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Explosively driven fragmentation of ductile metals is a highly complex phenomenon. It is an important
issue in a variety of circumstances like structure protection, weapon effectiveness and safety distance.
Simulations of the fragmentation of metal casing are characterized by a number of interesting and chal-
lenging behaviors. These include the volume expansion of the solid charge and its transformation into
highly pressurized products. This rapid pressurization of the metal case leads to large deformations at
high strain rates and eventual casing rupture. Once the metal casing breaks apart, the highly pressurized
product escapes from the gap of the failing casing and generates a shock wave. In addition, the fragments
from the metal casing scatter with high velocities in set directions. In the conditions of near field explo-
sion, the spatial distribution of fragments with powerful penetrability has considerable influence on the
failure pattern of the target. In the present study, the finite difference engineering package AUTODYN
combined with Smoothed Particle Hydrodynamics (SPH) method is used to investigate numerically the
fragmentation process of a cylindrical metal casing with ends. After applying the numerical method to
predict the propagation of detonation wave, the expansion and rupture process, the expansion velocity
of metal casing, the leakage of detonation products and the fragment distribution, the fragment mass dis-
tribution is validated by comparing the numerical results with experimental data in the literature. Addi-
tionally, an experiment was conducted with the same explosive fragmentation geometry as modeled. The
characteristics of the observed fragment distributions and fragment velocities are compared with the
numerical simulation. The results reveal that the path of detonation wave is directly related to the expan-
sion velocity of the casing. The fragment sizes depend on the axial position on the casing when the charge
is detonated at endpoint, and they are related to the relative axial strain rate. The relatively low axial
strain rate, especially in the central and further region of the detonating cylindrical casing, is probably
the quantity responsible for the larger fragments. The end far away from the initiation point produces
more massive fragments with maximum kinetic energy. It has been demonstrated that the numerical
method presented here is capable of simulating the explosive fragmentation of a metal casing with ends.

� 2013 Published by Elsevier Ltd.
1. Introduction

Explosively driven fragmentation of ductile metals is a very
complex phenomenon in which the fragmenting material is plasti-
cally deformed by the intense shock followed by high-rate plastic
deformation that ultimately leads to fracture. The damage effects
from explosively filled metal casings mainly include the fragments
and shock wave. In the conditions of near field explosion, the syn-
ergistic effects of the shock wave and fragments would be consider-
able [1,2]. The modeling of the fragmentation process is of
importance for design, redesign and efficiency analysis of projec-
tiles. The fragment mass distribution, the initial fragment velocity,
as well as the spatial and the shape distributions of fragments, en-
able the complete characterization of a fragmentation process [3].
The dynamic issue of fragmentation of metal casing has been of
interest to many researchers for decades. In 1943, Gurney [4]
showed that the initial velocities of metal casing for spheres, cylin-
ders and infinite planes driven by the enclosed high explosives,
could be approximated by a function of the ratio M/C, where M is
the casing mass and C is the charge mass. The formula was based
on the simplified assumptions of uniform gas density, lack of mate-
rial strength and late release of detonation products. Mott [5] devel-
oped a model to predict the number of fractures around the
circumference and the fragment mass of a cylindrical pipe-bomb.
In his work, two main types of fracture were observed in the bomb
and shell casing, including shear fracture, approximately at 45� to
the circumference of the casing, and a combination of fibrous frac-
ture (of the same type as at the bottom of the cup and cone fracture
in a tensile test) and shear fracture. Based on energy considerations,
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Grady and Hightower [6] developed a model for fragmenting steel
casings of high explosive charge, and an equation relating the cir-
cumferential spacing to the strain rate, mass density and fracture
energy of material was derived. These early works lay the founda-
tion for the field of fragment study that continues to this day. More
recently, various numerical methods based on theoretical models
and special experimental techniques were developed to study the
fragmentation phenomenon. Anderson et al. [7] used a time-depen-
dent two-dimensional finite-difference code to model the frag-
menting cylinders. Besides, a theoretical model of gas leakage was
developed to simulate the explosive gas leakage around the frag-
ments after the casing breakup. A comparison of the calculation re-
sults utilizing the gas leakage model was made against the
experimental tests, which were conducted at BRL on cylinders filled
with various high explosives [8]. Based on fragmentation code
PAFRAG, Gold et al. [9] proposed a method to predict the performance
of explosive fragmentation munitions. Arnold and Rottenkolber [10]
investigated the fragmentation behavior of very light and heavy
casings. In their work, a data collection method which was based
on the image processing was outlined and applied to determine the
fragment mass distribution of four different shells. In terms of blast
impulse from cased charge, Hutchinson presented a novel idea and
calculational formulas were derived based on impulse/momentum
analysis [11–13]. The literatures on this topic are progressed in the
viewpoints of the mechanical performance, fragment-size distribu-
tion, fracture strain, and failure mechanisms [14–24].

