s bind this to
dill_ipaddr_str.

Imports C-type kind
parameters into the
local scope

The ipaddr derived type
is the input argument.

An array of
characters is the

output argument.

307TCP server program: Receiving network connections
than a colon like we used in the past for assumed-shape array arguments. This is a
somewhat obscure feature of Fortran called assumed-size arrays (in contrast to assumed
shape) and applies to array or character string arguments to C functions. It’s there for
easier interfacing with C functions, but otherwise you shouldn’t ever use it in pure
Fortran programs. To quote the late Walter Brainerd in his book Guide to Fortran 2008
Programming: “Do not ask why—just do it.”

 Note that we could’ve made this Fortran interface a function as well as a subrou-
tine. A subroutine makes sense when one or more of the arguments are output argu-
ments; however, a subroutine can’t capture the return value of a function. In this case,
this is okay because we only care about accessing the buffer buf as the intent(out)
argument. The choice between using a function or a subroutine to interface with a
C-function also affects the syntax of how the procedure is invoked. Feel free to imple-
ment interfaces that best fit your programming style, and make sure that you get the
data that you need.

 Now that we have a subroutine to get the IP address string from the ipaddr struct,
how about the port number? Time for an exercise! (See the “Exercise 1” sidebar.)

Finally, in our server program, we can check that the IP address and port number are
stored correctly, as shown in the following listing.

program server

use iso_c_binding, only: c_char, c_int, c_null_char
use mod_dill, only: ipaddr, ipaddr_local, &

ipaddr_port, ipaddr_str, &
IPADDR_MAXSTRLEN, IPADDR_IPV4

Exercise 1: The Fortran interface to ipaddr_port
It’s your turn now! We need to check that the port number is stored correctly when
we call the ipaddr_local function. We’ve already implemented the interface to
ipaddr_str, which returns the character string representation of the IP address. lib-
dill also provides the ipaddr_port function, which returns the integer value of the
port number associated with the ipaddr data structure:

int ipaddr_port(
const struct ipaddr* addr);

Implement the Fortran interface to this function and check that it returns the correct
value of the port number.

The solution to this exercise is given in the “Answer key” section near the end of the
chapter.

Listing 11.5 Updated Fortran TCP server program

Imports C-type parameters
from the built-in module

Imports our
Fortran-C
interfaces

308 CHAPTER 11 Interoperability with C: Exposing your app to the web

Runs
se

prog
implicit none

integer(c_int) :: rc
type(ipaddr) :: addr
character(kind=c_char, len=IPADDR_MAXSTRLEN) :: &

address_string = ''

rc = ipaddr_local(addr, '127.0.0.1' // c_null_char, &
5555_c_int, IPADDR_IPV4)

call ipaddr_str(addr, address_string)

print *, 'Opening socket:'
print *, ' IP address: ', address_string
print *, ' Port: ', ipaddr_port(addr)

end program server

You can now compile and run this program, and it should print the IP address and
port number to the screen:

gfortran mod_dill.f90 server.f90 libdill.a \
-pthread -o server

./server
Opening socket:
IP address: 127.0.0.1
Port: 5555

So far, so good! The program compiles successfully and runs without any apparent
errors. If you’re wondering about the -pthread flag, it enables the use of POSIX
threads, a system dependency of libdill. Even though we don’t use threads in our For-
tran code directly, we include this flag to make the linker happy; that is, so we can
build the executable file.

11.2.4 Intermezzo: Matching compatible C and Fortran data types

Now that you’ve got a taste of interfacing C-structs with functions from Fortran, it’s a
good time to go into more detail on compatible C and Fortran data types. I mentioned
earlier that C types are different from Fortran types: int is not exactly integer, and

POSIX threads
POSIX (Portable Operating System Interface) threads, often called pthreads, is a con-
current and parallel execution model. It’s not intrinsic to any single programming lan-
guage, but instead is provided by the operating system. It’s supported out of the box
by most UNIX systems, including macOS, Linux, and Windows using a third-party
library. You can read more about POSIX threads at https://en.wikipedia.org/wiki/
POSIX_Threads.

Initializes the address
string variable

Initializes the IP address
and port number

Gets the IP address string
to check its value

Prints the IP address
and port number to
the screen

Compiles
and links the

rver
ram

The output of the
server program

https://en.wikipedia.org/wiki/POSIX_Threads
https://en.wikipedia.org/wiki/POSIX_Threads
https://en.wikipedia.org/wiki/POSIX_Threads

309TCP server program: Receiving network connections
float is not exactly real. What matters, however, is that we have a reliable way to match
the compatible data types between C and Fortran such that their internal representa-
tion in memory is the same. To that end, a wide array of C-conforming type kind param-
eters is available out of the box in the iso_c_binding module. Table 11.1 lists them all.

Table 11.1 Type kind parameters available in iso_c_binding and their corresponding types in C

Base type Fortran type kind parameter C type

integer c_int int

c_int8_t int8_t

c_int16_t int16_t

c_int32_t int32_t

c_int64_t int64_t

c_int_least8_t int_least8_t

c_int_least16_t int_least16_t

c_int_least32_t int_least32_t

c_int_least64_t int_least64_t

c_int_fast8_t int_fast8_t

c_int_fast16_t int_fast16_t

c_int_fast32_t int_fast32_t

c_int_fast64_t int_fast64_t

c_intmax_t intmax_t

c_intptr_t intptr_t

c_size_t size_t, ssize_t

c_short short int

c_long long int

c_long_long long long int

c_signed_char signed char, unsigned char

real c_float float

c_double double

c_long_double long double

complex c_float_complex float complex

c_double_complex double complex

c_long_double_complex long double complex

logical c_bool bool

character c_char char

310 CHAPTER 11 Interoperability with C: Exposing your app to the web
As you can see from table 11.1, C has many built-in types, and Fortran’s iso_c_binding
provides type kind parameters to match them.

 The C types bool and complex were introduced in the C99 revision to the C Stan-
dard. They may appear as _Bool and _Complex, respectively, in C code that was meant
to be compliant with earlier C standards. You can refer back to this table as you write
Fortran interfaces with other C code. For now, you don’t need to know any more
details about many of these C types and their Fortran siblings. Let’s go back to our
TCP server, where we’ll encounter a few new C types, such as int64_t and size_t.

11.2.5 Creating a socket and listening for connections

We now have an IP address data structure, and we can initialize its value by calling the
ipaddr_local function. Let’s now use this structure to open a socket and listen for
incoming connections. To do this, we’ll use the tcp_listen function. Like before,
we’ll first look at the interface of the C function from the libdill documentation:

int tcp_listen(
const struct ipaddr* addr,
int backlog);

 addr—IP address to listen on
 backlog—Maximum number of connections that can be kept open without

accepting them

If successful, the return value is the newly created socket, represented by a single inte-
ger value. Otherwise, the return code is -1, indicating an error.

 Simple enough! For our example, we’ll ignore the backlog—that is, we’ll just pass
a zero to that argument—but we still need to implement it in the Fortran interface to
the tcp_listen function:

integer(c_int) function tcp_listen(addr, backlog) &
bind(c, name='dill_tcp_listen')

import :: c_int, ipaddr
type(ipaddr), intent(in) :: addr
integer(c_int), value, intent(in) :: backlog

end function tcp_listen

C type not supported?
If a C type isn’t supported by your Fortran or C compiler, either you’ll get a compile-
time error or the type kind parameter imported from iso_c_binding will have a neg-
ative value.

This function returns
a c_int status.

We’ll bind it to
dill_tcp_listen.

Imports the C-equivalent
type kinds into the local
scope

The first argument (input)
is an ipaddr struct.

The second argument (input)
is a c_int integer backlog.

311TCP server program: Receiving network connections
As with previous interfaces, we’ll place this one inside the interface block in the
mod_dill module. For simplicity, we won’t worry about the backlog argument and
keeping connections without accepting them. To listen for incoming TCP connec-
tions, we’ll declare an integer(c_int) variable socket and add the following line
after we initialize our IP address structure:

socket = tcp_listen(addr, 0_c_int)

This function call instructs the program to listen for incoming connections on a
socket at the IP address and port number defined in the addr structure. Add this line
to the program, recompile it, and run it. The output should be the same as at the end
of the previous section. Now we’re ready for the fun stuff.

11.2.6 Accepting incoming connections to a socket

We now have our socket open to the world, and we’re listening for connections. The
C code (libdill) and the operating system will do the work of making the connection
happen, so we don’t have to worry about that part. Our job here is to accept an
incoming connection and do something with it (send a message, for example) once
it’s established. Back to the libdill documentation; tcp_accept accepts an incoming
TCP connection:

int tcp_accept(
int s,
struct ipaddr* addr,
int64_t deadline);

The first argument (input), s, is the socket created by tcp_listen. The second
argument (output) is the IP address structure associated with the remote client—its
value will tell us where the connection is coming from. Finally, the deadline is a
point in time when the operation should time out (abort). According to the libdill
documentation, deadline having a value of 0 means an immediate timeout, that is,
return immediately if the function doesn’t succeed. The value of –1 means no dead-
line—block forever until the function succeeds. For our simple example, blocking
until success (deadline = -1) will do just fine, and we’ll use this value for the dead-
line through the rest of this chapter. Like before, pay close attention to which argu-
ments are declared as pointers (ipaddr*, pass by reference), and which aren’t (s and
deadline, pass by value).

 This is the first time that we encounter the int64_t data type. In C parlance,
int64_t (short for 64-bit-wide integer type) is known as a long long. It’s a signed
integer type that occupies exactly 8 bytes (64 bits) in memory and is useful for vari-
ables whose values can get extraordinarily large, up to about +/– 9 × 1018. Like other

This function will
return an int. The first argument is

the socket created by
tcp_listen.

The second argument is
the IP address of the
remote connection.The third argument is a

deadline in milliseconds.

312 CHAPTER 11 Interoperability with C: Exposing your app to the web
C-equivalent type kinds, int64_t is available to Fortran through the iso_c_binding
module as c_int64_t:

use iso_c_binding, only: c_int64_t

Here’s the complete Fortran interface to tcp_accept:

integer(c_int) function tcp_accept(s, addr, deadline) &
bind(c, name='dill_tcp_accept')

import :: c_int, c_int64_t, ipaddr
integer(c_int), value, intent(in) :: s
type(ipaddr), intent(out) :: addr
integer(c_int64_t), value, intent(in) :: deadline

end function tcp_accept

We want the server program to keep accepting connections indefinitely, so we’ll place
tcp_accept in an infinite do loop back in our server program in server.f90:

do
connection = tcp_accept(socket, addr, -1_c_int64_t)
call ipaddr_str(addr, address_string)
print *, 'New connection from ' &

// trim(address_string)
end do

This snippet is the core of the server program. We started listening for connections on
the socket that we opened, and now we’ll accept incoming connections to this socket.
To keep accepting connections one after another, we place this code inside of an
infinite do loop. As soon as one incoming connection is accepted and processed, the
server will wait for the next one. This also means that the program has no way of stop-
ping on its own, except for unhandled exceptions; otherwise, it would need to be
interrupted by the user from the OS (for example, with Ctrl + C in Linux).

 Here, we also reuse the ipaddr_str interface we implemented earlier to get the text
representation of the IP address of the incoming connection. As remote clients connect
to your server, you’ll be able to see from which IP addresses the connections are coming.
Note that at this point, the server program is an intermediate implementation and miss-
ing a critical piece—sending a response back to each incoming connection.

11.2.7 Sending a TCP message to the client

Finally, on each accepted connection, we’ll send a message to the client to let them
know the server is alive. Not so fast, though. Recall that the data is just a stream of bytes,
and the TCP protocol defines messages that are specially formatted packets of binary

This function will
return a c_int.

We’ll bind it to
dill_tcp_accept.

Imports the C-equivalent type
kinds into the local scope

The first argument
is the c_int socket
and is passed by
value.

The second argument is the ipaddr
struct and is passed by reference.

The third argument is the
c_int64_t deadline in milliseconds

and is passed by value.

Loops indefinitely Accepts an incoming connection
and gets its IP address information

Logs to the screen the IP
address of an incoming
connection

313TCP server program: Receiving network connections
data. Fortunately, libdill provides a convenience function, suffix_attach, to append
a suffix to any packet of binary data that we give to it:

int suffix_attach(
int s,
const void* suffix,
size_t suffixlen);

This is the first time that we encounter the C void pointer (void*) as one of the argu-
ments. The void pointer is used to allow addressing variables of different types. In that
sense, the void pointer is just an address to a place in memory, but that memory could
hold an integer, a float, or a character. The const attribute ensures that the value of
suffix can’t be modified inside the function, analogous to Fortran’s intent(in)
arguments. We could interface the void-typed suffix with any type; however, to for-
mat the byte packets into valid TCP messages, we’ll append “\r\n”—a carriage return
and a new line—to each packet. To that end, interfacing the argument suffix with
a character(c_char) will work fine, using the Fortran interface to the suffix_attach
function in libdill:

integer(c_int) function suffix_attach(s, suffix, suffixlen) &
bind(c, name='dill_suffix_attach')

import :: c_char, c_int, c_size_t
integer(c_int), value, intent(in) :: s
character(c_char), intent(in) :: suffix(*)
integer(c_size_t), value, intent(in) :: suffixlen

end function suffix_attach

To formulate the suffix “\r\n” in our Fortran code, we need to import these special
characters from iso_c_binding:

...
use iso_c_binding, only: c_null_char, c_new_line, c_carriage_return
character(len=*), parameter :: &

TCP_SUFFIX = c_carriage_return // c_new_line // c_null_char
...
connection = suffix_attach(connection, TCP_SUFFIX, 2_c_size_t)
...

We call the suffix_attach function once for any given connection, and every
packet sent through that connection will be formatted as a TCP message. If you’re
wondering why the length of TCP_SUFFIX (third argument to suffix_attach) is 2
and not 3, it’s because libdill (and C in general) doesn’t count the null character as
a separate character. Even though we pass it here as a three-character string (car-
riage return, new line, and null character), libdill receives and interprets it as a two-
character string.

This function returns an int.
Socket to apply
the suffix to

Void pointer
to the suffix

Length of the suffix

314 CHAPTER 11 Interoperability with C: Exposing your app to the web
 Now that we have the piece that formats byte packets into valid TCP messages, let’s
get to actually sending the message to the client. You know the drill—here’s how lib-
dill defines the msend function.

int msend(
int s,
const void* buf,
size_t len,
int64_t deadline);

And here’s its corresponding Fortran interface:

integer(c_int) function msend(s, buf, len, deadline) &
bind(c, name='dill_msend')

import :: c_char, c_int, c_int64_t, c_size_t
integer(c_int), value, intent(in) :: s
character(c_char), intent(in) :: buf(*)
integer(c_size_t), value, intent(in) :: len
integer(c_int64_t), value, intent(in) :: deadline

end function msend

With these two functions ready, we can now add the new calls to suffix_attach and
msend to our server loop to send a TCP message on a remote connection from a client:

do
connection = tcp_accept(socket, addr_remote, -1_c_int64_t)
call ipaddr_str(addr, address_string)
print *, 'New connection from ' // trim(address_string)
connection = suffix_attach(connection, TCP_SUFFIX, 2_c_size_t)
rc = msend(connection, 'Hello' // c_null_char, 5_c_size_t, -1_c_int64_t)

Our connection loop thus far accepts a connection (tcp_accept), parses the remote
client IP address (ipaddr_str) and prints it to the screen, attaches a special suffix to
format messages following a TCP protocol (suffix_attach), and finally sends a TCP
message (msend).

 You may have noticed that in the call to msend, we send both the contents of the
message as the second argument, and the length of the message as a third argument.
At first this may seem tedious and redundant, but it’s necessary due to C semantics
and how the msend function is designed in libdill. Recall that the message buffer buf is
declared as a void pointer (listing 11.6), which is the memory address where the buf-
fer begins, so msend needs additional information about how long the buffer is. If we
were designing a higher level Fortran interface with libdill, we could take an extra
step and write a wrapper around the Fortran interface to msend, and automatically cal-
culate the length of the message before passing it to msend. Similarly, such a wrapper

Listing 11.6 Header of the msend function in libdill

The function
result is an int.

Input socket on
which to send
the message

Void pointer
to a buffer

Length of
the messageDeadline in milliseconds

315TCP server program: Receiving network connections
could automatically append c_null_char to any string that’s on its way to libdill. This
kind of exercise is beyond the scope of this chapter, but I encourage you to practice by
implementing higher level wrappers that are more user friendly.

11.2.8 Closing a connection

There’s only one step left before we wrap up and test our little TCP server program—
once we send the message, we want to close the connection gracefully. libdill provides
a function to do this—tcp_close. Can you help me implement the interface to it? Try
exercise 2 in the sidebar.

Our server loop will now look like the following listing.

do
connection = tcp_accept(socket, addr_remote, -1_c_int64_t)
call ipaddr_str(addr, address_string)
print *, 'New connection from ' // trim(address_string)
connection = suffix_attach(connection, TCP_SUFFIX, 2_c_size_t)
rc = msend(connection, 'Hello' // c_null_char, 5_c_size_t, -1_c_int64_t)
connection = suffix_detach(connection, -1_c_int64_t)
rc = tcp_close(connection, -1_c_int64_t)

end do

Exercise 2: Fortran interfaces to suffix_detach and tcp_close
You now know everything you need to know to implement the last two remaining
pieces of the server code: suffix_detach and tcp_close. These function calls will
be necessary to gracefully close the TCP connection from the client. Here’s the pro-
totype for the suffix_detach function:

int suffix_detach(
int s,
int64_t deadline);

And here’s the prototype of the tcp_close function:

int tcp_close(
int s,
int64_t deadline);

If implemented correctly in the mod_dill module, you’ll be able to import these inter-
faces and call them from the main server loop:

connection = suffix_detach(connection, -1_c_int64_t)
rc = tcp_close(connection, -1_c_int64_t)

The solution to this exercise is given in the “Answer key” section near the end of the
chapter.

Listing 11.7 The main loop that accepts a connection and sends a message

316 CHAPTER 11 Interoperability with C: Exposing your app to the web
That’s it! Our server will now accept an incoming connection, send a greeting mes-
sage to the client, and close the connection.

 Let’s see how it works from the client side. First, compile and run the server from
one terminal session:

gfortran mod_dill.f90 server.f90 libdill.a -pthread -o server
./server
Listening on socket:

IP address: 127.0.0.1
Port: 5555

In another terminal session, you can use a variety of command-line tools (curl, netcat,
telnet) to connect to our Fortran server:

curl 127.0.0.1:5555
Hello
nc 127.0.0.1 5555
Hello
telnet 127.0.0.1 5555
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
Hello
Connection closed by foreign host.

Voila! This confirms that our minimal Fortran web server is reachable using language-
agnostic networking tools and returns the expected result. All of these tools are avail-
able out of the box on most modern Linux distributions. If not, you can easily install
them using the system package manager. On macOS, they may or may not be available
out of the box but can be downloaded and installed. On Windows, I recommend that
you use the recent Windows Terminal or the Windows Subsystem for Linux.

At this point, you should have the following files in your working directory:

 libdill.a—A compiled archive file for the libdill library
 mod_dill.f90—A Fortran source file containing the mod_dill module, which

defines and makes available the following entities: ipaddr, ipaddr_local,

Making TCP requests with curl
Our minimal TCP server emits a response as a raw sequence of bytes, without any
descriptive headers that are characteristic of HTTP responses. Some newer versions
of curl may expect an HTTP response by default and may return an error message:

curl: (1) Received HTTP/0.9 when not allowed

To work around this, invoke curl like this:

curl --http0.9 127.0.0.1:5555

Connects to the
server using curl

Connects to the server
using nc (netcat)

Connects to the
server using telnet

317TCP client program: Connecting to a remote server
ipaddr_port, ipaddr_str, IPADDR_MAXSTRLEN, IPADDR_IPV4, msend, suffix
_attach, suffix _detach, tcp_accept, tcp_close, and tcp_listen

 server.f90—A Fortran source file containing the server program that imports
the procedures and constants and uses them to listen for incoming connections
to an open socket

Now that we’ve implemented the server, let’s write the client program.

11.3 TCP client program: Connecting to a remote server
As I mentioned before, to implement the client, we’ll need Fortran interfaces to a few
new libdill functions (figure 11.6):

 ipaddr_remote to initialize a data structure with the remote IP address and port
number

 tcp_connect to connect to a remote socket at a given IP address
 mrecv to receive a message from the server on a successful connection

Having gone through the server implementation, writing these interfaces for the cli-
ent should be straightforward.

11.3.1 Connecting to a remote socket

Like we did on the server, first we need to initialize a data structure to hold the IP
address and port number. In this case, they’ll be the IP address and port number of
the remote host to which we’ll connect. Here’s the prototype of the ipaddr_remote
function in libdill:

int ipaddr_remote(
struct ipaddr* addr,
const char* name,

Fortran TCP client

ipaddr_remote

tcp_connect

mrecv

client.f90

Initialize the remote
IP address and port
number data structure.

Connect to the
remote server.

Receive the
message from the
remote server.

Figure 11.6 The Fortran TCP
client program, illustrated

This function
returns an int.