Many circumstances arise where a much more sophisticated
treatment is necessary to predict the fragmentation features accu-
rately over the entire length of a cylinder including the ends. Such
calculation may be required to investigate the differences in initi-
ation sites of the high explosive, properties of casing materials, and
irregular shapes of casing. However, there are no corresponding
theoretical analysis models. Since the cost of experimental tests
is usually very high and time-consuming, many efforts have been
made to investigate the behavior of metal casing subjected to inner
blast load numerically without the need to undertake a large num-
ber of experimental tests. Guilkey et al. [25] described an Eulerian–
Lagrangian approach for the simulation of explosion of metal con-
tainer filled with a high explosive. The approach used a finite-vol-
ume multi-material compressible Computational Fluid Dynamic
(CFD) formulation, within which the solid materials were repre-
sented using a particle method known as the Material Point Meth-
od. The Eulerian–Lagrangian coupling was commonly used to
describe the interaction effect of inner charge and metal casing
in the study of this field [26–28]. But problems exist in the
Lagrangian process to simulate the fragmentation of metal casing.
When a shell or bomb filled with explosive detonates, the casing is
subjected initially to an extremely high pressure from the detona-
tion products. Under this pressure the casing begins to move rap-
idly outwards. For the case of a ductile material such as steel,
very considerable plastic expansion, as much as 50%, occurs before
the casing breaks [5]. Besides, the ends of the metal casing have
influence on the expansion of the cylinder. The metal casing will
deform severely in the fragmentation process. So in the numerical
simulation, the Lagrangian grid of metal casing will be severely dis-
torted, and this can lead to the interruption of the numerical pro-
cess. Although some useful numerical techniques such as erosion
algorithms can be used to overcome the problem of grid distortion
in the Lagrangian process, it should be noted that the erosion algo-
rithms do not attempt to model the physics of the problem but
introduce a numerical palliative to overcome the problems associ-
ated with the mesh distortions caused by the gross motions of the
Lagrangian grid [29].

Simulations of explosively driven fragmentation of ductile met-
als are characterized by a number of interesting and challenging
behaviors, including the volume expansion of the solid charge
and its transformation into highly pressurized products. This rapid
pressurization leads to the large deformation and eventual rupture
of the metal casing at high strain rates. Once the metal casing
breaks apart, the highly pressurized products escape from the
gap of the failing casing and generate the shock wave [25]. It is
attractive to set up a numerical method, by which the fragment
mass distribution, the initial fragment velocity, along with the spa-
tial and the shape distributions of fragments from the metal casing
can be reproduced appropriately. In the present study, the finite
difference engineering package AUTODYN with Smoothed Particle
Hydrodynamics (SPH) method is used to investigate the fragmen-
tation process of cylindrical metal case with flat ends numerically.
The outline of the paper is as follows:

(1) In Section 2, the computational procedure is presented. The
SPH method is briefly introduced and the numerical model
of cylindrical metal case with ends is described.

(2) The numerical results and discussions are presented in Sec-
tion 3. The propagation of detonation wave, the expansion
and rupture process, the leakage of detonation products,
the characteristics of the fragment mass distribution and
the initial fragment velocity, along with the spatial and the
shape distributions of fragment of the metal casing are stud-
ied in detail.

(3) For validation purpose, a fragmentation experiment of a
metal casing with flat ends was also conducted. The frag-
ment distribution and the characteristic of fragment velocity
of the metal casing with ends are compared with the numer-
ical results. The applicability of the numerical method in
computing the fragments mass distribution is validated by
comparing the numerical results with the experimental data
in the literature.

(4) In the last section, some conclusions of the explosive frag-
mentation process are drawn.

2. Computational procedure

2.1. The SPH method

The SPH method is based on a gridless Lagrangian hydrodynam-
ics using particles. The most attractive feature of SPH method is
that it gets rid of the computation termination due to the possible
large element distortion inherent in other Lagrangian formulation
based on finite element methods. Its applications include astro-
nomical science, hypervelocity impact and super-fast large defor-
mation problems [30–35]. The special feature of the SPH method
is very attractive for solving the problem concerning the large
deformation.

In SPH method, the fluid is represented by a finite set of obser-
vation points or particles, through the use of a smoothing proce-
dure in which the value f̂ ðxÞ of function f(x) at a point x, in the
domain X, is approximated by the integral interpolation [31,36]:

f̂ ðxÞ ¼
Z

X
f ðx0ÞWðx� x0;hÞdx0 ð1Þ

where W(x � x0, h) is a smooth function, commonly referred to as
the interpolating kernel, and h is the bandwidth of the kernel, or
the smoothing length corresponding to the mesh size in FEM anal-
ysis. The kernel function is defined such that (i) it mimics the Dirac
d-function in the limit h ? 0, limh?0W(x � x0, h) = d(x � x0), (ii) its
integral over the domain X is exactly unity,

R
XW(x � x0, h)dx0 = 1,

and (iii) W(x � x0, h) = W(x0 � x, h).
Derivatives of f̂ ðxÞ are integrated using the kernel function as:

rf̂ ðxÞ ¼
Z

X
f ðx0ÞrWðx� x0;hÞdx0 ð2Þ
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By introducing a volume weight mj/qj for each particle, the dis-
crete forms of mass, momentum, and energy conservation equa-
tions of SPH formulation are expressed respectively as follows
[36]:
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where Wij = W(xi � xj, h), t denotes the time, x is the spatial coordi-
nate, q is the density, va is the velocity component, rab is the stress
tensor component, E is the specific internal energy, and the sub-
scripts a (a = 1, 2, 3) and b (b = 1, 2, 3) are the component indices.

Simulation solutions are obtained by solving Eqs. (3)–(5) in con-
junction with the material models as well as the initial and bound-
ary conditions.

2.2. Numerical model

The numerical model is developed with the finite difference
engineering package AUTODYN. This software is particularly suit-
able for the nonlinear dynamic problems, such as impact or explo-
sion. It allows for the application of different algorithms such as
Euler–Lagrangian, Arbitrary Lagrange Euler (ALE) and SPH to solve
the fluid–structure problems. In order to reproduce the explosive
fragmentation process, in which the casing material is plastically
deformed and eventually ruptured by the inner charge, the SPH
method is adopted to model the phenomenon of explosively driven
fragmentation.

The object of numerical investigation in this paper is the cylin-
drical metal casing filled with TNT charge, as shown in Fig. 1. The
metal casing described here is fabricated from steel A235, the
internal diameter of the cylindrical casing is 110 mm, the length
is 160 mm, and the thickness is 6 mm. It is noted that the portions
Fig. 1. The cylindrical metal casing with ends.
of cylindrical casing with a length of 10 mm adjacent to both ends
are thickened to 10 mm. These parts are hereinafter referred to as
the thickened part. The ends near to and far away from the initia-
tion point of charge are called near end and far end, respectively.
The mass of metal casing is 4.10 kg, with a 1.9 kg TNT charge inside
it. The explosive is initiated at one end of the center-line.