Pointer to the ipaddr
struct (output argument)

Pointer to the IP address
name character string

318 CHAPTER 11 Interoperability with C: Exposing your app to the web
int port,
int mode,
int64_t deadline);

This interface is exactly the same as for ipaddr_local, except for the deadline argu-
ment. As we’ve implemented this argument in other interfaces, the Fortran interface
to ipaddr_remote is straightforward:

integer(c_int) function ipaddr_remote(addr, name, port, mode, deadline) &
bind(c, name='dill_ipaddr_remote')

import :: c_char, c_int, c_int64_t, ipaddr
type(ipaddr), intent(out) :: addr
character(c_char), intent(in) :: name(*)
integer(c_int), value, intent(in) :: port
integer(c_int), value, intent(in) :: mode
integer(c_int64_t), value, intent(in) :: deadline

end function ipaddr_remote

As in the case of the interface to ipaddr_local, which we implemented in section 11.2.2,
here we need to watch out for which arguments are passed by reference (pointer to
the address in memory), and which by value (a local copy of the argument is made
inside the function). Recall that by default, Fortran passes arguments by reference, so
any arguments in the C function that are declared with * (denoting them as pointers),
can be declared as is in the Fortran interface. However, for the arguments in the C
function that aren’t declared as pointers, we must use the value attribute in the For-
tran interface. First, here’s the prototype of the C tcp_connect function:

int tcp_connect(
const struct ipaddr* addr,
int64_t deadline);

And here’s its Fortran sibling interface to tcp_connect:

integer(c_int) function tcp_connect(addr, deadline) &
bind(c, name='dill_tcp_connect')

import :: c_int, c_int64_t, ipaddr
type(ipaddr), intent(in) :: addr
integer(c_int64_t), value, intent(in) :: deadline

end function tcp_connect

At this point, we can use these interfaces to initialize the ipaddr type and connect to a
remote socket, as shown in the following listing.

program client

use iso_c_binding, only: c_int, c_null_char, &
c_int64_t

Listing 11.8 Fortran TCP client that creates a connection to a remote server

Integer port number
and mode (IP v4 or v6)

Deadline in milliseconds

Imports C-type kind parameters
from the built-in module

319TCP client program: Connecting to a remote server
use mod_dill, only: ipaddr, ipaddr_remote, &
IPADDR_IPV4, tcp_connect

implicit none
integer(c_int) :: rc, connection
type(ipaddr) :: addr

rc = ipaddr_remote(addr, &
'127.0.0.1' // c_null_char, &
5555_c_int, &
IPADDR_IPV4, &
-1_c_int64_t)

connection = tcp_connect(addr, -1_c_int64_t)

end program client

Similar to the server program, the client begins by initializing the IP address data
structure. This time, it’s the IP address and port number of the remote host that we’re
connecting to. As you can see, our remote IP address is the same as the local one ini-
tialized in the server program. They’re the same because we’re running both the cli-
ent and the server on the same computer, which is a common practice during
development.

 You can place this program in a new source file; for example, client.f90. Let’s com-
pile and run it:

gfortran -c mod_dill.f90
gfortran client.f90 -o client libdill.a -pthread
./client

On its own, nothing should come out of this. Our client simply initializes the remote
IP address and connects to a socket at that address. We’re also not doing any error
checks (by testing the values of rc or connection), so we don’t even know if these
function calls succeeded.

 Now, open a new terminal session and run the server program in it. From the client
terminal, run the client program. You’ll see a message come up in the server terminal:

./server
Listening on socket:

IP address: 127.0.0.1
Port: 5555

New connection from 127.0.0.1

11.3.2 Receiving a message

In the previous section, you learned how to send a TCP message from the server to a
remote client by calling the msend function in libdill. We tested that it worked by com-
municating to the server with command-line networking tools such as curl, nc, and

Imports our Fortran
interfaces to libdill functions

Initializes the
remote IP
address and
port number

Creates a new connection
to the remote server

Compiles the
mod_dill module file

Compiles and links
the client program

Runs the client

Runs the server program

Server output
on start-up

Server output on new
connection from remote client

320 CHAPTER 11 Interoperability with C: Exposing your app to the web

.

telnet. What if you wanted to exchange data over the network between two Fortran
programs? We need to have a mechanism for receiving a message in the Fortran client
program. Now we’ll implement mrecv, the sibling of msend:

ssize_t mrecv(
int s,
void* buf,
size_t len,
int64_t deadline);

If you look back at the msend prototype in listing 11.6, you’ll see that mrecv has exactly
the same definition, except for two important differences:

 The return value of the function is now of type ssize_t instead of int. In
msend, the function result was just a status code, indicating success or the kind
of error that the function encountered. In mrecv, however, the return value is
the length of the message. Its type, ssize_t, is the signed variant of the size_t
type. It’s an integer that can have extremely large values, but, unlike size_t,
can also represent negative values. This is useful because with a ssize_t-typed
result, this function can return the length of the message if successful, and –1 in
case of an error.

 The buffer buf is not a const anymore, which means that its value can (and in
this case, will) be written inside mrecv. This has an important implication for
our Fortran interface—whereas in msend we declared the buf argument as
intent(in), here we’ll declare it as intent(out).

With these two considerations, we can proceed to write the Fortran interface to mrecv as

integer(c_size_t) &
function mrecv(s, buf, len, deadline) &
bind(c, name='dill_mrecv')
import :: c_char, c_int, c_int64_t, c_size_t
integer(c_int), value, intent(in) :: s
character(c_char), intent(out) :: buf(*)
integer(c_size_t), value, intent(in) :: len
integer(c_int64_t), value, intent(in) :: deadline

end function mrecv

Interfacing unsigned and signed integers
Whereas C has signed and unsigned (positive only) integers, Fortran has only signed
integers. Unsigned (size_t) and signed (ssize_t) C integers are thus matched with
the same type kind parameter in Fortran, just c_size_t. Perhaps counterintuitive to
its name, c_size_t is signed.

The return value is
of type c_size_t.

Binds this to
dill_mrecv

Imports all the equivalent
C-types into the local scope

The first input argument is a
socket and is passed by value.

The character
buffer is the output
argument and is
passed by reference

The buffer length is
an integer of kind
c_size_t and is
passed by value.The last argument is an integer

of kind c_int64_t and is also
passed by value.

321TCP client program: Connecting to a remote server
11.3.3 The complete client program

The following listing provides the complete program for the Fortran TCP client.

program client

use iso_c_binding, only: c_int, c_char, c_null_char, c_size_t, &
c_int64_t, c_carriage_return, c_new_line

use mod_dill, only: ipaddr, ipaddr_remote, IPADDR_IPV4, &
mrecv, tcp_connect, suffix_attach

implicit none
integer :: i
integer(c_int) :: rc, connection
integer(c_size_t) :: message_size, msglen = 64
type(ipaddr) :: addr
character(c_char) :: message(64) = ''
character(len=*), parameter :: &

TCP_SUFFIX = c_carriage_return // c_new_line // c_null_char

rc = ipaddr_remote(addr, '127.0.0.1' // c_null_char, 5555_c_int, &
IPADDR_IPV4, -1_c_int64_t)

connection = tcp_connect(addr, -1_c_int64_t)
connection = suffix_attach(connection, TCP_SUFFIX, 2_c_size_t)
message_size = mrecv(connection, message, msglen, -1_c_int64_t)
print *, message_size, message

end program client

If you now recompile the client program and run it again (making sure the server is
still running in the other terminal), you’ll see a familiar greeting message:

./client
5 Hello

The first item in the output (the numeral 5) is the length of the message (correct!),
and the second item is the message itself: “Hello.” This is proof that both our client
and server work, as the message was transferred correctly using the TCP protocol,
even if on the same machine. You can try this exercise on separate computers, and it
will still work if the IP address and port number of the server are publicly accessible
from the internet.

 If you want to take this one step further as an exercise, consider adapting the client
and server programs with the get_command_argument subroutine, described in chap-
ter 10, to allow these programs to receive the IP address and port number as com-
mand-line arguments.

NOTE You can download the complete code for this chapter from https://
github.com/modern-fortran/tcp-client-server.

Listing 11.9 Fortran TCP client—the complete program

https://github.com/modern-fortran/tcp-client-server
https://github.com/modern-fortran/tcp-client-server
https://github.com/modern-fortran/tcp-client-server

322 CHAPTER 11 Interoperability with C: Exposing your app to the web
11.4 Some interesting mixed Fortran-C projects
I’ll provide a list here of some of what I think are interesting and useful mixed For-
tran-C projects. I encourage you to play with them, explore the source code, and see
other possible ways to interface with C code from Fortran:

 DISLIN, a fully featured graphics and data visualization library, with its own
interpreter included, and bindings to Fortran and several other languages:
https://www.mps.mpg.de/dislin

 Earth System Modeling Framework (ESMF), a mixed Fortran-C++ library for
building and coupling parallel Earth system models: https://www.earthsystem-
cog.org/projects/esmf

 F03GL, a Fortran interface to OpenGL: http://www-stone.ch.cam.ac.uk/pub/
f03gl/index.xhtml

 fgsl, a Fortran interface to the GNU Scientific Library: https://github.com/
reinh-bader/fgsl

 gtk-fortran, a Fortran interface to GTK for building graphical user interfaces:
https://github.com/vmagnin/gtk-fortran/wiki

 NetCDF, for reading and writing self-described, compressed, gridded, multidi-
mensional datasets: https://github.com/Unidata/netcdf-c (C library) and
https://github.com/Unidata/netcdf-fortran (its Fortran bindings)

 PLplot, yet another fully featured graphics and data visualization library with
bindings to Fortran and many other languages: http://plplot.sourceforge.net

 OpenBLAS, one of the fastest open source linear algebra libraries in the world:
https://github.com/xianyi/OpenBLAS

Now that you’ve gotten this far, what are you going to make?

11.5 Answer key
This section contains solutions to exercises in this chapter. Skip ahead if you haven’t
worked through the exercises yet.

11.5.1 Exercise 1: The Fortran interface to ipaddr_port

The C function ipaddr_port takes the ipaddr struct as an input argument and
returns the port number as a c_int. The key to implementing the Fortran interface
is to match the argument and the function result data types, as shown in the follow-
ing listing.

module mod_dill
...
public :: ipaddr, ipaddr_local, &

ipaddr_port, ipaddr_str
...
interface

Listing 11.10 Fortran interface to ipaddr_port

Makes these functions
publicly available for use

https://www.mps.mpg.de/dislin
https://www.earthsystemcog.org/projects/esmf
https://www.earthsystemcog.org/projects/esmf
http://www-stone.ch.cam.ac.uk/pub/f03gl/index.xhtml
http://www-stone.ch.cam.ac.uk/pub/f03gl/index.xhtml
http://www-stone.ch.cam.ac.uk/pub/f03gl/index.xhtml
https://github.com/reinh-bader/fgsl
https://github.com/reinh-bader/fgsl
https://github.com/reinh-bader/fgsl
https://github.com/vmagnin/gtk-fortran/wiki
https://github.com/Unidata/netcdf-c
https://github.com/Unidata/netcdf-fortran
http://plplot.sourceforge.net
https://github.com/xianyi/OpenBLAS

323Answer key
...
integer(c_int) function ipaddr_port(addr) &

bind(c, name='dill_ipaddr_port')
import :: c_int, ipaddr
type(ipaddr), intent(in) :: addr

end function ipaddr_port
...

end interface

end module

First, the function result is c_int, so we declare it as integer(c_int) on the Fortran
interface end. Like before, we specify the name of the C function in the bind attribute
to include the dill_ prefix. Second, recall that the function interfaces have their own,
local scope, so we need to import them from the module scope using the import state-
ment. The first and only argument is an ipaddr struct, so we declare it in the interface
as type(ipaddr), intent(in). Once the function result and arguments are declared,
we’re done! We don’t need to write the function body, as that part is defined in the C
source code of the function that we’re invoking. The only thing left is to place this
function header in an interface block and make it publicly available to be imported
from outside of the module.

11.5.2 Exercise 2: Fortran interfaces to suffix_detach and tcp_close

The Fortran interface to suffix_detach requires defining correct types for the func-
tion result (c_int) and the arguments (s and deadline). Both arguments are input
arguments and are defined as pass-by-value (copy on call). We’ll thus declare them
with the intent(in) and value attributes, as shown in the following listing.

integer(c_int) function suffix_detach(s, deadline) &
bind(c, name='dill_suffix_detach')

import :: c_int, c_int64_t
integer(c_int), value, intent(in) :: s
integer(c_int64_t), value, intent(in) :: deadline

end function suffix_detach

The interface to tcp_close follows exactly the same pattern, as shown in the follow-
ing listing.

Listing 11.11 Fortran interface to suffix_detach

The result of this function is
an integer of kind c_int.

Binds this interface
to a C function
dill_ipaddr_port

Imports c_int and
ipaddr from the
module scope

The only input
argument to this

function is an
ipaddr struct.

The return value
is a c_int.

We’ll bind this to
dill_tcp_close.

Imports C types
into the local
scope

The first input argument
is a c_int that’s passed
by value.

The second input argument is a
c_int64_t that’s passed by value.

324 CHAPTER 11 Interoperability with C: Exposing your app to the web
integer(c_int) function tcp_close(s, deadline) &
bind(c, name='dill_tcp_close')

import :: c_int, c_int64_t
integer(c_int), value, intent(in) :: s
integer(c_int64_t), value, intent(in) :: deadline

end function tcp_close

Once you define these two interfaces in mod_dill.f90 and make them publicly avail-
able, you’ll be able to import them and call them from the server program.

11.6 New Fortran elements, at a glance
 bind(c)—A procedure attribute to bind a Fortran procedure to a C function

or struct
 iso_c_binding—A built-in module that provides C-type kind parameters
 import—A statement to make a variable or procedure available inside the

interface
 value—An attribute that states that the procedure argument should be passed

by value, that is, by making a copy on call

11.7 Further reading
 The C Programming Language, by Brian W. Kernighan and Dennis M. Ritchie, Pren-

tice Hall Software Series. Many C programmers consider this book a C “bible.”
 Essential C, by Nick Parlante: http://cslibrary.stanford.edu/101. This concise

document is my favorite quick reference material for C.
 “The new features of Fortran 2018,” by John Reid (PDF download): http://

mng.bz/EdaX.
 libdill home page and documentation: http://libdill.org.
 Chapters 19 (“Interoperability with C”) and 21 (“Fortran 2018 enhancements

to interoperability with C”) of Modern Fortran Explained: Incorporating Fortran
2018, by Michael Metcalf, John Reid, and Malcolm Cohen, Oxford University
Press.

Summary
 Fortran interoperability with C is built into the language and is defined in the

Fortran Standard.
 The C function can be made available to call from Fortran by defining a function

interface that binds to and uses data types equivalent to the target C function.

Listing 11.12 Fortran interface to tcp_close

The return value
is a c_int.

We’ll bind this to
dill_tcp_close.

Imports C types
into the local
scope

The first input argument
is a c_int that’s passed
by value.

The second input argument is a
c_int64_t that’s passed by value.

http://cslibrary.stanford.edu/101
http://mng.bz/EdaX
http://mng.bz/EdaX
http://mng.bz/EdaX
http://libdill.org

325Summary
 The iso_c_binding built-in module provides data types that are compatible
with C types, as well as special characters like carriage return, new line, and null
character.

 The bind(c) attribute is used to specify that the Fortran interface will match an
existing C function; its optional argument name allows you to specify which C
function to bind to.

 Likewise, Fortran derived types with the bind(c) attribute are paired with
matching C structs.

 For pass-by-value arguments to C functions (nonpointers), use the value attribute
in the argument definition in the Fortran interface to make them compatible.

 There are many other C libraries besides libdill that greatly expand on what you
can do with Fortran alone.

 You can use Fortran-C interoperability to give your Fortran programs superpowers.

Advanced parallelism
with teams, events,

and collectives
Parallel programming is ubiquitous in many applications in science and engineer-
ing, such as aerodynamics, weather and ocean prediction, and machine learning.
Parallel programming lets you distribute work between many CPUs, allowing the
program to finish sooner. Distributing the work also reduces the amount of mem-
ory needed by the program, so parallelism allows running large programs that oth-
erwise wouldn’t fit into the memory of a single computer. Fortran is natively
parallel, which means that the syntax used to express parallel programs is built into
the language itself.

 In chapter 7, your first foray into parallel Fortran programming was through
coarrays. They allowed you to distribute the work among multiple CPUs, exchange
data between them, and perform the computations faster. In this chapter, we’ll take it
a step further and explore three new parallel concepts: teams, events, and collectives.

This chapter covers
 Forming teams of parallel images for different

tasks

 Synchronizing execution by posting and waiting
for events

 Exchanging data across images using collectives
326

327From coarrays to teams, events, and collectives
We’ll use these new features toward the final implementation of the tsunami simulator
that we’ve been developing in this book.

 Teams and events provide advanced means for controlling program flow and syn-
chronization. Collectives allow you to implement common parallel patterns across
images without directly invoking coarrays. At the end of the chapter, you’ll walk away
with the working knowledge to implement advanced parallel patterns in Fortran from
scratch, or use them to augment an existing Fortran application. Together, images,
coarrays, teams, events, and collectives provide a comprehensive toolbox to express
any parallel algorithm that you can think of. This chapter will show you how.

12.1 From coarrays to teams, events, and collectives
Chapter 7 introduced the parallel programming concepts in Fortran, including
images, synchronization, and data exchange using coarrays. I strongly recommend
that you read that chapter before starting this one. Nevertheless, let’s refresh our
memory on these concepts before we build further on them.

 Fortran refers to any parallel process as an image. Under the hood, an image can
be a process running on a dedicated CPU core or a thread implemented by the oper-
ating system. A parallel Fortran program runs on all images, and each image loads its
own copy of the program in RAM. The built-in functions this_image and num_images
are available. The former returns the number of the current image, and the latter
returns the total number of images that are running the program. Each image runs
the program independently from all other images until they’re synchronized using
the sync all statement. These concepts allow us to inquire about images and synchro-
nize them. However, they don’t help us regarding exchanging data between images.
To do this, Fortran has a special data structure called a coarray. A coarray can be coin-
dexed to access data on remote images—we can copy data to and from other images by
indexing a coarray with the target image number.

 Teams, events, and collectives build directly on these concepts. Teams let you sepa-
rate groups of images by different roles, while events make communicating status
updates between teams (or just images) simple. Consider a weather prediction model,
for example. The simulation can’t start without the initial data coming in, and the
team that writes data to disk needs to wait for the simulation team to finish their part
of the job. Posting and waiting for events from different teams is how we can synchro-
nize them. Finally, collectives will allow you to perform common parallel calculations,
such as sum, minimum, or maximum, without directly invoking coarrays.

 As we work on implementing these features in the tsunami simulator, we’ll focus
mainly on monitoring the time stepping progress of the simulation and extracting
some useful statistics about the simulated water height field. Although a real-world
application is likely to employ teams, events, and collectives for more complex tasks,
such as downloading and processing remote data, writing model output to disk, and
serving data to clients, focusing on a simple and minimal task will help us learn and
better understand in detail how these features work.

328 CHAPTER 12 Advanced parallelism with teams, events, and collectives
12.2 Grouping images into teams with common tasks
Fortran 2018 introduced teams to allow the programmer to assign different tasks to
groups of images. For example, if you’re computing a weather simulation on 16
images, you could assign them different roles (figure 12.1).

Is your Fortran development environment set up?
In case you opened this chapter before working through the earlier ones in the book,
make sure you have your Fortran compiler ready to build parallel code. You’ll need
recent builds of the GNU Fortran compiler (gfortran) and the OpenCoarrays library.
Refer to appendix A for instructions on setting up gfortran and OpenCoarrays. Other-
wise, if you’re working on a system with access to Intel or Cray Fortran compilers,
you’re good to go. In that case, specific compile commands and options will be a bit
different than presented here. Refer to user documentation of your Fortran compiler
for help on how to use it.

The input data team
downloads raw
satellite data.

The input data team passes
processed data to the
simulation team.

The simulation team
sends progress status
to the logging team.

The simulation team
sends raw data to
the output data
team…

...which writes it
to files on disk.

The logging team writes
the progress report to
screen or to a text file.

Simulation team

log.txt output.dat

3

Output data team

5 6 7 8

9 10 11 12

13 14 15 16

42

Logging team

1

Input data team

Figure 12.1 A weather model workflow, with parallel images distributed in different teams and each
box with a number in it representing one image

329Grouping images into teams with common tasks

All
wil

team
d

tw

Clos
c

con
In this specific example, the images are distributed in the following setup:

 One image queries a remote server and downloads satellite data when available.
 Another is in charge of monitoring the progress of the simulation and logging

appropriate information to a text file.
 Two images are responsible for writing simulation output files to disk.
 The remaining 12 images are churning away with the heavy task of simulation,

without getting distracted by other chores.

Let’s apply a subset of this pattern to the tsunami simulator we’ve been developing.

12.2.1 Teams in the tsunami simulator

In this section, we’ll use teams to augment our tsunami simulator and assign different
roles to parallel images working concurrently. For brevity and to not get bogged down
in the details of what the specific roles could be in real-world simulation software,
we’ll create only two teams: the compute team and the logging team. While the com-
pute team is churning away at the heavy task of number-crunching, the logging team
will monitor and report the progress of the simulator. Logging is a relatively light-
weight task, so we’ll assign only one image to the logging team, and the rest will go to
the compute team. Thus, if we run the program on four parallel images, one will be
logging progress, while the remaining three will be crunching numbers. This is a sim-
plified variant of the approach illustrated in figure 12.1.

 The updated tsunami program that uses teams will look as shown in listing 12.1.
This listing shows only the added code relative to where we left off with the tsunami
simulator in chapter 10. Don’t worry about coding this up just yet; here, I’m merely
giving you an overview of what’s coming later in the chapter.

program tsunami

use iso_fortran_env, only: team_type
...
type(team_type) :: new_team
integer :: team_num
...
team_num = 1
if (this_image() == 1) team_num = 2
form team(team_num, new_team)

change team(new_team)
if (team_num == 1) then

...
else if (team_num == 2) then

...
end if

end team

end program tsunami

Listing 12.1 Introducing teams to the tsunami simulator

Imports team_type from the
iso_fortran_env module

Declares a new
team_type instance

Team number variable that we’ll
use to identify sibling teams

images
l go to

 1 by
efault.

Only the first image
will go to team 2.Forms

o new
teams Changes the current

team for each image

The original simulator code
is assigned to team 1.The logging

code for team
2 goes here.

es the
hange
team

struct

330 CHAPTER 12 Advanced parallelism with teams, events, and collectives
This listing summarizes the concepts of forming new teams and switching the execu-
tion context between them. First, a team is modeled using a new built-in type, team_
type, available from the the iso_fortran_env module. To begin working with teams,
we import team_type and declare an instance of it, in this case new_team. We also
need a unique integer scalar to refer to different teams by their number, in this case
team_num. This variable is used to assign images to different teams. In the form team
statement in this example, we assign all images to team 1, except the first one, which
we assign to team 2. The form team statement only creates new teams; it doesn’t affect
the execution.

 This is where the change team construct comes in—it instructs all images that exe-
cute it to switch to a new team—in this case, new_team. Note that change team is a con-
struct, like an if block or a do loop, and is paired with a matching end team statement.

 Within the change team construct, the images are now running in their new teams.
We can assign code to be executed to each team by checking the value of the team
number. Teams will work on different tasks, and will also need to synchronize and
exchange data from time to time.

 Figure 12.2 illustrates this process, albeit with a bit different team organization.
 The key concepts introduced here are forming new teams (form team statement)

and changing the current team (change team construct). The form team statement
creates new teams and encodes the information about which image on the current

All images begin on the
initial team by default. The statementform team()

spawns new teams and
assigns images to each time.

The statementchange team()
transfers images to new
teams; images are assigned
new numbers.