The symmetry of the problem under consideration allows mod-
eling only a quarter of the whole metal casing and TNT charge, as
shown in Fig. 2. Since the nature of this simulation demands a very
high mesh density, such a reduction in the model size is very desir-
able. Both the metal casing and the TNT charge inside the casing
are discretized by means of a set of particles which are assigned
with a mass interacting among themselves without direct connec-
tivity. The SPH method requires a large number of particles uni-
formly distributed to provide reasonably accurate results. The
size of particles depends on two factors, the smallest fragment
mass and the time step of the numerical process, which influences
each other. In AUTODYN, the minimal fragment is composed at
least two particles. Thus the size of the particles should be as small
as possible to reflect the fragment mass distribution of the metal
casing appropriately. On the other hand, if the size of particles is
too small, the numerical process is time-consuming or even be
interrupted. In present study, several different particle sizes were
studied and finally a diameter of 1.0 mm was chosen, resulting in
513,192 particles, and the smallest fragment mass is 0.066 g,
which is enough to count the fragment mass distribution. The sim-
ulations are carried out in a workstation with eight dual core pro-
cessors, and the parallel processing environment is established to
improve the efficiency.

2.3. Equation of state of metal casing

The Shock Equation of State (EOS) adopts the Mie-Gruneisen
EOS based on the shock Hugoniot of an impact event, which is
widely used and adequately represents most materials. This EOS
uses the basic relationship between the particle velocity and the
shock velocity U = c0 + sup, with the form shown as follows:

p ¼ pH þ Cqðe� eHÞ ð6Þ

where it is assumed that Cq = C0q0 = constant, C0 is the Gruneisen
coefficient, q and q0 are current density and initial density, respec-
tively. The variables pH and eH are given by:

pH ¼
q0c0uð1þ uÞ
½1� ðs� 1Þu�2

ð7Þ

eH ¼
pH

2q0

u
1þ u

� �
ð8Þ

where u = (q/q0) � 1, c0 is the bulk sound speed, s is a material
parameter to be determined experimentally. For steel the values ta-
ken for c0 and s were 4569 m/s and 1.49, respectively from [33].
Fig. 2. 1/4 Computational model of the metal casing and TNT charge.
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A limitation of this EOS is that it is only applicable for a limited
impact velocity range, as it does not allow for any material phase
changes such as melting or vaporization [37].

2.4. Strength model and failure criterion of metal casing

The rapid pressurization leads to the large deformations and
eventual rupture of the metal casing at high strain rates. The John-
son–Cook constitutive relation [38] is selected to model the mate-
rial behavior of the metal casing.

r ¼ ðAþ Ben
pÞð1þ C ln _e�Þð1� T�mÞ ð9Þ

where A, B, C, n and m are Johnson–Cook material constants, ep is the
effective plastic strain, _e� ¼ _ep= _e0 the effective plastic strain rate at a
reference strain rate _e0 ¼ 1 s�1 and the homologous temperature
T⁄ = (T � Tr)/(Tm � Tr) where T is the material temperature, Tr is
the room temperature, and Tm is the melting temperature of
material.

The material parameters used for the Johnson–Cook constitu-
tive relation are listed in Table 1.

The fragmentation of the casing occurs due to the local failure in
the casing material. Real materials have inherent microscopic flaws
and it is at these flaws that the failure and cracking initiate. The ex-
act distribution and type of these flaws depend on the type of
material considered, the material formation process and any
post-forming treatments applied to the material. However, these
details cannot be resolved in a numerical mesh, so a statistical ap-
proach is required to account for an inherent flaw distribution. The
method taken is to characterize the failure strain of the casing
material according to a random distribution. Each cell in the
numerical model has a slightly different strain at which the cell
will fail. This makes the material contain weak spots, at which
the failure will be expected to initiate [26]. The failure mode
should be defined in the AUTODYN to provide a suitable failure cri-
terion for the casing material. In the present study, the principal
strain failure model and stochastic failure material model based
on the Mott distribution is used to simulate the formation of nat-
ural fragments.