When the statementend team
is reached, all images return
from the current teams to the
parent (initial) team.

use iso_fortran_env, only: team_type
type(team_type) :: new_team
integer :: team_num
team_num = 1
if (this_image() > 2) team_num = 2
form team(team_num, new_team)

change team(new_team)
...
...
...
end team

Initial team

Image 2 Image 4

Image 1 Image 5Image 3

New team 2

Image 2

Image 1 Image 3

New team 1

Image 1 Image 2

Initial team

Image 2 Image 4

Image 1 Image 5Image 3

Figure 12.2 Forming and changing teams

331Grouping images into teams with common tasks
team will belong to which new team. The change team construct moves images to the
newly created teams. Within the change team construct, the images have new image
numbers assigned to them. Teams can work independently from one another, syn-
chronize, and even exchange data.

 You may also wonder why we need separate statements for forming and changing
teams. We need them because these two operations are fundamentally different in
nature: form team instructs the compiler to define new teams and assign images to
them, analogous to defining a new function; change team, on the other hand, switches
the execution context between already created teams, which is analogous to calling a
function. Don’t worry if this seems like a lot and not everything is clear yet. We’ll go
over each element in detail as we work through this section.

NOTE In case you’re familiar with MPI programming (discussed earlier in the
book), whether in C or Fortran, teams are analogous to MPI communicators.

12.2.2 Forming new teams

Before we dive into the implementation of teams in the tsunami simulator, let’s look
at the syntax of forming new teams, which will apply to any parallel program that uses
them. In the beginning of the program, there’s only one team, and we’ll refer to it as
the initial team. All images that run the program start in the initial team by default. If
you intend to work with teams at all, the first thing you’ll do is form new teams within
the initial team using the form team statement. You can make as many new teams as
you want. In this example, we’ll create two new teams—one for the first half of all
images and the other for the rest—as shown in the following listing.

program form_team

use iso_fortran_env, only: team_type
implicit none

type(team_type) :: new_team
integer :: team_num

team_num = 1
if (this_image() > num_images() / 2) team_num = 2

form team(team_num, new_team)

end program form_team

Besides the basic housekeeping, like importing the team_type from the iso_fortran
_env module and declaring the team and team number variables, there are two key

Listing 12.2 Forming two new teams with equal numbers of images

Imports team_type from
the iso_fortran_env
module

Declares a new
team_type instance

Team number variable that we’ll
use to identify sibling teams

All images will go to
team 1 by default.

The rest will
go to team 2.

Forms two
new teams

332 CHAPTER 12 Advanced parallelism with teams, events, and collectives
elements here. First, we decide how many new teams to create and which images will
go to each team. We do this by assigning values to the integer variable team_num on
every image. Second, we execute the form team statement, which creates new teams
and internally assigns the images to them. If you compile and run this program, there
will be no output. This is expected, as a form team statement on its own doesn’t emit
any output.

 A form_team statement must be executed by all images on the current team. The
first form team statement in the program is thus always executed by all images in the
program. This statement also synchronizes all the images on the team, implying a
sync all under the hood. (See chapter 8 for a refresher on synchronizing images.)
This is the syntax of the form team statement:

form team(team_num, team_variable[, new_index, stat, errmsg])

where

 team_num is a positive, scalar, integer constant or expression that uniquely iden-
tifies the team to be created.

 team_variable is a scalar variable of type team_type.
 new_index is a scalar integer that allows you to specify an image number that

this image will have on the new team.
 stat is the integer status code, with a zero value in case of success and nonzero

otherwise
 errmsg is the character string with an informative error message, if stat returns

a nonzero value.

team_num and team_variable are required input parameters. The value of team_num
across images determines how many teams will be created with the form team state-
ment and which image will belong to which new team. If multiple new teams are cre-
ated, their numbers don’t need to be contiguous, but they need to be unique positive
integers. new_index is an optional input parameter that you can use to specify the
number of the image on the new team, which is otherwise compiler-dependent. If
provided, the values of new_index must be unique and less than or equal to the num-
ber of images being assigned to the new team. stat and errmsg, both optional output
parameters, have the same meaning and behavior as they do in the allocate and
deallocate statements in chapter 5. As you’ll see throughout the remainder of this
chapter, all parallel features introduced by Fortran 2018 have error handling built in.

12.2.3 Changing execution between teams

Now that we have two new teams, how do we instruct images on each team to do cer-
tain kinds of work? Recall that by default, all images start on the same team. We need
to switch each image to a new team to get it to work on a different task. We do this
with the change team construct. Following the form_team statement in listing 12.2,
we’ll add this snippet:

333Grouping images into teams with common tasks
change team(new_team)
print *, 'Image', this_image(), 'of', num_images(), &

'is on team', team_number()
end team

Now you understand why change team is a construct—every change team statement
must be paired with a matching end team statement. A change team statement
instructs all images that execute it to switch to the team specified in parentheses. The
code inside the change team construct executes on the new (child) team until the end
team statement, when the images return to the original (parent) team. Similar to
this_image, which returns the image number, team_number returns a scalar integer
value of the current team.

 Let’s save this program in a file called change_team.f90, compile it, and run it on
five images:

caf change_team.f90 -o change_team
cafrun -n 5 --oversubscribe ./change_team

Image 1 of 2 is on team 1
Image 2 of 2 is on team 1
Image 1 of 3 is on team 2
Image 2 of 3 is on team 2
Image 3 of 3 is on team 2

What’s happening here? Each image prints three numbers to the screen: its own
image number (this_image()), the total number of images (num_images()), and its
team number (team_number()). Let’s look at the values in reverse, from right to left.
First, we see that there are two images on team 1 and three on team 2. This is what we
expected, as we instructed form team to first assign two images (out of five total) to
team 1, and the rest to team 2. So far, so good. Second, notice that two of the images
report a total number of images of 2, and the remaining three report a total number
of images of 3. This means that when executed within the change team construct,
num_images() now doesn’t represent the total number of images running the whole
program, but the total number of images within the current team. Finally, looking at
the current image number, it seems that our original images 3, 4, and 5 now have
numbers 1, 2, and 3 on their new team. Conclusion: when executed within the change
team construct, functions this_image and num_images operate in the context of the
current team.

 Note that the Fortran Standard doesn’t prescribe what the new image numbers on
the newly formed teams will be, and leaves the numbering of images on new teams as
implementation- (compiler-) dependent. If you need to ensure specific image indices
on new teams (or preserve the ones from the initial team), use the new_index argu-
ment in the form team statement, described in the previous subsection.

Switches execution
to a new team

Reports the image
and team number

Returns to the
parent team

Compiles the program using the
OpenCoarrays compiler wrapper Runs the program

on five parallel
processes

The output of
the program

334 CHAPTER 12 Advanced parallelism with teams, events, and collectives
 The syntax for the change team construct is

[name:] change team(team_value[, stat, errmsg])
...

end team [name]

where

 team_value is an input scalar variable or expression of type team_type.
 stat and errmsg are optional output parameters that have the same meaning

as in the form team statement.
 name is an optional label for the construct, much like a labeled do loop.

At the beginning of a change team construct, all images that execute it switch to the
team provided in parentheses. Inside the construct, these images execute within the
new team. When they reach the end team statement, the images automatically syn-
chronize and return to the original (parent) team that they were on immediately
before the change team statement.

Exercise 1: Hunters and gatherers
Write a parallel program that models a tribe of hunter-gatherers using teams. Form
the teams such that this is how they operate:

 Gatherers comprise 1/2 of all villagers, and they go foraging for fruit and veg-
etables. When they reach their destination, they split into teams of 2 for more
efficient foraging.

 Hunters comprise 1/3 of all villagers, and they go hunting. When they reach
their destination, they split into teams of 3 for more efficient hunting.

 The remaining 1/6 of villagers are elders, who stay together in the village and
rest by the fire pit.

For this exercise, make each team report to the screen:

1 How many villagers are in each team
2 When they leave the village
3 When they engage in an activity

Hint: use a form team statement within a change team construct to create new
teams within teams.

The solution to this exercise is given in the “Answer key” section near the end of
the chapter.

Switches all images to
the new team with
team_valueAll code here is

executed in the context
of the new team.Synchronizes images

and returns them to
the original team

335Grouping images into teams with common tasks
12.2.4 Synchronizing teams and exchanging data

We’ve learned so far, both from coarrays in chapter 7 and from developing the paral-
lel tsunami simulator, that synchronizing images is crucial for writing correct parallel
programs. Recall that when we have data dependency between parallel images, one
image must wait for data from another image before proceeding with its own calcula-
tion. This subsection explains how synchronization of images works within teams, and
how to synchronize multiple teams as a whole.

SYNCHRONIZING IMAGES WITHIN A TEAM

The essential synchronization mechanism you learned in chapter 7 was the sync all
statement, which placed a barrier in the code at which every image had to wait for all
others before proceeding. At the point of a sync all statement, we considered all
images to be synchronized. Another option that’s available to us, when we need to syn-
chronize the current image with some but not all other images, is the sync images
statement. For example, we used sync all in the sync_edges method of the Field
type in the tsunami simulator (see section 10.4) to synchronize every image with all
other images. Using sync images, we can instead synchronize each image only with its
four neighbors, in mod_field.f90, subroutine sync_edges:

...
sync images(set(neighbors))

edge(1:je-js+1,1)[neighbors(1)] = self % data(is,js:je)
edge(1:je-js+1,2)[neighbors(2)] = self % data(ie,js:je)
edge(1:ie-is+1,3)[neighbors(3)] = self % data(is:ie,js)
edge(1:ie-is+1,4)[neighbors(4)] = self % data(is:ie,je)

sync images(set(neighbors))

self % data(is-1,js:je) = edge(1:je-js+1,2)
self % data(ie+1,js:je) = edge(1:je-js+1,1)
self % data(is:ie,js-1) = edge(1:ie-is+1,4)
self % data(is:ie,je+1) = edge(1:ie-is+1,3)
...

The same behavior holds in the context of teams: sync all and sync images state-
ments now operate within the team in which they’re executed. For example, if you
have two teams and you’ve switched the images to them using the change team con-
struct, issuing sync all synchronizes the images within each team, but not the teams
themselves. Ditto for sync images. Although this may be confusing at first, you’ll get
used to it over time as you practice working with teams. Just remember: sync all and
sync images statements always operate only within the current team and can’t affect
the images outside of the team. In the next subsection, you’ll see how you can syn-
chronize between teams.

 In the sync images snippet, set(neighbors) ensures that we pass unique values of
neighbors to sync images. We’ll define set in the same module in mod_field.f90, as
shown in the following listing.

Synchronizes with neighbors
before copy into buffer

Copies data into
the coarray
buffer, edge

Synchronizes with neighbors again
before copying out of buffer

Copies data from
coarray buffer into
the field array

336 CHAPTER 12 Advanced parallelism with teams, events, and collectives

Sim
pure recursive function set(a) result(res)
integer, intent(in) :: a(:)
integer, allocatable :: res(:)
if (size(a) > 1) then

res = [a(1), set(pack(a(2:), .not. a(2:) == a(1)))]
else

res = a
end if

end function set

This is the first time we encounter the recursive attribute. This attribute allows a
function or subroutine to invoke itself. The crux of this function is in the fifth line
of the listing, where we recursively reduce the array by removing duplicate elements,
one by one, using the built-in function pack. For a refresher on pack, see section 5.4,
where we used it for the first time. Note that Fortran 2018—the latest iteration of
the language as of this writing—makes all procedures recursive by default, so speci-
fying the recursive attribute won’t be necessary anymore. I still include it here
because most Fortran compilers have yet to catch up with this recent development.

SYNCHRONIZING WHOLE TEAMS

Having established that sync all and sync image statements operate only within the
current team and can’t affect the images outside of it, we need a mechanism to syn-
chronize between the teams. Back to our working tsunami example from listing 12.1,
where we began incorporating teams for the simulation and logging tasks:

change team(new_team)
if (team_num == 1) then

...
else if (team_num == 2) then

...
end if

end team

As logging depends on the data from the simulation team, we need a way to synchro-
nize images between different teams. This is where the new sync team statement
comes in, as shown in the following listing.

use iso_fortran_env, only: initial_team, team_type
...
change team(new_team)

if (team_num == 1) then
...
sync team(get_team(initial_team))

else if (team_num == 2) then
sync team(get_team(initial_team))

Listing 12.3 Function set to return unique elements of an array

Listing 12.4 Synchronizing images within the initial team using the sync team statement

The recursive attribute allows
a function to call itself.

Eliminates nonunique
elements from the
array, one at a time

Simulation code
goes here.

Logging code
goes here.

Imports the
initial_team constant
from the moduleulation

code

Synchronizes with all
images that belong to
the initial team

337Grouping images into teams with common tasks
...
end if

end team

sync team has been introduced to the language to allow synchronizing images within
the parent team without leaving the change team construct. To use it, we need to pro-
vide it a team value over which to synchronize. In practice, this will typically be a par-
ent team or some other ancestor team (see the “Exercise 1” sidebar for an example of
multiple levels of teams), but can also be the current team or the child team. To refer
to a team such as the initial team, which we never defined as a variable, we use the get
_team built-in function, and pass it the initial_team constant available from the
iso_fortran_env module. Besides the initial_team integer constant, iso_fortran
_env also provides the parent_team and current_team constants.

 For brevity, we won’t get bogged down with the exact code that the logging team
will execute. In practice, it could be monitoring the time stepping progress of the
simulation team, checking and processing files written to disk, printing simulation
statistics to the screen, and perhaps even serving them as a web server. An important
element to most of these activities is getting the data from the simulation team.

EXCHANGING DATA BETWEEN TEAMS

I mentioned in the previous subsection that one of the activities the logging team
could be performing is monitoring the time stepping of the simulation team. If
they’re operating independently and concurrently, how can the logging team know
each time the simulation team steps forward? To demonstrate the exchange of data
between teams, let’s send the time step count from the simulation team to the logging
team. To do this, we’ll make our time step count variable a coarray, and we’ll use the
team number in the image selector when referencing that coarray, as shown in the fol-
lowing listing.

integer(ik) :: time_step_count[*]
...
change team(new_team)

if (team_num == 1) then
...
time_loop: do n = 1, num_time_steps

...
time_step_count[1, team_number=2] = n

end do time_loop
else if (team_num == 2) then

n = 0
time_step_count = 0
do

if (time_step_count > n) then
n = time_step_count
print *, 'tsunami logger: step ', n, 'of', num_time_steps, 'done'

Listing 12.5 Exchanging data between teams using image selectors

Logging code

Declares time step
count as a coarray

Copies n into
time_step_count on
image 1 of team 2

Loops
indefinitely Runs this code if

time_step_count
has been updated

338 CHAPTER 12 Advanced parallelism with teams, events, and collectives
if (n == num_time_steps) exit
end if

end do
end if

end team

In listing 12.5, we’ve declared the time_step_count integer coarray, which we’ll use to
exchange the time step count between the simulation team and the logging team. To
send the data, we’ll use the usual coarray indexing syntax from chapter 7, with a twist:
here, we also specify the team number in the image selector (the values between
square brackets). When we write time_step_count[1, team_number=2] = n, we’re say-
ing “Copy the value of n into the time_step_count variable on image 1 of team num-
ber 2.” This means that the image number is relative to the team in question—image 1
on team 1 is different from image 1 on team 2. On the logging team, we initialize the
local value of time_step_count to zero, loop indefinitely, and check for its value in
each iteration. Every time time_step_count is incremented by the simulation team,
we print its value to the screen.

 While this is a somewhat trivial example—printing a single integer to the screen is
not that much work—it illustrates how to effectively offload heavy compute work to
other teams. In a real-world app, while the simulation team is busy crunching num-
bers, one team could be writing the output files to disk, while another could be serv-
ing them as a web server. The results of the tsunami simulator won’t change with
introduction of teams into the code, because they affect only how the code and its
order of execution are organized. The simulation part of the code, which is responsi-
ble for producing numerical results, is now running in its dedicated team rather than
on all images. While teams don’t necessarily unlock any new capability relative to orig-
inal image control and synchronization mechanisms, they allow you to more cleanly
express distribution of work among images. This becomes especially important for
larger, more complex apps.

12.3 Posting and waiting for events
In the previous section, we used teams to distribute work among groups of images.
Teams allow us to express some parallel patterns and synchronization more elegantly
than we otherwise could by controlling individual images directly. Fortran 2018 intro-
duces another new parallel concept called events, provided through the built-in
derived type called event_type. In a nutshell, you can post events from one or more
images, and query or wait for those events from others. Figure 12.3 illustrates how
events are implemented in Fortran.

 You can read this diagram in any order. An alert event is an instance of event_
type. Image 1 triggers the alert on image 2 by issuing event post(alert[2]). This
statement is nonblocking, which means that image 1 can immediately move on with
whatever code follows. All instances of event_type keep a count of posted events
internally. This count is incremented on every event post statement, from any image.

Leaves the loop
if we’ve reached
the end

339Posting and waiting for events
Image 2 issues event wait(alert). This is a blocking statement, which means that
image 2 will wait until the alert is posted. When it finally happens, event wait decre-
ments the internal event count. Alternatively, image 2 can also poll the number of
alerts in a nonblocking fashion with the built-in subroutine event_query.

 That’s all there is to it! Let’s first tinker with posting and waiting for events in an
example of sending a notification, and then we’ll dive into the syntax and rules
of events.

12.3.1 A push notification example

In this section, we’ll build from our tsunami teams example and use events to post
updates from the simulation team to the logging team about data being written to
disk. While this is technically doable with coarrays alone, you’ll see that events are a
perfect candidate for such parallel patterns. Before we jump back into the tsunami,
let’s see how events work from a simple push notification example.

 Sending a notification from one process to another will be important in any sce-
nario in which you have data dependency between processes. Examples include a
long-running data mining job by a worker process, waited on by a process whose role
is to write a report for the user (see figure 12.1), or waiting for data to become avail-
able on a remote server.

 This example will demonstrate using events to wait for another image to complete
a long-running job. It doesn’t matter what the actual job is—here, we’ll emulate it by
making the image wait for five seconds. When the time is up, the image will send a
notification to another image that’s waiting for it. The following listing shows the com-
plete program.

Posting an event is non-blocking;
the image moves on immediately.

Waiting for an event
blocks until the event is
posted and decrements
the event count.

Querying the event count
doesn't block or change it.

The event variable stores
the count of posted
events internally.

use iso_fortran_env, only: event_type
type(event_type) :: alert[*]
integer :: count

Image 1

Blocking

Non-blocking

Image 2

Image 2

event post(alert[2])
alert

event wait(alert)

call event_query(alert, count)

Figure 12.3 Fortran events, where solid and dashed arrows denote blocking and nonblocking
operations, respectively

340 CHAPTER 12 Advanced parallelism with teams, events, and collectives

2

program push_notification

use iso_fortran_env, only: event_type
implicit none
type(event_type) :: notification[*]

if (num_images() /= 2) error stop &
'This program must be run on 2 images'

if (this_image() == 1) then
print *, 'Image', this_image(), 'working a long job'
call execute_command_line('sleep 5')
print *, 'Image', this_image(), 'done and notifying image 2'
event post(notification[2])

else
print *, 'Image', this_image(), 'waiting for image 1'
event wait(notification)
print *, 'Image', this_image(), 'notified from image 1'

end if

end program push_notification

First, we import event_type and declare a coarray instance of it. Like team_type,
event_type is also provided by the iso_fortran_env module. An event variable must
either be declared as a coarray or be a component of a coarray derived type. Then,
from image 1, we post the event by executing the event post statement on the
notification variable, with image 2 as the target. This increments the event count in
the notification variable, which can now be queried or waited for on image 2. On
the other side, image 2 issues the matching event wait statement. This statement
blocks the execution on image 2 until image 1 has posted the event.

 If you compile and run this program, you’ll get

caf push_notification.f90 -o push_notification
cafrun -n 2 ./push_notification
Image 1 working a long job
Image 2 waiting for image 1
Image 1 done and notifying image 2
Image 2 notified from image 1

Notice the order of printed lines in the output. The sequence of operations is set by
the event post and event wait statements. Because image 1 is working on a long job
(here emulated by sleeping for five seconds), image 2 will announce that it’s waiting
for image 1 before it receives the notification and will print that the message was
received only after event wait has executed. The following two subsections describe
the general syntax of event post and event wait statements.

Listing 12.6 A push notification example using events

Imports event_type from
the built-in module

Declares an instance of
event_type as a coarray

Requires running
on two images

Simulates a long job by
waiting for five seconds

Posts the event to
notification on image

On image 2, waits
for notification

Compiles the program
using the OpenCoarrays
compiler

Runs the program
on two images

341Posting and waiting for events
12.3.2 Posting an event

The first step to any work with events is to post them using the event post statement,
which takes the general form

event post(event_var[, stat, errmsg])

where event_var is a variable of event_type, and stat and errmsg have the same
meaning as they do in the form team and change team statements.

 While not strictly required by the language, you’d always want to post to an event
variable on another image by coindexing it (indexing a coarray); for example

type(event_type) :: notification[*]
event post(notification[this_image() + 1])

You can post to an event variable as many times and as frequently as you want, with or
without matching event wait statements. Every time you do, an internal event count
for that event variable is incremented. You can also post to an event from more than
one image. You’ll see soon how this mechanism can be used to make multiple event
posts and wait for them only on some occasions.

12.3.3 Waiting for an event

Images posting events is just one side of the transaction. For an image to wait for the
event that it owns, it needs to execute the event wait statement. This statement has
the syntax

event wait(event_var[, until_count, stat, errmsg)

where

 event_var is a scalar variable of event_type and has the same meaning as in
event post.

 until_count is an optional integer expression that’s the number of posted
events for which to wait, with a default value of 1.

 stat and errmsg are optional output parameters for error handling and have
the same meaning as before.

Running external (system) commands
In listing 12.6, I used a built-in subroutine, execute_command_line, to run an exter-
nal command and simulate a long job. On Linux, sleep 5 means “wait for five sec-
onds.” You can run any external command by calling execute_command_line. The
subroutine will block until the command completes. In general, this is useful for
loosely integrating your Fortran programs with external (system) tools and scripts. For-
tran itself, however, doesn’t provide a way to capture the output (or error message)
of the external command. To do this, you’d have to redirect the output of the com-
mand into a file that you’d then read from your Fortran program (see chapter 6).