Mott [5] assumes that the chance that an unfractured specimen
with unit length will fracture when the strain increases from e to
e + de is:

Cecede ð10Þ

where C and c are constants. The exponential expression is chosen
as the simplest form which gives a rapid increase from negligible to
a large value as e increases. With this assumption, the chance p that
the specimen breaks before the strain e is reached can be obtained
by:

dp ¼ ð1� pÞCecede ð11Þ

where (1 � p) is the probability that there is no fracture for the
strain value less than e.

Considering the initial condition e = 0, p = 0, the solution of Eq.
(11) yields the failure probability p at the strain e:

p ¼ 1� exp �C
c
ðece � 1Þ

� �
ð12Þ

The average fracture strain e0 is given by:
Table 1
Johnson–Cook parameters of A235 steel.

Material A (MPa) B (MPa) n C m

A235 steel 249.2 45.6 0.875 0.32 0.76
e0 ¼
Z 1

0
e

dp
de

de ¼ 1
c

log
c
C

� �
þ �e

n o
ð13Þ

where �e ¼
R1
�1 xex expð�e�xÞdx ¼ 0:577.

The standard deviation of the critical strain value is:

re ¼
Z 1

0
ðe� e0Þ2dp

� �1=2

¼ 1
c

pffiffiffi
6
p � 1:282

c
ð14Þ

Mott shows that the parameter c, which is directly related to
the fracture strain deviation, can be approximated by the function
of the mechanical characteristics of material, as:

c � 160
P2

PFð1þ eFÞ
ð15Þ

where PF is the true ultimate stress, eF is the plastic strain at frac-
ture, and the parameter P2 is the proportionality coefficient in the
strain-hardening law for the material at high strains,
P = P1 + P2 log (1 + e).

In this paper, the material properties of the mild steel used to
manufacture the casing are obtained from the standard tensile
tests, as shown in Fig. 3. The corresponding parameters P2 = 375
and PF = 530 MPa are obtained from the test data.

The plastic strain at fracture of the specimens is defined by the
reduction in area:

eF ¼ �2 ln
dfinal

dinitial

� �
ð16Þ

where dfinal is the final diameter after the specimen breaks, and dini-

tial is the initial diameter.
According to Eq. (16) and test data, the average plastic strain at

fracture of the specimens is 0.988. Thus, the value of c can be
determined by Eq. (15), and c = 57. The average principal tensile
failure strain determined in the tensile test is 0.3. In the AUTODYN
code, the value of principal tensile failure strain of the principal
strain failure model and the parameter of the stochastic failure
material model chosen for the failure criterion of metal casing in
the present numerical study are 0.3 and 57, respectively.

2.5. EOS of TNT

A standard JWL (Jones–Wilkins–Lee) equation of state is em-
ployed to describe the adiabatic expansion of the detonation prod-
ucts. The equation represents the pressure as a function of the
volume and energy:

pT ¼ C1 1� x
r1m

� �
e�r1m þ C2 1� x

r2m

� �
e�r2m þxe

m
ð17Þ

where C1, C2, r1, r2 and x are constants. pT, v and e are the pressure,
relative volume and specific internal energy, respectively.

The material properties and parameters used for the JWL equa-
tion are shown in Table 2.

3. Calculational results and discussions

3.1. Propagation of detonation wave

When the explosive is initiated at one end of the center-line, the
detonation wave travels outward from the initiation point and
then is reflected by the wall of the casing, as shown in Fig. 4.
Fig. 4a–c shows that the wave reaches the cylindrical wall of the
casing and then reflects with the further development of the deto-
nation process. As a result of the pressure of the side-on detonation
wave, the near end (referring to Fig. 1) begins to deform along its
normal direction. The cylindrical casing deforms outward under
the high pressure of the detonation wave. As a result of the inci-



Fig. 3. Standard tensile tests of material specimens.