Posts a notification
to the next image

342 CHAPTER 12 Advanced parallelism with teams, events, and collectives
In a nutshell, event wait blocks the image that executes it until some other image
posts an event to it. If until_count is provided and greater than 1, the image will wait
until that many events have been posted. On successful execution of event wait, the
internal event count is decremented by until_count, if provided, and by 1 otherwise.
For example, this statement

event wait(notification, until_count=100)

blocks the executing image until 100 events have been posted to the notification
variable from any other image. Once executed, the internal event count is decre-
mented by exactly 100. Note that this doesn’t mean that the event count is always
reduced to zero, because remote event posts can keep incrementing the event count
before event wait has time to return.

 Using event wait together with the until_count parameter allows you to not
block on every posted event, but only on some number of events. However, it also
illustrates a restriction to event wait: it’s impossible for the image that listens for
events to know how many have been posted without explicitly blocking execution with
event wait. This is indeed rather limiting. To poll events without blocking the current
image, Fortran provides a built-in subroutine event_query, which we’ll explore in the
next subsection.

12.3.4 Counting event posts

As you work with events, you’ll soon find it useful to query an event variable to find
out how many times an event has been posted. The built-in subroutine event_query
does exactly this

call event_query(event_var, count[, stat])

where event_var is the input variable of type event_type, and count is the output
integer number of events posted. Unlike the event wait statement, calling event
_query doesn’t block execution but simply returns the count of posted events.
event_query is a read-only operation, so it doesn’t decrement the event count like
event wait does. This makes it more suitable for implementation of nonblocking par-
allel algorithms, as you’ll find out in the “Exercise 2” sidebar.

Exercise 2: Tsunami time step logging using events
In the previous section, we used the coarray time_step_count to communicate the
number of time steps between the simulation and logging teams. In this exercise,
use events to keep track of the simulation team’s progress and print it to screen from
the logging team. For bonus points, implement two solutions, one using an event
wait statement, and another using an event_query subroutine.

The solution to this exercise is given in the “Answer key” section near the end of
the chapter.

343Distributed computing using collectives
12.4 Distributed computing using collectives
In chapter 7, you learned how to use coarrays and their square bracket syntax to
exchange values between parallel images. This mechanism for data exchange is sim-
ple and to the point—you as the programmer explicitly instruct the computer to send
and receive data between images. For common calculations across many images, such
as a global sum or maximum and minimum values of distributed arrays, implement-
ing such parallel algorithms using coarrays directly can be tedious and prone to
errors. Fortran 2018 introduced collective subroutines to perform common parallel
operations on distributed data.

 Take, for example, a climate model that predicts the air temperature over the
globe far into the future. As a climate scientist or a policy maker, you’d be interested
in finding out what the global minimum, maximum, and average value of air tempera-
ture or mean sea level was over time. However, if the climate model was running in
parallel (almost all of them are!), calculating the global temperature statistics would
not be trivial, because every CPU would have the data only for the region that it was
computing for. In the simplest implementation, you’d have to do the following:

1 Calculate minimum, maximum, and average values on each CPU for its region.
2 Gather the regional statistics to one CPU.
3 Calculate the global statistics on one CPU based on arrays of regional statistics.

We went through this exercise with a simple dataset back in chapter 7 when we were
first introduced to coarrays. Now, collective subroutines (I’ll refer to them as collec-
tives) can do some of the heavy lifting for you.

12.4.1 Computing the minimum and maximum of distributed arrays

Let’s try this out in the tsunami simulator. In our working version of the simulator so
far, for every time step, we were reporting the time step count to the screen, while the
program was writing raw data into files in the background:

program tsunami
...
time_loop: do n = 1, num_time_steps

if (this_image() == 1) &
print *, 'Computing time step', &

n, '/', num_time_steps
...

end do time_loop

end program tsunami

At the beginning of each time step, we print the current time step count and the total
number of time steps to the screen. We do this only from one image to avoid printing
the same message from all images. Let’s augment this short report by adding the min-
imum, maximum, and average water height value to each print statement. Like in the

Initialization part
of the program

Iterates through
simulation time
steps

If image 1, reports time
step count to the screen

The simulation
calculation goes here.

End of the simulation
time loop

344 CHAPTER 12 Advanced parallelism with teams, events, and collectives
thought experiment of a parallel climate model, the water height values here are also
distributed across parallel images. The following listing shows how we’d calculate
global minimum and maximum values using standard collectives co_min and co_max,
respectively.

...
real(ik) :: hmin, hmax
...
time_loop: do n = 1, num_time_steps

...
hmin = minval(h % data)
call co_min(hmin, 1)

hmax = maxval(h % data)
call co_max(hmax, 1)

if (this_image() == 1) print '(a, i5, 2(f10.6))', &
'step, min(h), max(h):', n, hmin, hmax

end do time_loop

To compute the global minimum of water height, we first calculate the local minimum
on each image using the minval function and store it into the temporary variable
hmin. Recall that h is a type(Field) instance, so we access the raw values through its
component h % data. Second, we use the collective subroutine co_min to calculate the
minimum value of hmin across all images. The first argument to co_min is an
intent(in out) scalar, and the second argument (optional) is the number of the
image on which to store the result. In this case, all images invoke co_min, and only the
value of hmin on image 1 is modified in-place. If the image number were not specified
(call co_min(hmin)), the value of hmin would be updated in-place on all images. This
implies that invoking the collective subroutine will inevitably overwrite the value of
the input on at least one image.

 We repeat the same procedure to compute the global maximum using co_max.
Finally, we report the current time step and minimum and maximum values to the
screen using a modified print statement. Here’s the sample output:

step, min(h), max(h): 1 0.000000 1.000000
step, min(h), max(h): 2 0.000000 0.996691
step, min(h), max(h): 3 0.000000 0.990097
...
step, min(h), max(h): 998 -0.072596 0.186842
step, min(h), max(h): 999 -0.072279 0.188818
step, min(h), max(h): 1000 -0.071815 0.190565

Listing 12.7 Calculating global minimum and maximum values of the water height array

Declares temporary
variables

Calculates the local
minimum on each image

Calculates the collective minimum from hmin on
each image and stores it into hmin on image 1

Calculates the local
maximum on each image

Calculates the collective maximum from hmax on
each image and stores it into hmax on image 1

Prints the current
time step and global
minimum and
maximum to the
screen

345Distributed computing using collectives
This was an introduction to the co_min and co_max subroutines by example. In the
next section, I’ll describe the rest of the collectives and provide their general syntax.

NOTE Collective subroutines are built into the language and are available out
of the box, just like the regular functions min, max, and sum.

12.4.2 Collective subroutines syntax

Fortran 2018 defines a total of five collective subroutines:

 co_broadcast—Sends the value of a variable from the current image to all others
 co_max—Computes the maximum value of a variable over all images
 co_min—Computes the minimum value of a variable over all images
 co_sum—Computes the sum of all values of a variable across all images
 co_reduce—Applies a reduction function across all images

These cover most collective operations that you’ll likely encounter in your work. How-
ever, the language won’t stop you from implementing your own custom collectives
using coarrays and synchronization, should you ever need them. The rest of this section
describes co_sum and co_broadcast in more detail. To learn more about co_reduce,
the most complex collective subroutine, see section 12.7 for reference.

NOTE If you’re familiar with parallel programming using MPI, Fortran 2018
collective subroutines will look familiar, as they’re analogs to their MPI coun-
terparts.

Figure 12.4 illustrates how co_sum works when invoked on four images.

In this example, we invoke co_sum(a) on each image, which triggers a summation of
values of a across all images. The exact data exchange pattern may vary depending on
compilers and underlying libraries, but the point is that you can use this built-in

Image 1

a = 5.9

Image 2

a = 5.9

Image 3

a = 5.9

Image 4

a = 5.9

Each image invokes co_sum
with its own (local) copy of a.

The collective sum of isa
stored on all images in-place.

co_sum sums local values
across all images.

Image 1

a = 1.2

Image 2

a = 2.3

Image 3

a = 1.8

Image 4

a = 0.6

co_sum(a)

Figure 12.4 A collective sum invoked over four parallel images, with arrows indicating possible data
flow directions

346 CHAPTER 12 Advanced parallelism with teams, events, and collectives
subroutine and not worry about explicitly copying data via coarrays and synchronizing
images to avoid race conditions. By default, the result of the collective sum is made
available on all images, and the value of a is updated on each image to the global sum
value. However, if you need this value on only one image, you can specify it as an argu-
ment; for example, call co_sum(a, 3) would compute a sum over all images but
update the value of a only on image 3.

 The full syntax for invoking co_sum is

call co_sum(a[, result_image, stat, errmsg])

where

 a is a variable that has the same type across all images. It doesn’t need to be
declared as a coarray. This is an intent(in out) argument, so its value may
be modified in-place.

 result_image is an optional integer scalar indicating on which image to store
the result. If omitted, the result is stored on all images.

 stat and errmsg, both optional, are scalar integer and character variables,
respectively. They have the same meaning as in allocate and deallocate state-
ments, and allow for explicit error handling.

As you might guess, co_sum, co_min, and co_max are implemented for numeric types
only (integer, real, and complex).

12.4.3 Broadcasting values to other images

While all images must execute the call to co_broadcast, the specified image acts as
the sender, and all others act as receivers. Figure 12.5 illustrates an example of this
functioning.

Exercise 3: Calculating the global average of water height
In almost all applications of computational fluid dynamics, it’s an important property
of the simulation code to conserve fundamental physical properties, such as mass
and energy. In this exercise, do the following:

1 Use the collective subroutine co_sum to calculate the global average of the
water height.

2 Print the mean water height value to the screen, like we did for the minimum
and maximum value.

3 Confirm that the tsunami simulator conserves mass by making sure that the
average water height (and thus the total water mass) stays constant through-
out the simulation.

The solution to this exercise is given in the “Answer key” section near the end of the
chapter.

347Answer key
The inner workings of this procedure, including copying of data and synchronization
of images, are implemented by the compiler and underlying libraries, so you and I
don’t have to worry about them.

 The full syntax for invoking co_broadcast is similar to co_min, co_max, and co_sum,
except that the broadcast variable isn’t limited to numeric data types. A subtle but
important point about collective subroutines is that the variables they operate on
don’t have to be declared as coarrays. This allows you to write some parallel algo-
rithms without declaring a single coarray. For an example, take a look at the source
code of a popular Fortran framework for neural networks and deep learning at
https://github.com/modern-fortran/neural-fortran. It implements parallel network
training with co_broadcast and co_sum, without explicitly declaring any coarrays.

 Congratulations, you made it to the end! Having now covered teams, events, and
collectives, it’s a wrap. Work through the exercises, make a few parallel toy apps of
your own, and you’re off to the races. You should have enough Fortran experience
under your belt to start new Fortran programs and libraries, as well as to contribute to
other open source projects out there. If you’d like to return to our main example,
appendix C provides a recap and complete code of the tsunami simulator. It also
offers ideas on where to go from here, as well as tips for learning more about Fortran.
The amazing world of parallel Fortran programming is waiting for you.

12.5 Answer key
This section contains solutions to exercises in this chapter. Skip ahead if you haven’t
worked through the exercises yet.

12.5.1 Exercise 1: Hunters and gatherers

Solving this exercise will require creating three new teams at the beginning of the pro-
gram: hunters, gatherers, and elders. Furthermore, we’ll need to create a yet-to-be-
determined number of subteams on each of the hunter and gatherer teams. Let’s
tackle the first step first, as shown in the following listing.

Image 1

a = 1.2

Image 2

a = 1.2

Image 3

a = 1.2

Image 4

a = 1.2

All images invoke
co_broadcast().

The value of is updated on alla
images to its value from image .1

co_broadcast() sends the
value from the specified image
to all others.

Image 1

a = 1.2

Image 2

a = 0

Image 3

a = 0

Image 4

a = 0

co_broadcast(a, 1)

Figure 12.5 A collective broadcast from image 1 to the other three images, with arrows indicating the
possible data flow direction

https://github.com/modern-fortran/neural-fortran

348 CHAPTER 12 Advanced parallelism with teams, events, and collectives
program hunters_gatherers

use iso_fortran_env, only: team_type
implicit none

type(team_type) :: new_team
integer :: team_num
integer, parameter :: elders_team_num = 1
integer, parameter :: hunters_team_num = 2
integer, parameter :: gatherers_team_num = 3

real :: image_fraction
image_fraction = this_image() / real(num_images())

team_num = elders_team_num
if (image_fraction > 1 / 6.) &

team_num = hunters_team_num
if (image_fraction > 1 / 2.) &

team_num = gatherers_team_num

form team(team_num, new_team)

end program hunters_gatherers

In this part, we’re not doing anything new relative to what we learned in section 12.2,
except that we’re creating three new teams instead of two. The image_fraction vari-
able here is used as a convenience to easily assign 1/6, 1/3, and 1/2 to the elders,
hunters, and gatherers, respectively.

 Now, let’s change the team to new_team and print a message from one image on
each team, as shown in the following listing.

...
change team(new_team)

if (team_number() == elders_team_num) then
if (this_image() == 1) &

print *, num_images(), 'elders stayed in the village to rest'
else if (team_number() == hunters_team_num) then

if (this_image() == 1) &
print *, num_images(), 'hunters went hunting'

else if (team_number() == gatherers_team_num) then
if (this_image() == 1) &

print *, num_images(), 'gatherers went foraging'
end if

end team

end program hunters_gatherers

Listing 12.8 Forming teams for hunters, gatherers, and elders

Listing 12.9 Changing to a new team and reporting on the designated activity

Sets the team numbers
as compile-time
parameters

Calculates the fraction
of the image number
relative to the total
number of images

Based on the image
number fraction, sets
the team number for
each image

Forms three
new teams

Changes context
to new_team Branch that will be

executed by the elders

Branch that will be
executed by the hunters

Branch that will be
executed by the
gatherers

Returns context to
the original team

349Answer key
Like we learned in section 12.2, we change the team for all images to new_team.
Depending on the image number, this will be the elder, hunter, or gatherer team.
Inside the change team construct, we check which team we’re on by comparing the
value of team_number to our compile-time constants for team number. At this point,
we only report the activity for each team.

 Next, we’ll create subteams from each of the hunter and gatherer teams. Specifi-
cally for hunters, we’ll have the following snippet inside the hunters if branch:

form team ((this_image() - 1) / 3 + 1, hunters)
change team(hunters)
print *, 'Hunter', this_image(), 'in team', &

team_number(), 'hunting for game'
end team

The code to create and change to subteams for gatherers is similar to that for hunters:

form team ((this_image() - 1) / 2 + 1, gatherers)
change team(gatherers)

print *, 'Gatherer', this_image(), 'in team', &
team_number(), 'gathering fruits and veggies'

end team

Place this code inside the if branch for the gatherers team, and there you have it. If
you now compile this program and run it on, say, 12 images, you’ll get output similar
to this:

caf hunters_gatherers.f90 -o hunters_gatherers
cafrun -n 12 --oversubscribe ./hunters_gatherers

2 elders stayed in the village to rest
4 hunters went hunting
6 gatherers went foraging

Hunter 1 in team 2 hunting for game
Hunter 2 in team 1 hunting for game
Hunter 1 in team 1 hunting for game
Gatherer 1 in team 1 gathering fruits and veggies
Hunter 3 in team 1 hunting for game
Gatherer 2 in team 3 gathering fruits and veggies
Gatherer 1 in team 3 gathering fruits and veggies
Gatherer 2 in team 1 gathering fruits and veggies
Gatherer 2 in team 2 gathering fruits and veggies
Gatherer 1 in team 2 gathering fruits and veggies

In this example, I chose only 12 images for brevity, but this example will work with any
number of images (well, up to the limit of your computer’s RAM, as each image runs

Places hunters in
subteams of 3

Changes context to
the new subteam

Each image reports
from its subteam.

Returns back to
the hunters team

Compiles using the
OpenCoarrays compiler, caf

Runs on 12
parallel images

Group activity report
from each team

Individual activity reports from
each villager on their subteams

350 CHAPTER 12 Advanced parallelism with teams, events, and collectives
its own copy of the program). Notice that the individual hunter and gatherer activity
reports aren’t in order, and they shouldn’t be—all images execute completely asyn-
chronously, except at form team and end team statements, where they synchronize
(and only with images in their own team). For example, in the outer change team con-
struct, the elders, hunters, and gatherers teams run in parallel to one another, and
this is the beauty of parallel programming in Fortran.

 You can run this program on many images on a single-core computer, and it will run
like a traditional concurrent program, which in other languages is accomplished with,
say, threading or async/await. You can also run this program (unchanged!) on many
distributed-memory servers in parallel, and even on computers around the world.

12.5.2 Exercise 2: Tsunami time step logging using events

Let’s start with the simulation team that’s stepping forward through the computation.
Recall that in listing 12.5, we used a coarray to copy the time step count from one
team to another:

if (this_image() == 1) time_step_count[1, team_number=2] = n

In this snippet, we sent the value of the local time step n to the time_step_count
coarray on image 1 of team 2. We did that only from one image, as all images on the
simulation team have the same value for the time step count. Now, if we’re imple-
menting this using events, this first part is easy. We’ll just declare an event variable and
use it in the event post statement from team 1 to post an event from the simulation
team to the logging team:

type(event_type) :: time_step_event[*]
...
if (this_image() == 1) &

event post(time_step_event[1, team_number=2])

That’s it as far as posting the event from the simulation team goes. Let’s see how we
can receive this information from the logging team.

IMPLEMENTATION USING EVENT WAIT

On the logging team, we’ll run in an infinite loop and have an event wait statement
to block the execution. On each event intercepted, we’ll increment the counter, print
the time step count to the screen, and exit the loop only if we’ve reached the end of
the simulation:

...
else if (team_num == 2) then

n = 0
do

event wait(time_step_event)
n = n + 1

Declares the
event variable

Posts the event from image 1 on the
current team to image 1 on team 2

Loops indefinitely

Blocks until the
event is posted

Increments the counter

351Answer key

In
th
print *, 'tsunami logger: step ', n, &
'of', num_time_steps, 'done'

if (n == num_time_steps) exit
end do

end if
...

The advantage to the approach using event wait is that we’re guaranteed to catch
every event that’s posted. The downside is that we need to do the counting outselves
(n = n + 1), and that event wait is blocking the execution. This is fine if counting time
steps is the only thing the logging team needs to do. The event wait approach thus
makes the logging team tightly coupled to the simulation team. Now let’s take a look
at the alternative solution using event_query.

IMPLEMENTATION USING EVENT_QUERY

Here’s the solution to the exercise using event_query. Rather than blocking execu-
tion until each event is posted, we’re simply going to query the event count and print
it to the screen if its value changed from the previous iteration:

...
else if (team_num == 2) then

n = 0
do

call event_query(time_step_event, time_step_count)
if (time_step_count > n) then

n = time_step_count
print *, 'tsunami logger: step ', n, &

'of', num_time_steps, 'done'
end if
if (n == num_time_steps) exit

end do
end if
...

The advantage to this approach is that the counting is handled automatically inside the
time_step_event variable. This approach is also not blocking, unlike the event wait
approach. If we needed to, we could carry out some other tasks on the logging team,
and in each iteration, the event_query subroutine would return whatever the current
value of the time_step_count was. This approach is thus asynchronous, and some time
steps may be skipped if the simulation iterations are faster than the logging.

12.5.3 Exercise 3: Calculating the global mean of water height

We’ll begin with our existing code in listing 12.7 that computes the global minimum
and maximum of water height:

hmin = minval(h % data)
call co_min(hmin, 1)

hmax = maxval(h % data)
call co_max(hmax, 1)

Prints the time step
count to the screen

Exits if we’ve reached the
end of the simulation

Loops
indefinitely Blocks until the

event is posted

crements
e counter

Prints the time step
count to the screen

Exits if we’ve reached the
end of the simulation

352 CHAPTER 12 Advanced parallelism with teams, events, and collectives
if (this_image() == 1) print '(a, i5, 2(f10.6))', &
'step, min(h), max(h):', n, hmin, hmax

To calculate the global average, we’ll follow the same procedure. However, consider-
ing that we don’t have a collective average function available out of the box, we’ll get
creative with the collective sum function co_sum. First, to calculate the local average,
we’ll take the sum of the local array and divide it by the total number of elements.
Your first instinct may be to do something like this:

hmean = sum(h % data) / size(h % data)

Although this is the correct approach, recall that the data component of the Field
type is allocated with one extra row and column on each side of the array, to facilitate
halo exchange with neighboring images. From the Field type constructor function in
mod_field.f90

allocate(self % data(self % lb(1)-1:self % ub(1)+1,&
self % lb(2)-1:self % ub(2)+1))

Thus, if we were to compute the sum of h % data as a whole, we’d also be including val-
ues from the edges of neighbor images, which isn’t what we’re looking for. Instead,
we’ll slice the array to go exactly from the lower bound (lb) to the upper bound (ub)
in each axis:

hmean = sum(h % data(h % lb(1):h % ub(1),h % lb(2):h % ub(2))) &
/ size(h % data(h % lb(1):h % ub(1),h % lb(2):h % ub(2)))

At this point, hmean is the local average value of water height on each parallel image.
Of course, don’t forget to declare hmean in the declaration section of the program.
Like with the collective minimum and maximum, we now apply co_sum to hmean to
store the sum on image 1, and divide the result by the total number of images to arrive
at the average value:

call co_sum(hmean, 1)
hmean = hmean / num_images()

Finally, let’s add hmean to the print statement and modify the format string accordingly:

if (this_image() == 1) print '(a, i5, 3(f10.6))', &
'step, min(h), max(h), mean(h):', n, hmin, hmax, hmean

If you now recompile and rerun the tsunami simulator, you’ll get output like this:

step, min(h), max(h), mean(h): 1 0.000000 1.000000 0.003888
step, min(h), max(h), mean(h): 2 0.000000 0.996691 0.003888
step, min(h), max(h), mean(h): 3 0.000000 0.990097 0.003888
...

Allocates the data array with
an extra index on each end

Computes the collective sum of hmean
and stores the result on image 1

Divides hmean by the total number
of images to get the average value

353Further reading
step, min(h), max(h), mean(h): 998 -0.072596 0.186842 0.003888
step, min(h), max(h), mean(h): 999 -0.072279 0.188818 0.003888
step, min(h), max(h), mean(h): 1000 -0.071815 0.190565 0.003888

The rightmost column in the output is our newly added water height average. Its val-
ues are constant throughout the simulation, which serves as evidence that our simula-
tor conserves water volume.

12.6 New Fortran elements, at a glance
 Teams, a mechanism to group images by common task:

– team_type—A new type for working with teams, available from the iso_
fortran_env module

– form team—A statement for creating new teams
– change team/end team—A construct to switch images to a new team
– team_number—A built-in function to get the current team number
– get_team—A built-in function to get the team variable, current or otherwise
– sync team—A statement to synchronize images across a common, typically

parent team
 Events, a mechanism to organize the flow of your parallel programs around dis-

crete events:
– event_type—A new type for working with events, available from the iso_

fortran_env module
– event post—A statement to post an event to a remote image
– event wait—A statement to block execution until an event is posted from

another image
– event_query—A subroutine to asynchronously count the number of posted

events
 Collective subroutines co_broadcast, co_max, co_min, co_reduce, and co_sum,

which implement some common parallel operations
 recursive—A procedure attribute that allows a procedure to invoke itself
 execute_command_line—A built-in subroutine to run a command from the

host operating system

12.7 Further reading
 “The new features of Fortran 2018,” by John Reid (PDF download): http://

mng.bz/EdaX
 “A parallel Fortran framework for neural networks and deep learning,” by

Milan Curcic: https://arxiv.org/abs/1902.06714

http://mng.bz/EdaX
http://mng.bz/EdaX
http://mng.bz/EdaX
https://arxiv.org/abs/1902.06714

354 CHAPTER 12 Advanced parallelism with teams, events, and collectives
Summary
 Fortran 2018 introduces new concepts for advanced parallel programming:

teams, events, and collectives.
 Teams and events are mechanisms for distribution of work and synchroniza-

tion, whereas collective subroutines are used for parallel reduction operations,
such as sum, minimum, and maximum.

 Teams are used to form distinct groups of images and assign them different
tasks.

 At the beginning of the program, all parallel images start in the initial team,
and you can create as many teams as you want.

 When you switch images to new teams, all teams run independently from one
another until explicitly synchronized.

 Events allow you to express the flow of your parallel program in a more elegant,
and, ahem, event-driven style: post events from one or more images, wait for
events from others, or just count them asynchronously.

 Collective subroutines allow you to perform some common parallel patterns
without directly invoking coarrays.

appendix A
Setting up the Fortran

development environment

Before we dive into the code, let’s go over the basics of editing, compiling, and run-
ning a Fortran program. I’ll recommend a few text editors that I like and guide you
through setting up the complete Fortran development environment.

 If you’re familiar with Docker and want to skip all the tedious setup, jump
ahead to section A.4, where I describe how to get the Modern Fortran Dockerfile
that will get you up and running in no time.

A.1 Editing Fortran source files
You’ll write Fortran programs and modules as plain text files. You can edit them in
your favorite text editor. Here are some popular choices:

■ Vim (Vi IMproved, https://www.vim.org/) is lightweight and powerful, although
with a steep learning curve for beginners. This is my editor of choice. I picked
it up when I first started programming in 2006, and never looked back.

■ Emacs (https://www.gnu.org/software/emacs) is a powerful and extensible
editor, as well as one of the oldest applications still in mainstream use.

■ Atom (https://atom.io) is a modern, feature-rich, integrated development
environment developed by GitHub. Atom also features a built-in package
manager for adding third-party functionality to the editor.

■ Visual Studio Code (https://code.visualstudio.com) is another modern, full-
featured integrated development environment, like Atom.

An important feature to look for in your text editor is whether it can highlight For-
tran syntax with different colors. All of the editors I’ve listed can do so, either
out-of-the-box or by extension. They’re also free and open source, so if you don’t
355

https://www.vim.org/
https://www.gnu.org/software/emacs
https://atom.io
https://code.visualstudio.com

356 APPENDIX A Setting up the Fortran development environment
have a preferred editor yet, I suggest you try each of them and see which one feels
most comfortable.

A.2 Setting up the Fortran compiler
There are several high-quality Fortran compilers available. Most are developed and
maintained by commercial vendors like Intel, Cray, and others. If you have access to
one of these, great! Feel free to use them as you work through this book. Of course,
for any compiler-specific settings or usage instructions, you’ll need to refer to your
compiler’s documentation.

 Otherwise, a free, open source Fortran compiler is available as part of the GNU
Compiler Collection (gcc). For examples and exercises in this book, we’ll use the
GNU Fortran Compiler (gfortran, https://gcc.gnu.org/fortran). In comparison to
other compilers, here are the pros of gfortran:

■ Free to download, use, and modify
■ Easy to install on most operating systems
■ Actively developed
■ Implements most standard features, including some from the latest Fortran

2018 Standard

During the writing of this book, more open source compilers have emerged and have
still been in active development. In particular, keep an eye out for LFortran (https://
lfortran.org) and Flang (https://github.com/flang-compiler/flang).

Fortran source file extensions
Although the Fortran Standard doesn’t impose a constraint on what the Fortran
source file extension should be, compiler vendors have adopted an almost-general
set of rules:

■ File names with the suffix .f, .for, or .ftn are interpreted as fixed-form (FORTRAN
77 and older) code.

■ File names with the suffix .f90, .f95, .f03, or .f08 are interpreted as free-form.
■ File names with an uppercase suffix (like .F, or .F90) indicate to the compiler

that the files should be preprocessed.

All code that we’ll write in this book is free-form. Free-form simply refers to a more
liberal syntax that was introduced with the Fortran 90 standard. Since all compilers
that I know of support .f90 as the universal suffix for free-form code (for example, the
Intel compiler by default doesn’t support .f95, .f03, or .f08), we’ll use this extension
throughout the book.

https://gcc.gnu.org/fortran
https://lfortran.org
https://lfortran.org
https://github.com/flang-compiler/flang
https://gcc.gnu.org/fortran

357Setting up the Fortran compiler
Linux

On most Linux systems, gfortran is easily installed using the system package manager,
without going to an external resource. On DEB-based systems like Debian or Ubuntu,
installing gfortran is as easy as

apt install gfortran

This command resolves the download and install steps for you, and gfortran will be
available as soon as the command finishes.

 On RPM-based systems like Fedora or Centos, you can install gfortran like this:

dnf install gcc-gfortran

Alternatively, if gfortran is not available through your system’s package manager, you
can download binaries from https://gcc.gnu.org/wiki/GFortranBinaries.

macOS

For macOS, I recommend that you use the homebrew package manager (https://
brew.sh). Once you have homebrew set up on your system, installing the Fortran com-
piler is as simple as

brew install gcc

This command will install the base GNU Compiler Collection along with the Fortran
compiler.

Windows

The easiest way to set up the development environment in Windows is through the
Windows Subsystem for Linux. This is an Ubuntu Linux instance that runs natively in
your Windows 10 operating system. If your Windows 10 is up to date, you can get the
Ubuntu Linux system from the Windows App Store. Once you have it up and running,
installing the Fortran compiler is easy:

apt install gfortran

Otherwise, some people have had success developing Fortran on Windows using Cyg-
win (https://www.cygwin.com).

Permissions
You’ll need administrator (root) permissions to install the compiler using the package
manager. If you know what you’re doing and your username is already on the sudoers
list, just prepend sudo to the Linux install commands I’ve provided and you’re good
to go.

https://gcc.gnu.org/wiki/GFortranBinaries
https://brew.sh
https://brew.sh
https://www.cygwin.com

358 APPENDIX A Setting up the Fortran development environment
A.3 Setting up the MPI library (Message Passing Interface)
In chapter 1, I used an example of data copy between processors to demonstrate the
use of MPI for parallel programming. Although in this book we’ll focus exclusively on
Coarray Fortran (CAF) for parallel algorithms, we still need to install the MPI library,
as it’s used as a dependency for coarrays when using the GNU compiler (see the “Set-
ting up OpenCoarrays” section).

 I recommend either OpenMPI (https://www.open-mpi.org) or MPICH (https://
www.mpich.org) as popular, high-quality, and easy-to-use MPI implementations. They’re
available to install from Linux package managers. For example, if you use Ubuntu or
another Debian-based distro, you can install OpenMPI with this command:

apt install openmpi-bin libopenmpi-dev

On an RPM-based distro like Fedora or Centos, type

dnf install openmpi openmpi-devel

Once installed, the MPI library provides an executable wrapper around the compiler.
If installed correctly, you can verify this by typing mpif90 at the command prompt:

mpif90
gfortran: fatal error: no input files
compilation terminated.

Don’t worry about this error message. It simply means that mpif90 correctly invoked
gfortran under the hood, and that we didn’t pass any source files to it.

A.4 Setting up OpenCoarrays
OpenCoarrays (http://www.opencoarrays.org) provides the interface between the
GNU Fortran compiler and the underlying parallel implementation; in our case, MPI.
You don’t need to know much more than this. Think of it as an extension to gfortran
that will allow you to build and run parallel programs using coarrays.

 If you already have access to a compute platform with Intel or Cray compiler suites
installed, you won’t need OpenCoarrays and can skip to the next section.

Linux

Get the OpenCoarrays release directly from its GitHub repository:

git clone --branch 2.9.0 https://github.com/sourceryinstitute/OpenCoarrays

The simplest way to get up and running with OpenCoarrays is to build it from source.
Given that we already have gfortran and OpenMPI built, compiling OpenCoarrays is
relatively straightforward:

cd OpenCoarrays
mkdir build
cd build

https://www.open-mpi.org
https://www.mpich.org
https://www.mpich.org
http://www.opencoarrays.org

359Setting up OpenCoarrays
FC=gfortran CC=gcc cmake ..
make
make install

You’ll also need CMake (https://cmake.org) to build OpenCoarrays, as well as root
privileges to do a make install on your system.

 The latest release of OpenCoarrays is 2.9.0 as of this writing. However, keep an eye on
their Releases page (http://mng.bz/eQBG) and download a later version if available.

macOS

Installing OpenCoarrays on macOS is straightforward using brew:

brew install opencoarrays

Using OpenCoarrays

OpenCoarrays provide two executables:

■ caf—A wrapper script for compiling Coarray Fortran programs
■ cafrun—A wrapper script for running Coarray Fortran programs

When compiling CAF programs, we’ll use caf as the drop-in replacement for our com-
piler; for example

caf array_copy_caf.f90 -o array_copy_caf

To run the CAF program, you’ll invoke it using the cafrun script:

cafrun -n 2 array_copy_caf

This command invokes the array_copy_caf program on two parallel processes. If two
physical processors are available in the computer, both will be used. Otherwise, cafrun
will spawn two parallel threads running on the same processor. These details won’t
impact the semantics of the program.

Why do we need OpenCoarrays?
Gfortran fully supports the Fortran Coarray syntax of the 2008 Standard. However, on
its own, gfortran doesn’t yet have a built-in mechanism for parallel computing with
coarrays. This means that with plain gfortran, you can compile coarray programs but
run them using only a single image (serial) mode. Although this can be useful for early
development and testing, we need to be able to run our programs on multiple images
in parallel. This is where OpenCoarrays come in.

Note that you only need OpenCoarrays if you work with gfortran. If you’re on a system
that has the Intel or Cray compiler suite set up, you’re good to go with building Coar-
ray Fortran code.

https://cmake.org
http://mng.bz/eQBG

360 APPENDIX A Setting up the Fortran development environment
A.5 Building a Docker image
If you’re familiar with Docker and want to skip all this tedious setup and jump right
into action, download the Dockerfile from http://mng.bz/pBZR.

 To build the modern Fortran image, type

docker build . -t modern-fortran:latest

This step will take a while as Docker pulls the base OS image and sets up the image
with the compiler, dependencies, and Fortran code from this book.

 Once done, if the build is successful, you’ll be able to see your new image; for
example

docker images
REPOSITORY TAG IMAGE ID CREATED

SIZE
modern-fortran latest 0e5c745c8928 6 minutes ago

546MB

To run it, type

docker run -it modern-fortran:latest /bin/bash

and you’re off to the races!

http://mng.bz/pBZR

appendix B
From calculus to code

I’ll take some time here to explain how exactly we go from a partial differential
equation to actual Fortran code that will calculate the solution. This appendix gives
a foundation for discretizing partial derivatives and casting them into computer code.

B.1 The advection equation explained
Recall that our goal for chapter 2 is to write a program that will predict the move-
ment of an object due to steady background flow. The result of the program should
be consistent with our sketch in figure 2.2. In the cold front exercise in section 2.2.2,
I asked you to calculate the temperature gradient across the front and how fast the
temperature in Miami would drop given the propagation speed of the front. When
you did the exercise, you may not have realized that you solved the linear advection
equation (figure B.1).

This equation states that the rate of change of u in time equals the advective speed
c times the spatial gradient of u.

 and are the so-called partial derivatives, and they express the change of u

in time and space, respectively. If you replace u with temperature, this becomes
equivalent to our earlier example of a cold front approaching Miami: the rate of
temperature decrease in Miami equals the temperature gradient across the front

Change of
u in time

Change of
u in spaceVelocity Figure B.1 The linear 1-D advection equation. u is

the advected quantity in space x and time t, and c is
the constant advective velocity. u can stand for any
quantity, including temperature, concentration of a
pollutant, or velocity itself.

∂u
∂t

∂u
∂x

361

362 APPENDIX B From calculus to code
times the propagation speed of the front. A front with a sharper temperature gradi-
ent, or higher propagation speed, will make the temperature drop faster. If we can
express this calculation in code, it will work for any quantity.

B.1.1 Discretizing the derivatives

Today’s computers can’t do calculus. In fact, on the CPU level, they don’t do much
more than add and multiply numbers, and move bits and bytes around in memory.
Even simple arithmetic operations like subtraction and division are derived from addi-
tion and multiplication. How can we solve partial differentials if we have only basic
arithmetic? One way is to approximate the partial derivatives with a form that can be
expressed with code. This is typically done by discretizing the partial derivatives, which
expresses them as arithmetic expressions of discrete values.

In the cold front exercise, when you calculated the temperature gradient across the
front, you used a so-called finite difference approach to approximate a derivative. You
probably thought something along the lines of this: “temperature gradient equals
temperature in Miami minus temperature in Atlanta, divided by the distance between
Miami and Atlanta.” More generally, this approach can be illustrated as shown in fig-
ure B.2.

 Take any continuous function u; for example, air temperature in Miami or the
height of our blob. This function varies in time and is shown as the solid curve. At
the current time (time step n), we know the value of u. What we don’t know, and are
trying to calculate, is the value of u at a future time (time step n + 1). The finite differ-
ence approach simplifies the continuous function (curve) with a discrete approxima-
tion (straight line). I use the word discrete because the line can be determined by the
start and end points, which can be represented in computer code.

 To draw a connection to our cold front example, here the slope of the red line cor-
responds to the temperature gradient times the propagation speed. The higher the
speed or the gradient, the steeper the straight line would be. The same approach
applies to partial derivatives of any quantity, in space or time. We’ll use this rule to cast
all terms in the equation as discrete variables.

 Now that we know this general rule of discretizing partial derivatives, we can apply
it to each derivative in the advection equation (figure B.3).

What the heck is discretization?
Wikipedia defines discretization as “the process of transferring continuous functions,
models, variables, and equations into discrete counterparts. This process is usually
carried out as a first step toward making them suitable for numerical evaluation and
implementation on digital computers.”

In simpler words, it’s a way to translate a continuous function (such as the one in
figure B.1) into numbers that a computer can take in and crunch.

363The advection equation explained
Here, we discretize each derivative (time and space) with finite differences. First, we
state that the rate of change of u in time (tendency) can be approximated as the differ-
ence of u in time divided by the time step (Δu/Δt). In a similar way, the rate of change
of u in space (gradient) can be approximated as the difference of u in space divided by
the grid spacing (Δu/Δx). On the far right side of each equation, we have the finite
difference forms of both the time and space derivatives of u. By convention, super-
scripts n and n + 1 refer to current and future time steps, respectively. Subscript i
refers to the position on the spatial grid, which will map to our Fortran array ele-
ments in the code.

Value of atu

time step N

(known)

Finite difference of in timeu

u
 (

T
)

Time

N + 1

N + 1N

N

Continuous
function

Value of atu

time step +N 1
(unknown)

Discrete
approximation

Figure B.2 A finite difference of u in time. The time derivative of a continuous
function u(t) is approximated as the difference between values of u at time steps n+1
and n, divided by the time interval between the two points.

Change of
u in time

Change of
u in space

Finite difference
in time

Finite difference
in space

Figure B.3 Approximating partial derivatives in the
advection equation with finite differences. The top
equation approximates the change of u in time
(tendency), and the bottom equation approximates
the change of u in space (gradient). All terms on the
far right side can be represented with variables in a
computer program. Discrete time and space indices
are shown as n and i, respectively.

364 APPENDIX B From calculus to code
B.1.2 Casting the derivatives into code

Now that we have all our terms written in discrete form, how do we write the code to
solve for u at the next time step, u(i,n+1)? Try to reorder the discrete terms we’ve
written so that u(i,n+1) is on the left side and all other terms are on the right side.
Can you express this as code? Figure B.4 illustrates my attempt.

To me, this is the easiest way to read this equation:

1 Take the difference in space, u(i,n) - u(i-1,n). Analogous to the cold front
exercise in chapter 2, this is equivalent to asking, “What’s the temperature dif-
ference between Miami and Atlanta?”

2 Divide the difference by the grid spacing dx. This gives us the gradient (u(i,n)
- u(i-1,n)) / dx; that is, the rate of change in space.

3 Multiply the gradient by the propagation speed c. This gives us the tendency c *
(u(i,n) - u(i-1,n)) / dx; that is, the rate of change in time.

4 Finally, we multiply the tendency by the time step and add it to the current
value.

The order of differencing
Notice that in time we’re doing a forward difference (ui

n+1 – ui
n), whereas in space

we’re doing a backward (upstream) difference (ui
n – un

i–1). The forward difference in
time is the simplest pattern for estimating a value at the next time step (ui

n+1), which
is the value we seek. The differencing in space is oriented upstream relative to the
flow velocity c. If the velocity is positive, the flow is from left to right. Thus, to capture
the object coming in from the left, we need to take the difference in that direction. If
the object was moving from right to left (negative value of c), we’d need to switch the
differencing in space to un

i+1 – ui
n.

Current
value

Predicted
value

Time
step

Difference
in space

Advective
velocity

Grid
spacing

u(i,n+1) = u(i,n) - c * (u(i,n) - u(i-1,n)) / dx * dt

Figure B.4 A code prototype for our advection solver. To calculate the
predicted value u(i,n+1), we take the difference in space u(i,n)-
u(i-1,n), divide it by grid spacing dx, multiply by the advective velocity
c and time step dt, and, finally, subtract from the current value u(i,n).

365The advection equation explained
Keeping only the present time level in memory
For clarity, I wrote u as a two-dimensional array with dimensions in space (indexed
with i) and time (indexed with n). In practice, however, it’s memory-consuming to
keep all time levels stored in the array, especially when we want to do very long sim-
ulations. A simple hack around this is to hold only the present time step in memory,
and overwrite the value with the following time step when we compute it. To do so,
we can take a two-step approach:

1 Calculate the difference u(i) - u(i-1) for all elements, and store it into an
array; say, du.

2 Calculate the new value using the difference from step 1: u(i) = u(i) - c *
du(i) / dx * dt, for all elements.

This way, we don’t keep every time level in memory, but only the most recent one. This
is a common practice in numerical modeling that helps keep a low memory footprint.

appendix C
Concluding remarks

This appendix provides a recap and complete code of the tsunami simulator. It also
offers ideas on where to go from here, as well as tips for learning more about Fortran.

C.1 Tsunami simulator: The complete code
For closure and as a refresher, let’s review the complete tsunami code that we devel-
oped together while working through this book:

■ In chapter 2, we implemented our first working program, which simply
moved the prescribed wave, without changing its shape.

■ In chapter 3, we refactored our program from chapter 2 to use a function for
finite difference calculation, and a subroutine to initialize the wave shape.

■ In chapter 4, we refactored our program from chapter 3 to define the proce-
dures inside of a module. Meanwhile, we used this opportunity to add a few
more physics terms to the simulator, which allowed the wave to propagate
and evolve more realistically.

■ In chapter 7, we used coarrays to parallelize the simulator from chapter 4.
This made our program capable of running considerably faster if run on
multiple CPUs.

■ In chapter 8, we defined the arrays that represented the state of our simula-
tion—water height and velocity—inside a derived type, which allowed us to
abstract away low-level boilerplate code. We used this opportunity to also
expand the simulator from a 1-D solution to a 2-D solution.

■ In chapter 10, we implemented the arithmetic operators for the derived type
from chapter 8, which allowed us to work with our derived type instances just
like we would with regular arrays.

■ Finally, in chapter 12, we experimented with cutting-edge parallel features
like teams, events, and collectives. For brevity, I’m excluding the addition of
366

367Tsunami simulator: The complete code
teams and events for logging, as that served mainly as a proof of concept and
doesn’t substantially change the essence of the calculation.

What follows is the final state of our simulator. It consists of a total of five source files:

■ tsunami.f90—The main program that simulates the wave
■ mod_field.f90—The module that defines the Field derived type, the key data

structure that the simulator uses
■ mod_diff.f90—The module that defines finite difference functions, imported

and used in mod_field.f90
■ mod_io.f90—The module that defines the subroutine to write data into a binary

file, used in mod_field.f90
■ mod_parallel.f90—The module that defines utilities for parallel execution

I’ll go over each source file in the following subsections. This time around, the anno-
tations in the code describe what the program does on a high level—they don’t go
into the nitty-gritty detail as before. Feel free to refer back to specific chapters if you
need a refresher on how any of the Fortran code here works.

C.1.1 Main program: tsunami.f90

The tsunami.f90 file contains our main program and is shown in the following listing.

program tsunami

use iso_fortran_env, only: int32, real32
use mod_field, only: Field, diffx, diffy

implicit none

integer(int32) :: n

integer(int32), parameter :: im = 201, jm = 201
integer(int32), parameter :: num_time_steps = 1000
real(real32), parameter :: dt = 0.02
real(real32), parameter :: dx = 1, dy = 1
real(real32), parameter :: g = 9.8

integer(int32), parameter :: ic = im / 2 + 1
integer(int32), parameter :: jc = jm / 2 + 1
real(real32), parameter :: decay = 0.02

type(Field) :: h, hm, u, v

real(real32) :: hmin, hmax, hmean

u = Field('u', [im, jm])
v = Field('v', [im, jm])
h = Field('h', [im, jm])
hm = Field('h_mean', [im, jm])

Listing C.1 tsunami.f90, the main program of the tsunami simulator

Imports the Field derived
type and finite difference
functions

Parameters that
describe the grid size
and spacing, time steps,
and gravitational
acceleration

Parameters that describe
the initial position and
steepness of the wave

Creates the main data
structures that represent
the water height and
velocity fields

368 APPENDIX C Concluding remarks
call h % init_gaussian(decay, ic, jc)

hm = 10.

call h % write(0)

time_loop: do n = 1, num_time_steps

u = u - (u * diffx(u) / dx + v * diffy(u) / dy &
+ g * diffx(h) / dx) * dt

v = v - (u * diffx(v) / dx + v * diffy(v) / dy &
+ g * diffy(h) / dy) * dt

h = h - (diffx(u * (hm + h)) / dx &
+ diffy(v * (hm + h)) / dy) * dt

hmin = minval(h % data)
call co_min(hmin, 1)

hmax = maxval(h % data)
call co_max(hmax, 1)

hmean = sum(h % data(h % lb(1):h % ub(1), &
h % lb(2):h % ub(2))) &

/ size(h % data(h % lb(1):h % ub(1), &
h % lb(2):h % ub(2)))

call co_sum(hmean, 1)
hmean = hmean / num_images()

if (this_image() == 1) &
print '(a, i5, 3(f10.6))', &

'step, min(h), max(h), mean(h):', &
n, hmin, hmax, hmean

call h % write(n)

end do time_loop

end program tsunami

In summary, this program does the following:

1 Imports the derived type and functions that we’ll use
2 Declares and initializes simulation parameters
3 Creates and initializes the data structures that represent the water height and

velocity fields
4 Iterates for a set number of time steps
5 In each iteration, computes the water height and velocity values for the next

time step
6 In each iteration, gathers some statistics about water height and writes the whole

field into a binary file

Sets the water height values to
the initial, perturbed state

Writes the initial
(time step 0) water
height data to a file

Iterates for a set
number of time steps

Computes, updates,
and synchronizes water
velocity components
and water height

Computes global
minimum of water height

Computes global
maximum of water height

Computes
global average
of water height

Prints the current time step
number and water height
statistics to the terminal

Writes the current state
of the water height into
a binary file

369Tsunami simulator: The complete code
Perhaps the most compelling feature of this program, which was also one of our
design goals from the start, is that the program can run correctly in serial or parallel
mode without any changes. This is accomplished by defining the low-level code that
deals with parallel execution inside the modules on which this program depends. The
key data structure we work with is the Field derived type, defined in mod_field.f90.
Let’s see how this derived type is defined.

C.1.2 The Field module: mod_field.f90

The mod_field.f90 module is perhaps the most important, and the heaviest, source
file of the tsunami simulator. It defines the main data structure that we use in the
main program to carry out the simulation, as well as the low-level boilerplate code
needed for the high-level code in the main program to be clean and elegant. The
complete module is shown in the following listing.

module mod_field

use iso_fortran_env, only: int32, real32
use mod_diff, only: diffx_real => diffx, diffy_real => diffy
use mod_io, only: write_field
use mod_parallel, only: tile_indices, tile_neighbors_2d

implicit none

private
public :: Field, diffx, diffy

type :: Field

character(:), allocatable :: name
integer(int32) :: lb(2), ub(2)
integer(int32) :: dims(2)
integer(int32) :: neighbors(4)
integer(int32) :: edge_size
real(real32), allocatable :: data(:,:)

contains

procedure, private, pass(self) :: assign_field, assign_real_scalar
procedure, private, pass(self) :: field_add_field, field_add_real
procedure, private, pass(self) :: field_sub_field, field_sub_real
procedure, private, pass(self) :: field_mul_array, field_mul_real, &

field_mul_field
procedure, private, pass(self) :: field_div_real
procedure, public, pass(self) :: gather
procedure, public, pass(self) :: init_gaussian
procedure, public, pass(self) :: sync_edges
procedure, public, pass(self) :: write

generic :: assignment(=) => assign_field, assign_real_scalar
generic :: operator(+) => field_add_field, field_add_real

Listing C.2 mod_field.f90, the module that defines the Field derived type

Opens the type
definition block, with
attributes that follow

Type-bound methods
and operators defined
in this section

370 APPENDIX C Concluding remarks
generic :: operator(-) => field_sub_field, field_sub_real
generic :: operator(*) => field_mul_array, field_mul_real, &

field_mul_field
generic :: operator(/) => field_div_real

end type Field

interface Field
module procedure :: field_constructor

end interface Field

contains

type(Field) function field_constructor(name, dims) result(self)
character(*), intent(in) :: name
integer(int32), intent(in) :: dims(2)
integer(int32) :: edge_size, indices(4)
self % name = name
self % dims = dims
indices = tile_indices(dims)
self % lb = indices([1, 3])
self % ub = indices([2, 4])
allocate(self % data(self % lb(1)-1:self % ub(1)+1,&

self % lb(2)-1:self % ub(2)+1))
self % data = 0
self % neighbors = tile_neighbors_2d(periodic=.true.)
self % edge_size = max(self % ub(1)-self % lb(1)+1,&

self % ub(2)-self % lb(2)+1)
call co_max(self % edge_size)

end function field_constructor

subroutine assign_field(self, f)
class(Field), intent(in out) :: self
class(Field), intent(in) :: f
call from_field(self, f)
call self % sync_edges()

end subroutine assign_field

pure subroutine assign_real_scalar(self, a)
class(Field), intent(in out) :: self
real(real32), intent(in) :: a
self % data = a

end subroutine assign_real_scalar

pure function diffx(input_field)
class(Field), intent(in) :: input_field
real(real32), allocatable :: diffx(:,:)
diffx = diffx_real(input_field % data)

end function diffx

pure function diffy(input_field)
class(Field), intent(in) :: input_field
real(real32), allocatable :: diffy(:,:)
diffy = diffy_real(input_field % data)

end function diffy

Custom procedure to use when
creating an instance of the type,
instead of the default type constructor

Methods that
define the custom
assignment (=)
for the Field

Thin wrappers
around the diffx
and diffy functions
from mod_diff.f90

371Tsunami simulator: The complete code
pure subroutine from_field(target, source)
type(Field), intent(in out) :: target
type(Field), intent(in) :: source
target % name = source % name
target % lb = source % lb
target % ub = source % ub
target % dims = source % dims
target % neighbors = source % neighbors
target % edge_size = source % edge_size
target % data = source % data

end subroutine from_field

function gather(self, image)
class(Field), intent(in) :: self
integer(int32), intent(in) :: image
real(real32), allocatable :: gather_coarray(:,:)[:]
real(real32) :: gather(self % dims(1), self % dims(2))
allocate(gather_coarray(self % dims(1), self % dims(2))[*])
associate(is => self % lb(1), ie => self % ub(1),&

js => self % lb(2), je => self % ub(2))
gather_coarray(is:ie, js:je)[image] = self % data(is:ie, js:je)
sync all
if (this_image() == image) gather = gather_coarray

end associate
deallocate(gather_coarray)

end function gather

subroutine init_gaussian(self, decay, ic, jc)
class(Field), intent(in out) :: self
real(real32), intent(in) :: decay
integer(int32), intent(in) :: ic, jc
integer(int32) :: i, j
do concurrent(i = self % lb(1):self % ub(1),&

j = self % lb(2):self % ub(2))
self % data(i, j) = exp(-decay * ((i - ic)**2 + (j - jc)**2))

end do
call self % sync_edges()

end subroutine init_gaussian

pure type(Field) &
function field_add_field(self, f) result(res)
class(Field), intent(in) :: self, f
call from_field(res, self)
res % data = self % data + f % data

end function field_add_field

pure type(Field) &
function field_add_real(self, x) result(res)
class(Field), intent(in) :: self
real(real32), intent(in) :: x(:,:)
call from_field(res, self)
res % data = self % data + x

end function field_add_real

Gathers the distributed (parallel)
data to a single image, used
before writing into a file

Sets the initial values
of water height to a
bell shape

Methods that define
the arithmetic
operators for the
Field type

372 APPENDIX C Concluding remarks
pure type(Field) &
function field_div_real(self, x) result(res)
class(Field), intent(in) :: self
real(real32), intent(in) :: x
call from_field(res, self)
res % data = self % data / x

end function field_div_real

pure type(Field) &
function field_mul_array(self, x) result(res)
class(Field), intent(in) :: self
real(real32), intent(in) :: x(:,:)
call from_field(res, self)
res % data = self % data * x

end function field_mul_array

pure type(Field) &
function field_mul_real(self, x) result(res)
class(Field), intent(in) :: self
real(real32), intent(in) :: x
call from_field(res, self)
res % data = self % data * x

end function field_mul_real

pure type(Field) &
function field_mul_field(self, f) result(res)
class(Field), intent(in) :: self, f
call from_field(res, self)
res % data = self % data * f % data

end function field_mul_field

pure type(Field) &
function field_sub_real(self, x) result(res)
class(Field), intent(in) :: self
real(real32), intent(in) :: x(:,:)
call from_field(res, self)
res % data = self % data - x

end function field_sub_real

pure type(Field) &
function field_sub_field(self, f) result(res)
class(Field), intent(in) :: self, f
call from_field(res, self)
res % data = self % data - f % data

end function field_sub_field

subroutine sync_edges(self)
class(Field), intent(in out) :: self
real(real32), allocatable, save :: edge(:,:)[:]

associate(is => self % lb(1), ie => self % ub(1),&
js => self % lb(2), je => self % ub(2),&
neighbors => self % neighbors)

Methods that define
the arithmetic
operators for the
Field type

Synchronizes the array
edges on each image with
its parallel neighbors

373Tsunami simulator: The complete code
if (.not. allocated(edge)) &
allocate(edge(self % edge_size, 4)[*])

sync images(set(neighbors))

edge(1:je-js+1,1)[neighbors(1)] = self % data(is,js:je)
edge(1:je-js+1,2)[neighbors(2)] = self % data(ie,js:je)
edge(1:ie-is+1,3)[neighbors(3)] = self % data(is:ie,js)
edge(1:ie-is+1,4)[neighbors(4)] = self % data(is:ie,je)

sync images(set(neighbors))

self % data(is-1,js:je) = edge(1:je-js+1,2)
self % data(ie+1,js:je) = edge(1:je-js+1,1)
self % data(is:ie,js-1) = edge(1:ie-is+1,4)
self % data(is:ie,je+1) = edge(1:ie-is+1,3)

end associate

end subroutine sync_edges

subroutine write(self, n)
class(Field), intent(in) :: self
integer(int32), intent(in) :: n
real(real32), allocatable :: gather(:,:)
gather = self % gather(1)
if (this_image() == 1) call write_field(gather, self % name, n)

end subroutine write

pure recursive function set(a) result(res)
integer, intent(in) :: a(:)
integer, allocatable :: res(:)
if (size(a) > 1) then

res = [a(1), set(pack(a(2:), .not. a(2:) == a(1)))]
else

res = a
end if

end function set

end module mod_field

The majority of the code in this module serves to define the Field derived type and its
methods. The most important methods are the ones that allow the built-in arithmetic
operators +, -, *, and / to work with instances of this derived type. These are the meth-
ods that are called field_add_field, field_add_real, field_sub_field, and so on.
Another important one is the sync_edges method, which helps us automatically syn-
chronize the data on each image with its neighbor images on every assignment.
Finally, we compute the gradients of our physical quantities—water height and veloc-
ity—using the diffx and diffy functions, defined in mod_diff.f90. Let’s see what they
look like.

Gathers the data to a
single image and writes
it to a binary file

Internal function to return
unique elements of an array,
used in sync_edges

374 APPENDIX C Concluding remarks

s
in

the
arr
THE FINITE DIFFERENCE MODULE: mod_diff.f90
The mod_diff.f90 module defines the finite difference functions diffx and diffy.
The results of these functions tell us how much the water height and velocity vary in
space—that is, how rapidly they change. For a quick refresher on gradients and finite
differences, take a look at appendix B. The module is shown in the following listing.

module mod_diff

use iso_fortran_env, only: int32, real32
implicit none

private
public :: diffx, diffy

contains

pure function diffx(x) result(dx)
real(real32), intent(in) :: x(:,:)
real(real32) :: dx(size(x, dim=1), size(x, dim=2))
integer(int32) :: i, im
im = size(x, dim=1)
dx = 0
dx(2:im-1,:) = 0.5 * (x(3:im,:) - x(1:im-2,:))

end function diffx

pure function diffy(x) result(dx)
real(real32), intent(in) :: x(:,:)
real(real32) :: dx(size(x, dim=1), size(x, dim=2))
integer(int32) :: j, jm
jm = size(x, dim=2)
dx = 0
dx(:,2:jm-1) = 0.5 * (x(:,3:jm) - x(:,1:jm-2))

end function diffy

end module mod_diff

diffx and diffy are rather similar. The former calculates the difference over the first
dimension of the 2-D real array, whereas the latter does so over the second. The gist of
these functions appeared as early as chapter 2; however, we wrote them in their final
form in chapter 8.

Listing C.3 mod_diff.f90, the module that defines the finite difference functions

Takes a 2-D real array
as input, and returns
a finite difference of it
in the x axis

Gets the
ize of the
put array

Initializes
 resulting
ay to zero

Calculates the finite
difference using whole-
array arithmetic

Takes a 2-D real array
as input, and returns a
finite difference of it in
the y axis

375Tsunami simulator: The complete code
C.1.3 The I/O module: mod_io.f90

The mod_io.f90 file contains a small module that exports one subroutine, write
_field, as shown in the following listing.

module mod_io

use iso_fortran_env, only: int32, real32

implicit none

private
public :: write_field

contains

subroutine write_field(field, fieldname, time)
real(real32), intent(in) :: field(:,:)
character(*), intent(in) :: fieldname
integer(int32), intent(in) :: time
integer(int32) :: fileunit, record_length
character(100) :: filename, timestr
write(timestr, '(i4.4)') time
filename = 'tsunami_' // fieldname // '_' &

// trim(timestr) // '.dat'
record_length = storage_size(field) / 8 * size(field)
open(newunit=fileunit, file=filename, &

access='direct', recl=record_length)
write(unit=fileunit, rec=1) field
close(fileunit)

end subroutine write_field

end module mod_io

Subroutine write_field writes a 2-D real array into a binary file. It takes three input
arguments:

■ field(:,:)—A real 2-D array with the data to be written into the file
■ fieldname—A character string that contains the name of the field
■ time—An integer time step number

fieldname and time are used to construct the name of the file to be written. Once the
file name is evaluated, the subroutine opens a new binary file with that name, writes
the field array into it, and closes the file.

 This subroutine is used from the type-bound method Field % write, defined in
mod_field.f90.

Listing C.4 mod_io.f90, the input/output module

A 2-D real array
containing the data
to write to the file A character string

with the name of
the field

An integer time
step number

Constructs
the file name

Opens a binary
file for writing

Writes field
into the file

Closes the file

376 APPENDIX C Concluding remarks
C.1.4 The parallel module: mod_parallel.f90

The mod_parallel.f90 module provides functions that are used for our parallel com-
putation needs, namely to evenly distribute the computational domain among parallel
images and to obtain the index of neighboring images. The complete module is
shown in the following listing.

module mod_parallel

use iso_fortran_env, only: int32, real32

implicit none

private
public :: num_tiles, tile_indices, &

tile_neighbors_1d, tile_neighbors_2d

interface tile_indices
module procedure :: tile_indices_1d, tile_indices_2d

end interface tile_indices

contains

pure function denominators(n)
integer(int32), intent(in) :: n
integer(int32), allocatable :: denominators(:)
integer(int32) :: i
denominators = [integer(int32) ::]
do i = 1, n

if (mod(n, i) == 0) denominators = [denominators, i]
end do

end function denominators

pure function num_tiles(n)
integer(int32), intent(in) :: n
integer(int32) :: num_tiles(2)
integer(int32), allocatable :: denoms(:)
integer(int32), allocatable :: dim1(:), dim2(:)
integer(int32) :: i, j, n1, n2

denoms = denominators(n)

dim1 = [integer(int32) ::]
dim2 = [integer(int32) ::]
do j = 1, size(denoms)

do i = 1, size(denoms)
if (denoms(i) * denoms(j) == n) then
dim1 = [dim1, denoms(i)]
dim2 = [dim2, denoms(j)]

end if
end do

end do

Listing C.5 mod_parallel.f90, the module that provides utilities for parallel computation

Returns denominators of
an integer number, used
internally in num_tiles

Returns the optimal
number of 2-D images,
given the total number
of images

377Tsunami simulator: The complete code
num_tiles = [dim1(1), dim2(1)]
do i = 2, size(dim1)

n1 = norm2([dim1(i), dim2(i)] - sqrt(real(n)))
n2 = norm2(num_tiles - sqrt(real(n)))
if (n1 < n2) num_tiles = [dim1(i), dim2(i)]

end do

end function num_tiles

pure function tile_indices_1d(dims, i, n) &
result(indices)
integer(int32), intent(in) :: dims, i, n
integer(int32) :: indices(2)
integer(int32) :: offset, tile_size

tile_size = dims / n

indices(1) = (i - 1) * tile_size + 1
indices(2) = indices(1) + tile_size - 1

offset = n - mod(dims, n)
if (i > offset) then

indices(1) = indices(1) + i - offset - 1
indices(2) = indices(2) + i - offset

end if

end function tile_indices_1d

pure function tile_indices_2d(dims) result(indices)
integer(int32), intent(in) :: dims(2)
integer(int32) :: indices(4)
integer(int32) :: tiles(2), tiles_ij(2)
tiles = num_tiles(num_images())
tiles_ij = tile_n2ij(this_image())
indices(1:2) = tile_indices_1d(dims(1), tiles_ij(1), tiles(1))
indices(3:4) = tile_indices_1d(dims(2), tiles_ij(2), tiles(2))

end function tile_indices_2d

pure function tile_neighbors_1d() result(neighbors)
integer(int32) :: neighbors(2)
integer(int32) :: left, right
if (num_images() > 1) then

left = this_image() - 1
right = this_image() + 1
if (this_image() == 1) then

left = num_images()
else if (this_image() == num_images()) then

right = 1
end if

else
left = 1
right = 1

end if
neighbors = [left, right]

end function tile_neighbors_1d

Returns the start and end indices
of a parallel image, in 1-D

As above,
but in 2-D

Returns the neighbor
indices for a 1-D
decomposition

378 APPENDIX C Concluding remarks
pure function tile_n2ij(n) result(ij)
integer(int32), intent(in) :: n
integer(int32) :: ij(2), i, j, tiles(2)
if (n == 0) then

ij = 0
else

tiles = num_tiles(num_images())
j = (n - 1) / tiles(1) + 1
i = n - (j - 1) * tiles(1)
ij = [i, j]

end if
end function tile_n2ij

pure function tile_ij2n(ij) result(n)
integer(int32), intent(in) :: ij(2)
integer(int32) :: n, tiles(2)
if (any(ij == 0)) then

n = 0
else

tiles = num_tiles(num_images())
n = (ij(2) - 1) * tiles(1) + ij(1)

end if
end function tile_ij2n

pure function tile_neighbors_2d(periodic) &
result(neighbors)
logical, intent(in) :: periodic
integer(int32) :: neighbors(4)
integer(int32) :: tiles(2), tiles_ij(2), itile, jtile
integer(int32) :: left, right, down, up
integer(int32) :: ij_left(2), ij_right(2), ij_down(2), ij_up(2)

tiles = num_tiles(num_images())
tiles_ij = tile_n2ij(this_image())
itile = tiles_ij(1)
jtile = tiles_ij(2)

ij_left = [itile - 1, jtile]
ij_right = [itile + 1, jtile]
ij_down = [itile, jtile - 1]
ij_up = [itile, jtile + 1]

if (periodic) then
if (ij_left(1) < 1) ij_left(1) = tiles(1)
if (ij_right(1) > tiles(1)) ij_right(1) = 1
if (ij_down(2) < 1) ij_down(2) = tiles(2)
if (ij_up(2) > tiles(2)) ij_up(2) = 1

else
if (ij_left(1) < 1) ij_left = 0
if (ij_right(1) > tiles(1)) ij_right = 0
if (ij_down(2) < 1) ij_down = 0
if (ij_up(2) > tiles(2)) ij_up = 0

end if

left = tile_ij2n(ij_left)
right = tile_ij2n(ij_right)

Converts from a 1-D
index n to a 2-D
index pair (i,j)

Converts from a 2-D
index pair (i,j) to a
1-D index n, used
internally

Returns the neighbor indices
for a 2-D decomposition

379Online resources
down = tile_ij2n(ij_down)
up = tile_ij2n(ij_up)

neighbors = [left, right, down, up]

end function tile_neighbors_2d

end module mod_parallel

Much of this code was developed in chapter 7 in support of our parallelization effort
for the 1-D tsunami simulator. The rest of it was developed in chapter 8, when we tran-
sitioned to a 2-D implementation of the simulator. For brevity, not all code could be
covered there, so at the time I pointed you to the GitHub repository instead.

 This completes the tsunami simulator project. It’s been a long journey, but we’ve
made it. I hope that you can use parts or all of this project in your current or future
projects.

C.2 Going forward with the tsunami simulator
While the tsunami simulator we developed is quite capable as is, it’s also minimal in
terms of features. Here are some open challenges that you can take on to further
hone your Fortran programming skills:

■ Enable simulation parameters—grid size and spacing, number of time steps, or
initial shape of the wave—as command-line arguments.

■ Enable nonuniform bathymetry (shape of the bottom), and, even better, imple-
ment real-world bathymetry from external data sources.

■ Add other physics terms, such as wind stress or bottom friction. (This will take
both Fortran programming and independent research skills.)

■ Implement writing output fields to self-described NetCDF files using the netcdf-
fortran library (https://github.com/Unidata/netcdf-fortran).

C.3 Neural networks and deep learning
Did you know that I rewrote chapter 8 on derived types from scratch? The first draft of
the chapter was a bit too busy and got too long, so my editors axed it. However, a For-
tran library for neural networks and deep learning came out of it. It’s called neural-
fortran, and you can find it at https://github.com/modern-fortran/neural-fortran. I
even wrote a paper about it—refer back to “Further reading.” Study this library if you’re
interested in how parallel neural networks can be implemented in modern Fortran.

C.4 Online resources
■ The home of the Fortran language and its community-developed standard

library and package manager: https://fortran-lang.org.
■ GFortran online documentation: https://gcc.gnu.org/onlinedocs/gfortran.
■ A community-curated Wiki with tutorials, code samples, libraries, and more:

http://fortranwiki.org.

https://github.com/Unidata/netcdf-fortran
https://github.com/modern-fortran/neural-fortran
https://fortran-lang.org
https://gcc.gnu.org/onlinedocs/gfortran
http://fortranwiki.org

380 APPENDIX C Concluding remarks
■ A comprehensive online resource of modern Fortran best practices: https://
www.fortran90.org.

■ Awesome Fortran, a curated list of Fortran libraries: https://github.com/rab-
biabram/awesome-fortran.

■ Doctor Fortran, a blog by Steve Lionel: https://stevelionel.com/drfortran. (Steve
is a retired senior engineer from Intel who offers insight from the perspective
of compiler developers and the Fortran Standard Committee.)

■ Degenerate Conic, a blog by Jacob Williams on algorithms, modern Fortran
programming, and orbital mechanics: https://degenerateconic.com.

■ Bob Apthorpe on modernizing a legacy FORTRAN project: http://mng.bz/QywR.
■ Last but not least, the companion blog to this book: https://medium.com/

modern-fortran.

C.5 Compilers
■ The GNU Fortran compiler: https://gcc.gnu.org/fortran—A must-have for

any Fortran developer. Can be installed by the package manager of most oper-
ating systems.

■ The interactive LFortran compiler based on LLVM: https://lfortran.org.
■ Flang, another open source compiler based on LLVM: https://github.com/flang-

compiler/flang.
■ The Intel Fortran compiler and performance libraries: https://software.intel

.com/en-us/fortran-compilers. Although a commercial compiler, you can get a
free license for noncommercial use if you’re a student, teacher, or an open
source contributor.

C.6 Books
So you want to learn more, and you like books. Where to go from here?

■ Modern Fortran Explained: Incorporating Fortran 2018, by Michael Metcalf, John
Reid, and Malcolm Cohen, Oxford University Press, 2018. Considered the For-
tran “bible” by many Fortran programmers, including myself. Although quite
dry, it’s the most comprehensive and complete reference material on the latest
edition of Fortran.

■ Modern Fortran in Practice, by Arjen Markus, Cambridge University Press, 2012. A
practical and hands-on book with a variety of fun exercises. This is my top rec-
ommendation if you liked this book.

■ Parallel Programming with Co-arrays, by Robert W. Numrich, Chapman and
Hall/CRC, 2018. This book provides a narrow focus on parallel algorithms
with coarrays.

■ Parallel and High Performance Computing, by Robert Robey and Yuliana Zamora,
Manning Publications, 2021. Not focused on Fortran, but essential if you’re
serious about high-performance computing and parallel scalability.

https://software.intel.com/en-us/fortran-compilers
https://software.intel.com/en-us/fortran-compilers
https://software.intel.com/en-us/fortran-compilers
https://gcc.gnu.org/fortran
https://lfortran.org
https://github.com/flang-compiler/flang
https://github.com/flang-compiler/flang
https://www.fortran90.org
https://www.fortran90.org
https://github.com/rabbiabram/awesome-fortran
https://github.com/rabbiabram/awesome-fortran
https://stevelionel.com/drfortran
https://degenerateconic.com
http://mng.bz/QywR
https://medium.com/modern-fortran
https://medium.com/modern-fortran

index
Symbols

- (subtraction) 257
- operator 44, 373
. (dot operator) 212
* operator 44, 373
** (exponentiation) 257
** operator 44
/ (division) operator 257
// operator 259
 operator 104–105, 108
+ (addition) operator 257, 260,

373
= (assignment operator) 255

A

abs function 278, 290
access operator % 212
action keyword parameter 163
actual arguments 69
add subroutine 72–73
addition (+) operator 257, 260,

373
addr argument 302
advantages of Fortran 10–12
advection equation 361–365

casting derivatives into
code 364–365

discretizing derivatives
362–364

age parameter 223
all function 140–141
alloc subroutine 127, 139
allocatable arrays 40, 116,

125

allocatable attribute 116, 141
allocate statement 40, 123–124,

126, 141
allocation on assignment 123
append value 163
arithmetic operators 255
array constructor 119
array_copy_caf program 359
arrays

analyzing stock prices
with 111–114

about the data 112–113
allocating array from

another array 123
allocating arrays of

certain size or range
122–123

array constructors
118–121

automatic allocation on
assignment 123–124

calculating moving average
and standard deviation
140–141

catching allocation and
deallocation errors
126–127

checking for allocation
status 126

cleaning up after use
124–125

convenience (de)allocator
subroutines 139–140

declaring arrays 116–118
finding good times to buy

and sell 135–138

getting data and code
114

identifying risky stocks
132–135

implementing CSV reader
subroutine 127–129

indexing and slicing
arrays 129–132

objectives for this
exercise 111

reading stock data from
files 121–122

reversing arrays 140
copying from one processor to

another 17–22
coarrays 20–22
MPI (Message Passing

Interface) 18–20
declaring in minimal working

app 38–40
elemental function that oper-

ate on both scalars
and 83

asis value 163
assignment operator (=) 255
assumed-length character

string 121
assumed-size arrays 307
Atom IDE 355
average function 242, 245,

248–250, 254
average_int function 244, 261
average_logical function 245,

261
average_real function 244, 250,

261
381

INDEX382
B

backlog argument 311
bind attribute 323
BLAS (Basic Linear Algebra

Subprograms) 70
brew command 359
buf string 306
built-in operators 253
built-in types 254

C

-c option 28
C programming language, For-

tran interoperability with
ipaddr_port, Fortran interface

to 322–323
mixed Fortran-C projects 322
suffix_detach, Fortran inter-

face to 323–324
TCP client program 317–321

complete client program
321

connecting to remote
socket 317–319

receiving message 319–320
writing 294–297

TCP server program 297–317
accepting incoming con-

nections to socket
311–312

checking IP address
values 306–308

closing connection 315–317
creating socket and listen-

ing for connections
310–311

initializing the ip address
structure 301–305

ip address data
structures 299–301

matching compatible C
and Fortran data
types 308–310

sending TCP message to
client 312–315

writing 294–297
tcp_close, Fortran interface

to 323–324
C void pointer (void*) 313
caf wrapper script 181, 359
cafrun command 187
cafrun wrapper script 359
call statement 64, 72–73, 83

c_char parameter 300
change team construct 332–334
character operators 255
character timestamp 114
character type 35, 118
circle_area function 97
class components 208
classes 208
close statement 168, 170
c_null_char 315
coarrays 20–22, 327

allocating 195–196
overview 7
synchronization and 187–192

allocating dynamic
coarrays 188–189

controlling order of image
execution 191–192

declaring coarrays 188
sending and receiving

data 189–191
co_broadcast 345–346
codimension attribute 188, 201
coindexed coarrays 327
cold front problem 52, 61–62
cold_front_temperature

function 66, 68
collective subroutines 343
collectives 343–347

broadcasting values to other
images 346–347

computing minimum and
maximum of distributed
arrays 343–345

subroutines syntax 345–346
column-major indexing 39
co_max 344–345
co_min 344–345
command_argument_count

function 159, 270–271, 288,
290

comparison operators 255
compiler_info function 108
compiler_options function 86,

88
compilers

general discussion 380
setting up 356–357

Linux 357
macOS 357
Windows 357

compiler_version function 86,
88, 108

compiling 27
complex numbers 36

complex type 35, 52
components 208
const attribute 313
constants 32
constants, declaring in minimal

working app 38
contains statement 66, 70, 76,

83, 92–93, 95, 216, 220
contiguous arrays 38
co_reduce 345
co_sum 345
count function 247
crosspos function 137
CSV reader subroutine 127–129
curl 297, 316
custom operator syntax (.op) 257
custom operators 253
custom type constructor

for Field type 218–220
writing 215–218

D

dashfmt 152
data types, C and Fortran,

matching compatible
308–310

date_and_time subroutine 271,
290

datetime class 266–267, 270,
273, 281

datetime_minus_datetime
274–275

deallocate statement 124–125,
141

debug parameter 79
decay parameter 45–46, 51
deep learning 379
denan function 180, 249, 254
derived types 254
derived types. See user-defined

operators for derived types
development environment,

Fortran
compiler set up 356–357

Linux 357
macOS 357
Windows 357

Docker image, building 360
editing source files 355–356
MPI library set up 358
OpenCoarrays set up 358–359

Linux 358–359
macOS 359
OpenCoarrays, using 359

INDEX 383
diff function 61, 71–72, 76, 91,
94, 99, 101, 107, 192–193,
226–227

diff_centered function 105–106
diff_upwind function 105
diffx function 227–228, 230,

233, 285, 373–374
diffx_real function 228
diffy function 227–230, 234,

285, 373–374
dill_ipaddr_local 303
dimension attribute 39, 52,

188
disadvantages of Fortran

10–12
discretizing partial

derivatives 361
distributed-memory

parallelism 7
division (/) operator 257
DM (distributed-memory) 16
do loops 42–45, 47, 52, 58, 72,

79, 110, 120, 141, 312
Docker image, building 360
domain-specific language 10
dot operator (.) 212
dummy arguments 69
dynamic arrays 39

E

edit descriptors 151
EGLL.csv file 239
elemental attribute 78, 83, 233
elemental procedure 78
Emacs editor 355
embarrassingly parallel

problem 15
end function statement 83
end module statement 93, 95,

108
end program statement 34, 52,

70
end statement 34
end subroutine statement 83
end team statement 330
end variable 129
err keyword parameter 167
errmsg argument 126–127, 334,

341, 346
error_unit module 149
event wait statement 340–341
events 338–342

counting event posts 342
posting 341

push notification example
339–341

waiting for 341–342
event_type 338, 340
exist keyword parameter 165
exit statement 43
exponential notation 36
exponentiation (**) 257

F

features of Fortran 6–8
field argument 375
Field class 283–286
Field type 210–211, 224, 229,

261, 282, 367, 369, 373
custom type constructor

for 218–220
type-bound methods for

221–222
user-defined operators

for 259–260
field_add_field method 373
field_add_real method 373
field_constructor function

284
fieldname argument 375
field_sub_field method 373
file argument 160
filename variable 159
files, writing to. See writing to

files on disk
fileunit 159
finite differences 29, 362
first program, compiling and

running 27–28
fixed-form code 356
FLAP (Fortran command

Line Arguments Parser)
271

flogging (Fortran logging)
library 150

flush statement 161
fmt argument 150, 269
form team statement 332,

334
format statement 157
format strings 169
formatting

statements 157
strings 152–156

integers 154–155
logical and text values

155–156
real numbers 153–154

Fortran
advantages and

disadvantages 10–12
compiling and running first

program 27–28
features of 6–8
minimal working app 31–51

branching with if block
40–42

complete code 49–51
declaring and initializing

variables 34–35
declaring data to use in

app 37–40
defining main program

33–34
implementation

strategy 32–33
numeric data types 35–36
predicting movement of

object 45–47
printing results to

screen 47
setting initial water height

values 44–45
using do loop to iterate

42–43
new elements 52
overview 4–6
Python vs. 10–12
reasons to learn 8–10

Fortran command Line
Arguments Parser
(FLAP) 271

Fortran logging (flogging)
library 150

free subroutine 127, 139
free-form 356
from_field subroutine 285, 287
function statement 67, 76, 83,

303
functions 58, 64–70

defining 66–68, 70–72
invoking 68–69
specifying intent of

arguments 69
when to use subroutines

over 74–75

G

gather method 221
general-purpose library

ecosystem 9
generator 120

INDEX384
generic procedures and opera-
tors

analyzing weather data of dif-
ferent types 237–239

about the data 238–239
objectives 241
strategy for this

exercise 242
defining new string concate-

nation operator 262–263
in tsunami simulator 259–260
operators 253–259

built-in 255–256, 258–259
custom 257–258
defined 253
operator precedence 257
things to do with 253–255

specific average function for
derived type 260–262

type systems and generic
procedures 242–243

writing first generic
procedure 243–253

problem with strong
typing 243–244

results and complete
program 251–253

writing generic
interface 247–251

writing specific
functions 244–247

get_command_argument
subroutine 159, 268–269,
271, 290

get_date_from_cli 270, 272, 288
global indices 194
GNU Fortran Compiler

(gfortran) 27, 328, 356
gradient 29, 61, 363
greet() method 233
greeting_message

component 217
gregorian calendar, leap year

in 289
grid_size 32, 37, 39

H

halo cells 194
Happy Birthday! countdown

app 265–266
basic specification 265–266
implementation strategy 266

hello_derived_types
program 207

HPC (high-performance
computing) 8–9

HTTP (Hypertext Transfer
Protocol) 295

I

I/O (input/output) 143–150
reading and writing multiple

variables at once
147–148

simplest 144–147
standard input, output, and

error 148–150
icenter parameter 45–46, 51
ieee_arithmetic module 89
ieee_exceptions module 89
ieee_features. iso_fortran_env

module 89
if block, branching with 40–42
if single-liner 41
if statement 22, 41, 52, 186, 288
if/else if/else/end if block 42
if/else/end if block 41–42
if/end if block 42
image_fraction variable 348
images 181–187

finding array subranges on
each image 199–200

gathering all data to single
image 186–187

getting information
about 183–184

overview 182–183
telling what to do 184–186
writing function that returns

indices of neighbor
images 200

implicit none statement 34–35,
37, 68–69, 87

implicit save behavior 119
IMPLICIT statement 34
implicit typing 34
import statement 304, 324
impure elemental

procedure 79, 83
indexing arrays 129–132
inheritance 224
init_gaussian method 221
initialize step 30
input argument 69
input_unit module 149
inquire statement 161, 165–166,

170
instances of classes 208

int8 parameter 108
int16 parameter 108
int32 parameter 90, 107–108,

244
int64 parameter 108
integer type 35, 52, 238, 251
integers 35–36, 154–155
intent attribute 73, 83, 122
intent(in out) attribute 69, 73,

75, 82, 122
intent(in) attribute 67, 69, 73
intent(out) attribute 69, 73, 83
interface block 248, 311
interface operator()

function 263
internal unit 269
interpreted programming

languages 6
iostat keyword parameter 167
IP address

structure 299–305
values, checking 306–308

ipaddr_local function 298–301,
305–307, 318

ipaddr_port function 307
ipaddr_port, Fortran interface

to 322–323
ipaddr_remote function 299–

301, 317–318
ipaddr_str function 307, 312
iso_c_binding module 86, 89,

300, 309–310, 312, 324
iso_fortran_env module 86, 88–

91, 107–108, 149, 244, 330

K

keyword arguments, in derived
type constructors 212–214

kind function 246
kind keyword 90
kinds 35

L

LAPACK (Linear Algebra
PACKage) 70

lbound function 123, 141
leap year 289
length argument 269
libdill, installing 297
libdill.a file 316
linear advection 29–30
linear property 29
linking 27

INDEX 385
Linux
setting up compiler 357
setting up OpenCoarrays

358–359
list-directed I/O 146–147
LOC (lines of code) 21
local indices 194
locality of reference 22
log.err file 150, 169
log.out file 169
logical array 130
logical operators 255
logical type 35, 41, 238, 251
logical values, formatting

155–156
long long 311

M

macOS
setting up compiler 357
setting up OpenCoarrays 359

main program 32–33, 63
make install command 359
man gfortran command 28
manifest typing 6, 34
mature libraries 9
max function 141
maxloc function 180
maxval function 180
mean function 180
Message Passing Interface

(MPI) 16–20, 173, 358
methods 208
min function 141
minimal working app 31–51

branching with if block 40–42
complete code 49–51
declaring and initializing

variables 34–35
declaring data to use in

app 37–40
declaring arrays 38–40
declaring constants 38
declaring variables 37–38

defining main program
33–34

implementation strategy
32–33

in minimal working app
44–45

numeric data types 35–36
complex numbers 36
integer numbers 35–36
real numbers 36

predicting movement of
object 45–47

printing results to screen 47
using do loop to iterate 42–43

minloc function 180
minval function 180
mixed Fortran-C projects 322
mixed-mode arithmetic 121
mod function 290
mod_diff module 61, 91, 93,

105, 108
mod_diff.f90 file 367
mod_dill module 300, 311,

315
mod_dill.f90 file 316
mode argument 302
mod_field module 210, 228
mod_field.f90 file 367
mod_initial module 97
mod_io.f90 file 367
mod_parallel module 194
mod_parallel.f90 file 367
module file (.mod) 96
module steatement 93, 95, 108
modules

accessing 86–91
getting compiler version

and options 86–89
using portable data

types 89–91
creating first module 91–99

compiling Fortran
modules 95–97

controlling access to vari-
ables and procedures
97–98

defining module 93–95
putting it all together

in tsunami simulator
98–99

structure of custom
module 92–93

defined 34
defining set_gaussian subrou-

tine in 107–108
realistic wave simulations

99–106
complete code 105–106
physics 101
renaming imported entities

to avoid name conflict
104–105

update to finite difference
calculation 102–104

mold argument 123

Moore’s law 15
motion of object, simulating

28–31
advection, overview 30–31
what app should do 29–30

moving average 140–141
moving average crossover 135
moving_average function 136
MPI (Message Passing

Interface) 16–18, 173
mpi_barrier() 191
mpi_comm_rank 184
mpi_comm_size 184
mpif90 command 358
mpi_finalize() method 21
mpi_init() method 21
mrecv function 317
msend function 299, 319
multidimensional arrays 39
multiparadigm 6
multiplication (*) operator

257

N

name argument 300, 302
NaN (not a number) 180, 249
neural networks 379
newunit argument 160
niche language, Fortran as 10
nint function 141
nonembarrassingly parallel 15
nonlinear advection 30
not a number (NaN) 180, 249
notification variable 340, 342
null character 300
number argument 269
numeric data types 35–36

complex numbers 36
integer numbers 35–36
real numbers 36

num_images function 183–184,
195, 199–200, 327

num_record function 128
num_time_steps 32, 37, 45

O

online resources 379–380
only keyword 91
OOP (object-oriented

programming) 207
.op (custom operator

syntax) 257
open statement 159, 164, 170

INDEX386
OpenCoarrays
setting up 358–359

Linux 358–359
macOS 359

using 359
OpenMP directives 16
operators 253–259

built-in 255–256, 258–259
custom 257–258
defined 253
operator precedence 257
things to do with 253–255

optional arguments 249
optional attribute 80, 84
output (-o) executable 27
output argument 69
output step 30
output_unit module 149
overflow 36

P

pack function 136, 141
parallel programming 3, 14–22

coarrays and synchronization
187–192

allocating dynamic
coarrays 188–189

controlling order of image
execution 191–192

declaring coarrays 188
sending and receiving

data 189–191
collectives 343–347

broadcasting values to other
images 346–347

computing minimum and
maximum of distributed
arrays 343–345

subroutines syntax 345–346
copying array from one pro-

cessor to another 17–22
coarrays 20–22
MPI (Message Passing

Interface) 18–20
events 338–342

counting event posts 342
posting 341
push notification

example 339–341
waiting for 341–342

in tsunami simulator
example 192–199

allocating coarrays
195–196

finding indices of neighbor
images 194–195

implementation
strategy 192–194

main time loop 196–199
processing real-world weather

buoy data 175–181
about the data 176–177
getting data and code 178
objectives 178–179
serial implementation of

program 179–181
reasons for writing 174–175
teams 328–338

changing execution
between 332–334

exchanging data
between 337–338

forming new teams
331–332

synchronizing images
within 335–336

synchronizing whole
teams 336–337

tsunami simulator
329–331

with images and
coarrays 181–187

finding array subranges
on each image
199–200

gathering all data to single
image 186–187

getting information about
the images 183–184

overview 182–183
telling images what to

do 184–186
writing function that

returns indices of neigh-
bor images 200

parameter attribute 38
partitioned global address space

(PGAS) 22
pass keyword 274
performance of Fortran 10
person_constructor

function 216
PGAS (partitioned global

address space) 22
pi parameter 97, 152
port argument 302
position parameter 163, 166
positional arguments 212–214,

249

POSIX (Portable Operating Sys-
tem Interface) threads
(pthreds) 308

present function 80, 84
print statement 47, 52, 58, 66,

68, 145–146, 148–149, 169
private attribute 98, 108,

222–223
private variable 97
procedures 65–72

binding to derived types
220–224

controlling access to type
components and
methods 222–224

first type-bound
method 220–221

type-bound methods for the
Field type 221–222

finite difference, expressing as
function in tsunami
simulator 70–72

first function 65–70
defining function 66–68,

70
invoking function 68–69
specifying intent of

arguments 69
pure procedures 76–77

importance of 77
overview 76
restrictions on 77

that operate on both scalars
and arrays 77–79

with optional arguments
79–80

See also generic procedures
and operators

program statement 34, 52, 67,
87

program units 63–65
prototype 301
public attribute 108, 222–223
public variable 97
pure attribute 76–77
pure code 64
pure procedures 75–77, 119

importance of 77
overview 76
restrictions on 77

Python 10–12

Q

qn (quick-note) 157

INDEX 387
R

race condition 198
rank (number of

dimensions) 249
read statement 145–146, 148–

150, 156, 159, 166, 169, 269
read_write_list program 148
real function 84, 246, 251
real numbers

formatting 153–154
general discussion 36

real type 35, 52, 114, 238
real-world weather buoy data

example 175–181
about the data 176–177
getting data and code 178
objectives 178–179
serial implementation of

program 179–181
real32 parameter 90, 107–108,

121, 244
real64 parameter 121
real128 parameter 108
real364 parameter 108
recursive attribute 336
res array 137
res variable 62, 73
resources, online 379–380
result attribute 67
result_image 346
reusable code, writing

elemental function that oper-
ate on both scalars and
arrays 83

procedures 65–72
finite difference, express-

ing as function in
tsunami simulator
70–72

first function 65–70
that operate on both sca-

lars and arrays 77–79
with optional arguments

79–80
pure procedures 76–77

importance of 77
overview 76
restrictions on 77

subroutines 72–76
defining and calling 72–74
initializing water height in

the tsunami simulator
75–76

modifying state with 82–83

when to use over function
74–75

reverse function 129–130, 140
rewind value 163

S

save attribute 119
scalars 188

elemental function that oper-
ate on both arrays and 83

procedures that operate on
both arrays and 77–79

server.f90 file 317
set_gaussian subroutine 91, 97,

99, 107–108
shallow water equations

(SWEs) 23
shared-memory (SM) 16
shared-memory parallelism 7
shared-memory space 22
sign function 278, 290
simple moving average 134
simulate step 30
single image (serial) mode 359
Single Program, Multiple Data

(SPMD) 182
size function 84, 118, 130–132,

245
slicing arrays 129–132
SM (shared-memory) 16
source argument 123
source files, editing 355–356
specific procedures 242
SPMD (Single Program, Multi-

ple Data) 182
sqrt function 133
square brackets 189, 201
ssize_t function 320
standard deviation 140–141
standard input 145, 148
standard output 148
standard streams 148
start variable 129
stat argument 126–127, 341, 346
stat parameter 334
static arrays 39
static typing system 34
statically typed language, For-

tran as 6, 10
status argument 269
stderr 168–169
stdout 169
stop statement 40, 52, 77
strcat function 262

stride variable 129
string variable 269
strings, formatting 152–156

integers 154–155
logical and text values 155–156
real numbers 153–154

strong typing 6, 10, 34, 242
submodule 34
subroutine statement 76, 83
subroutines 33, 64, 72–76

defining and calling 72–74
initializing water height in the

tsunami simulator 75–76
modifying state with 82–83
when to use over

function 74–75
subtraction (-) 257
sudo command 357
suffix_attach function 298, 313
suffix_detach function 298, 315,

323–324
sum function 67–68, 72, 132,

141, 245, 278
supercomputers 4
SWEs (shallow water

equations) 23
symbols array 118
sync all statement 191, 201, 327,

335–336
sync images statement 335–336
sync_edges method 221, 283–

284, 287, 373
synchronization, coarrays

and 187–192
allocating dynamic coarrays

188–189
controlling order of image

execution 191–192
declaring coarrays 188
sending and receiving

data 189–191

T

TCP (Transmission Control
Protocol) 295

TCP client program 317–321
complete client program 321
connecting to remote

socket 317–319
receiving message 319–320
writing 294–297

installing libdill 297
introducing networking to

Fortran 295–297

INDEX388
TCP server program 297–317
accepting incoming connec-

tions to socket 311–312
checking IP address

values 306–308
closing connection 315–317
creating socket and listening

for connections 310–311
initializing the ip address

structure 301–305
IP address data

structures 299–301
matching compatible C and

Fortran data types
308–310

sending TCP message to
client 312–315

writing 294–297
installing libdill 297
introducing networking to

Fortran 295–297
tcp_accept function 298, 311,

314
tcp_close function 299, 315
tcp_close, Fortran interface

to 323–324
tcp_connect function 317–318
tcp_listen function 298, 310–311
team_num parameter 332
teams 328–338

changing execution
between 332–334

exchanging data
between 337–338

forming new teams 331–332
synchronizing images

within 335–336
synchronizing whole

teams 336–337
tsunami simulator 329–331

team_type parameter 330
team_variable parameter 332
tee utility 144
temperature gradient 31
tendency 61, 363
text values, formatting 155–156
this_image function 183–184,

186, 195, 200, 327
thread-based parallelism 7
tile_indices function 185, 195,

219
time

calculating difference
between two times
272–282

complete program 280–282
implementing custom sub-

traction operator
273–275

modeling time interval 273
time difference algorithm

275–280
current, getting user input

and 266–272
first datetime class 266–267
getting current date and

time 271–272
reading user input 267–271

validating user input 288–289
time argument 375
timedelta class 266, 272–273, 281
time_loop 45, 59, 71, 192
Transmission Control Protocol

(TCP) 295
trim function 145–146, 170
tsunami simulator example

22–25, 51, 366–379
accessing components of 212
binding procedures to

220–224
controlling access to type

components and
methods 222–224

first type-bound method
220–221

type-bound methods for the
Field type 221–222

computing finite difference in
y direction 233–234

custom type constructor
for Field type 218–220
writing 215–218

defining 209–210
extending tsunami to two

dimensions 224–231
derived type implementa-

tion of tsunami solver
229–231

finite differences in x and
y 226–227

going from 1-D to 2-D
arrays 225

passing class instance to
diffx and diffy 228–229

updating equation set 226
finite difference, expressing as

function in 70–72
generic procedures and oper-

ators in 259–260
instantiating 210–212

invoking type-bound method
from array of instances
233

mod_diff.f90 374
mod_field.f90 369–374
mod_io.f90 375
mod_parallel.f90 376–379
parallel programming

in 192–199
allocating coarrays 195–196
finding indices of neighbor

images 194–195
implementation

strategy 192–194
main time loop 196–199

positional vs. keyword argu-
ments in derived type
constructors 212–214

private components 231–232
providing default values for

components of 214–215
purpose of app 24–25
recasting simulator with

derived types 203–206
recasting tsunami simulator

with 203–206
refactoring 58–60
shallow water equations 23–24
teams and 329–331
tsunami.f90 367–369
using portable type kinds

in 107
water height in,

initializing 75–76
tsunami.f90 file 367
type coercion 121
type-bound methods 220

U

u array 60
ubound function 123, 141
unit argument 150
until_count parameter 342
use statement 61, 87, 90–91,

104, 108
user-defined operators for

derived types
calculating difference

between two times
272–282

complete program 280–282
implementing custom sub-

traction operator
273–275

INDEX 389
use statement (continued)
modeling time interval 273
time difference algorithm

275–280
getting user input and current

time 266–272
first datetime class

266–267
getting current date and

time 271–272
reading user input

267–271
Happy Birthday! countdown

app 265–266
basic specification 265–266
implementation

strategy 266
implementing addition for

Field type 289–290
leap year in gregorian

calendar 289
overriding operators in tsu-

nami simulator 282–288
Field class refresher

283–284

implementing arithmetic
for Field class 284–286

synchronizing parallel
images on
assignment 286–288

V

value argument 269
value attribute 324
values array 271
var variable 269
variables

declaring 37–38
reading and writing multiple

variables at once 147–148
Vim editor 355
Visual Studio Code IDE 355
void* (C void pointer) 313

W

weather data analysis
example 237–239

about the data 238–239

objectives 241
strategy for this exercise 242

wget 297
whole-array arithmetic 39
Windows, setting up

compiler 357
write method 221
write statement 148–150, 156,

164, 166, 169
write_field module 375
writing to files on disk 157–168

appending to file 162–163
checking if file exists

164–167
error handling and closing

file 167–168
opening file 159–160
opening files in read-only or

write-only mode
163–164

writing to files 161

Y

yearday function 277

For ordering information go to www.manning.com

RELATED MANNING TITLES

Modern C
by Jens Gustedt

ISBN 9781617295812
408 pages, $59.99
November 2019

C++ Concurrency in Action, Second Edition
by Anthony Williams

ISBN 9781617294693
592 pages, $69.99
February 2019

Parallel and High Performance Computing
by Robert Robey and Yuliana Zamora

ISBN 9781617296468
600 pages (estimated), $69.99
Spring 2021 (estimated)

cafrun –n 4 ./hello

Image 1

write(,) &∗ ∗

'Hello world'

Image 2

write(,) &∗ ∗

'Hello world'

Image 3

write(,) &∗ ∗

'Hello world'

Image 4

write(,) &∗ ∗

'Hello world'

Hello world

Hello world

Hello world

Hello world

Spawn four parallel images;
each will execute its own
copy of the program.

Each image writes the
output of the program
on the screen.

A serial “Hello, World!” program executed in parallel on four images

3 4 5 6 7 8 8

real, allocatable :: a(:)

… ?

This declares a dynamic 1-D array.
It is not yet allocated in memory,
and its size is to be determined.

1.

This allocates the array in
memory, with start index 3
and end index 8, with a
total of six elements.

At this point, the array is allocated
but not initialized. Make sure to
always initialize array values
before using it in expressions.

Our array is now initialized
and ready to use!

Finally, when we’re done
working with the array, we
can clean it from memory.

3. 2.

allocate(a(3:8))deallocate(a)

0 0 0 0 0 0

3 4 5 6 7

8

a = 0

A life cycle of a dynamic array

Milan Curcic

ISBN: 978-1-61729-528-7

F
or over 60 years Fortran has been powering mission-
critical scientifi c applications, and it isn’t slowing down
yet! Rock-solid reliability and new support for parallel

programming make Fortran an essential language for next-
generation high-performance computing. Simply put, the
future is in parallel, and Fortran is already there.

Modern Fortran teaches you to develop fast, effi cient parallel
applications using twenty-fi rst-century Fortran. In this guide,
you’ll dive into Fortran by creating fun apps, including a
tsunami simulator and a stock price analyzer. Filled with
real-world use cases, insightful illustrations, and hands-on
exercises, Modern Fortran helps you see this classic language
in a whole new light.

What’s Inside
● Fortran’s place in the modern world
● Working with variables, arrays, and functions
● Module development
● Parallelism with coarrays, teams, and events
● Interoperating Fortran with C

For developers and computational scientists. No experience
with Fortran required.

Milan Curcic is a meteorologist, oceanographer, and author of
several general-purpose Fortran libraries and applications.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/modern-fortran

$59.99 / Can $79.99 [INCLUDING eBOOK]

Modern Fortran

PROGRAMMING LANGUAGES/SCIENTIFIC COMPUTING

M A N N I N G

“For the reader seeking
proof of life for modern
Fortran, Milan’s work

provides ample evidence
of the language’s ongoing

role in technological
 modernity.”

—From the Foreword by Damian
Rouson, Sourcery Institute

“An excellent introduction
to the joys of modern Fortran;

from polymorphism to
 parallelism. A must-read.”

—Matthew Emmett
Computer Modelling Group

“A unique book that builds
on many real-life examples
to show that Fortran is still

alive and can be used
productively even in the

 era of the web.”—Maurizio Tomasi
Università degli Studi di Milano

See first page

	Modern Fortran
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	A bit of Fortran history
	How this book is organized: a roadmap
	About the code
	Requirements
	Get involved
	liveBook discussion forum

	about the author
	about the cover illustration
	Part 1—Getting started with Modern Fortran
	1 Introducing Fortran
	1.1 What is Fortran?
	1.2 Fortran features
	1.3 Why learn Fortran?
	1.4 Advantages and disadvantages
	1.4.1 Side-by-side comparison with Python

	1.5 Parallel Fortran, illustrated
	1.6 What will you learn in this book?
	1.7 Think parallel!
	1.7.1 Copying an array from one processor to another

	1.8 Running example: A parallel tsunami simulator
	1.8.1 Why tsunami simulator?
	1.8.2 Shallow water equations
	1.8.3 What we want our app to do

	1.9 Further reading
	Summary

	2 Getting started: Minimal working app
	2.1 Compiling and running your first program
	2.2 Simulating the motion of an object
	2.2.1 What should our app do?
	2.2.2 What is advection?

	2.3 Implementing the minimal working app
	2.3.1 Implementation strategy
	2.3.2 Defining the main program
	2.3.3 Declaring and initializing variables
	2.3.4 Numeric data types
	2.3.5 Declaring the data to use in our app
	2.3.6 Branching with an if block
	2.3.7 Using a do loop to iterate
	2.3.8 Setting the initial water height values
	2.3.9 Predicting the movement of the object
	2.3.10 Printing results to the screen
	2.3.11 Putting it all together

	2.4 Going forward with the tsunami simulator
	2.5 Answer key
	2.5.1 Exercise: Cold front propagation

	2.6 New Fortran elements, at a glance
	2.7 Further reading
	Summary

	Part 2—Core elements of Fortran
	3 Writing reusable code with functions and subroutines
	3.1 Toward higher app complexity
	3.1.1 Refactoring the tsunami simulator
	3.1.2 Revisiting the cold front problem
	3.1.3 An overview of Fortran program units

	3.2 Don’t repeat yourself, use procedures
	3.2.1 Your first function
	3.2.2 Expressing finite difference as a function in the tsunami simulator

	3.3 Modifying program state with subroutines
	3.3.1 Defining and calling a subroutine
	3.3.2 When do you use a subroutine over a function?
	3.3.3 Initializing water height in the tsunami simulator

	3.4 Writing pure procedures to avoid side effects
	3.4.1 What is a pure procedure?
	3.4.2 Some restrictions on pure procedures
	3.4.3 Why are pure functions important?

	3.5 Writing procedures that operate on both scalars and arrays
	3.6 Procedures with optional arguments
	3.7 Tsunami simulator: Putting it all together
	3.8 Answer key
	3.8.1 Exercise 1: Modifying state with a subroutine
	3.8.2 Exercise 2: Writing an elemental function that operates on both scalars and arrays

	3.9 New Fortran elements, at a glance
	3.10 Further reading
	Summary

	4 Organizing your Fortran code using modules
	4.1 Accessing a module
	4.1.1 Getting compiler version and options
	4.1.2 Using portable data types

	4.2 Creating your first module
	4.2.1 The structure of a custom module
	4.2.2 Defining a module
	4.2.3 Compiling Fortran modules
	4.2.4 Controlling access to variables and procedures
	4.2.5 Putting it all together in the tsunami simulator

	4.3 Toward realistic wave simulations
	4.3.1 A brief look at the physics
	4.3.2 Updating the finite difference calculation
	4.3.3 Renaming imported entities to avoid name conflict
	4.3.4 The complete code

	4.4 Answer key
	4.4.1 Exercise 1: Using portable type kinds in the tsunami simulator
	4.4.2 Exercise 2: Defining the set_gaussian subroutine in a module

	4.5 New Fortran elements, at a glance
	4.6 Further reading
	Summary

	5 Analyzing time series data with arrays
	5.1 Analyzing stock prices with Fortran arrays
	5.1.1 Objectives for this exercise
	5.1.2 About the data
	5.1.3 Getting the data and code

	5.2 Finding the best and worst performing stocks
	5.2.1 Declaring arrays
	5.2.2 Array constructors
	5.2.3 Reading stock data from files
	5.2.4 Allocating arrays of a certain size or range
	5.2.5 Allocating an array from another array
	5.2.6 Automatic allocation on assignment
	5.2.7 Cleaning up after use
	5.2.8 Checking for allocation status
	5.2.9 Catching allocation and deallocation errors
	5.2.10 Implementing the CSV reader subroutine
	5.2.11 Indexing and slicing arrays

	5.3 Identifying risky stocks
	5.4 Finding good times to buy and sell
	5.5 Answer key
	5.5.1 Exercise 1: Convenience (de)allocator subroutines
	5.5.2 Exercise 2: Reversing an array
	5.5.3 Exercise 3: Calculating moving average and standard deviation

	5.6 New Fortran elements, at a glance
	5.7 Further reading
	Summary

	6 Reading, writing, and formatting your data
	6.1 Your first I/O: Input from the keyboard and output to the screen
	6.1.1 The simplest I/O
	6.1.2 Reading and writing multiple variables at once
	6.1.3 Standard input, output, and error

	6.2 Formatting numbers and text
	6.2.1 Designing the aircraft dashboard
	6.2.2 Formatting strings, broken down
	6.2.3 Format statements in legacy Fortran code

	6.3 Writing to files on disk: A minimal note-taking app
	6.3.1 Opening a file and writing to it
	6.3.2 Opening a file
	6.3.3 Writing to a file
	6.3.4 Appending to a file
	6.3.5 Opening files in read-only or write-only mode
	6.3.6 Checking whether a file exists
	6.3.7 Error handling and closing the file

	6.4 Answer key
	6.4.1 Exercise: Redirect stdout and stderr to files

	6.5 New Fortran elements, at a glance
	Summary

	Part 3—Advanced Fortran use
	7 Going parallel with Fortran coarrays
	7.1 Why write parallel programs?
	7.2 Processing real-world weather buoy data
	7.2.1 About the data
	7.2.2 Getting the data and code
	7.2.3 Objectives
	7.2.4 Serial implementation of the program

	7.3 Parallel processing with images and coarrays
	7.3.1 Fortran images
	7.3.2 Getting information about the images
	7.3.3 Telling images what to do
	7.3.4 Gathering all data to a single image

	7.4 Coarrays and synchronization, explained
	7.4.1 Declaring coarrays
	7.4.2 Allocating dynamic coarrays
	7.4.3 Sending and receiving data
	7.4.4 Controlling the order of image execution

	7.5 Toward the parallel tsunami simulator
	7.5.1 Implementation strategy
	7.5.2 Finding the indices of neighbor images
	7.5.3 Allocating the coarrays
	7.5.4 The main time loop

	7.6 Answer key
	7.6.1 Exercise 1: Finding the array subranges on each image
	7.6.2 Exercise 2: Writing a function that returns the indices of neighbor images

	7.7 New Fortran elements, at a glance
	7.8 Further reading
	Summary

	8 Working with abstract data using derived types
	8.1 Recasting the tsunami simulator with derived types
	8.2 Defining, declaring, and initializing derived types
	8.2.1 Defining a derived type
	8.2.2 Instantiating a derived type
	8.2.3 Accessing derived type components
	8.2.4 Positional vs. keyword arguments in derived type constructors
	8.2.5 Providing default values for derived type components
	8.2.6 Writing a custom type constructor
	8.2.7 Custom type constructor for the Field type

	8.3 Binding procedures to a derived type
	8.3.1 Your first type-bound method
	8.3.2 Type-bound methods for the Field type
	8.3.3 Controlling access to type components and methods
	8.3.4 Bringing it all together

	8.4 Extending tsunami to two dimensions
	8.4.1 Going from 1-D to 2-D arrays
	8.4.2 Updating the equation set
	8.4.3 Finite differences in x and y
	8.4.4 Passing a class instance to diffx and diffy functions
	8.4.5 Derived type implementation of the tsunami solver

	8.5 Answer key
	8.5.1 Exercise 1: Working with private components
	8.5.2 Exercise 2: Invoking a type-bound method from an array of instances
	8.5.3 Exercise 3: Computing finite difference in y direction.

	8.6 New Fortran elements, at a glance
	8.7 Further reading
	Summary

	9 Generic procedures and operators for any data type
	9.1 Analyzing weather data of different types
	9.1.1 About the data
	9.1.2 Objectives
	9.1.3 Strategy for this exercise

	9.2 Type systems and generic procedures
	9.2.1 Static versus strong typing

	9.3 Writing your first generic procedure
	9.3.1 The problem with strong typing
	9.3.2 Writing the specific functions
	9.3.3 Writing the generic interface
	9.3.4 Results and complete program

	9.4 Built-in and custom operators
	9.4.1 What’s an operator?
	9.4.2 Things to do with operators
	9.4.3 Fortran’s built-in operators
	9.4.4 Operator precedence
	9.4.5 Writing custom operators
	9.4.6 Redefining built-in operators

	9.5 Generic procedures and operators in the tsunami simulator
	9.5.1 Writing user-defined operators for the Field type

	9.6 Answer key
	9.6.1 Exercise 1: Specific average function for a derived type
	9.6.2 Exercise 2: Defining a new string concatenation operator

	9.7 New Fortran elements, at a glance
	Summary

	10 User-defined operators for derived types
	10.1 Happy Birthday! A countdown app
	10.1.1 Some basic specification
	10.1.2 Implementation strategy

	10.2 Getting user input and current time
	10.2.1 Your first datetime class
	10.2.2 Reading user input
	10.2.3 Getting current date and time

	10.3 Calculating the difference between two times
	10.3.1 Modeling a time interval
	10.3.2 Implementing a custom subtraction operator
	10.3.3 Time difference algorithm
	10.3.4 The complete program

	10.4 Overriding operators in the tsunami simulator
	10.4.1 A refresher on the Field class
	10.4.2 Implementing the arithmetic for the Field class
	10.4.3 Synchronizing parallel images on assignment

	10.5 Answer key
	10.5.1 Exercise 1: Validating user input
	10.5.2 Exercise 2: Leap year in the Gregorian calendar
	10.5.3 Exercise 3: Implementing the addition for the Field type

	10.6 New Fortran elements, at a glance
	Summary

	Part 4—The final stretch
	11 Interoperability with C: Exposing your app to the web
	11.1 Interfacing C: Writing a minimal TCP client and server
	11.1.1 Introducing networking to Fortran
	11.1.2 Installing libdill

	11.2 TCP server program: Receiving network connections
	11.2.1 IP address data structures
	11.2.2 Initializing the IP address structure
	11.2.3 Checking IP address values
	11.2.4 Intermezzo: Matching compatible C and Fortran data types
	11.2.5 Creating a socket and listening for connections
	11.2.6 Accepting incoming connections to a socket
	11.2.7 Sending a TCP message to the client
	11.2.8 Closing a connection

	11.3 TCP client program: Connecting to a remote server
	11.3.1 Connecting to a remote socket
	11.3.2 Receiving a message
	11.3.3 The complete client program

	11.4 Some interesting mixed Fortran-C projects
	11.5 Answer key
	11.5.1 Exercise 1: The Fortran interface to ipaddr_port
	11.5.2 Exercise 2: Fortran interfaces to suffix_detach and tcp_close

	11.6 New Fortran elements, at a glance
	11.7 Further reading
	Summary

	12 Advanced parallelism with teams, events, and collectives
	12.1 From coarrays to teams, events, and collectives
	12.2 Grouping images into teams with common tasks
	12.2.1 Teams in the tsunami simulator
	12.2.2 Forming new teams
	12.2.3 Changing execution between teams
	12.2.4 Synchronizing teams and exchanging data

	12.3 Posting and waiting for events
	12.3.1 A push notification example
	12.3.2 Posting an event
	12.3.3 Waiting for an event
	12.3.4 Counting event posts

	12.4 Distributed computing using collectives
	12.4.1 Computing the minimum and maximum of distributed arrays
	12.4.2 Collective subroutines syntax
	12.4.3 Broadcasting values to other images

	12.5 Answer key
	12.5.1 Exercise 1: Hunters and gatherers
	12.5.2 Exercise 2: Tsunami time step logging using events
	12.5.3 Exercise 3: Calculating the global mean of water height

	12.6 New Fortran elements, at a glance
	12.7 Further reading
	Summary

	Appendix A—Setting up the Fortran development environment
	A.1 Editing Fortran source files
	A.2 Setting up the Fortran compiler
	Linux
	macOS
	Windows

	A.3 Setting up the MPI library (Message Passing Interface)
	A.4 Setting up OpenCoarrays
	Linux
	macOS
	Using OpenCoarrays

	A.5 Building a Docker image

	Appendix B—From calculus to code
	B.1 The advection equation explained
	B.1.1 Discretizing the derivatives
	B.1.2 Casting the derivatives into code

	Appendix C—Concluding remarks
	C.1 Tsunami simulator: The complete code
	C.1.1 Main program: tsunami.f90
	C.1.2 The Field module: mod_field.f90
	C.1.3 The I/O module: mod_io.f90
	C.1.4 The parallel module: mod_parallel.f90

	C.2 Going forward with the tsunami simulator
	C.3 Neural networks and deep learning
	C.4 Online resources
	C.5 Compilers
	C.6 Books

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