Table 2
JWL EOS parameters of TNT.

Density
q (kg/m3)

Detonation velocity
D (m/s)

C–J pressure (Pa) C1 (Pa)

1630 6800 2.10E+10 3.74E+11
C2(Pa) r1 r2 x
3.75E + 9 4.15 0.9 0.35
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dent detonation wave interacting with the reflected wave near the
cylinder wall, a high pressure region is formed and travels along
the wall of the cylindrical casing subsequently. It is noticeable that
another high pressure region which is colored red appears and
moves along the center-line to the far end, as shown in Fig. 4d–j.
The high pressure region results from the convergence effect of
the reflected wave from the cylindrical casing, because the casing
is rotationally symmetric to the geometry center. Immediately
after the initial free wave reaches the far end, the reflected wave
from the cylindrical casing impinges on the far end. Besides, the
far end will be attacked by the converged wave of the reflected
waves from cylindrical casing once again. These waves will be re-
flected once more from the far end, thus the additional driving
force will bring to bear on the portion of the cylindrical casing close
to the far end. As the time goes on, the volume of detonation prod-
ucts increases continuously, and the intensity of the subsequent
reflected wave decreases dramatically. As a result, the reflected
waves from the far end have less influence on the near end and
the part of the cylindrical casing near to the initiation point.
3.2. Expansion and rupture process

In the numerical simulation, the volume expansion of the TNT
charge and its transformation into highly pressurized products
drives the metal casing to expand and eventually rupture. At the
beginning, the material of the metal casing is elastic. When the
material’s yield strength is exceeded, the casing deforms plastically
and finally fails based on the maximum principal tensile failure
strain in the cell. The expansion and rupture process of the metal
casing at different times are shown in Fig. 5, in which Fig. 5a–r
are the scale of the images reduced to fit the frames as the simula-
tion expands, Fig. 5s–v are actual scales of images at certain time.
At the very start, the end of the casing adjacent to the initiation
point begins to deform outward in its normal direction, and the
adjacent cylindrical casing expands radially. However, the expan-
sion radii of the cylindrical casing are different along the axis of
the cylinder. Subsequently, the near end breaks from the casing
and flies away. It can be seen from Fig. 5c that at the time of
t = 5.30 � 10�2 ms the fracture appears on the cylindrical casing
and runs parallel to the axis of the cylinder, until to the end. With
the increase of the cylinder radius, more parallel fractures appear.
The distances between the circumferential cracks determine the
width of the fragments. Compared to the near end, the far end is
torn rapidly from the metal casing and flies away more quickly,
as can be seen from Fig. 5c–r. Both ends deform as bowl-shaped,
and the fragments are produced under the circumstance of great
curvature of ‘bowl-ends’. It is apparently observed that the expan-
sion radii of the joint parts between both ends and the cylindrical
casing are smaller. There are massive small particles appearing at
the joints between two ends and the cylinder, especially at the
joint close to the far end. The most striking feature of the expan-
sion and rupture process is the fragment formation in the axial
direction. The axial spacing determines the length of fragments.
After the near end departs from the casing, the thickened part of
the cylinder is torn and a cylindrical ring is formed. Accompanied
by the circumferential expansion, the cylindrical ring fractures
and yields the fragments. The condition is quite the same as the
thickened part adjacent to the far end. The major difference is that
many axial cracks appear and the independent fragments are pro-
duced along the cylinder from the un-thickened portion close to
the initiation point. With the increase of the expansion, the radius
of the cylinder increases along the axial direction, as shown clearly
in Fig. 5r, and more axial fractures appear. It is quite interesting
that the expansion radius of the cylindrical casing near the initia-
tion point is smaller than that far away from the initiation point.
But more fragments with smaller length are produced at the loca-
tion adjacent to the initiation point, while more massive fragments
with higher velocity are from the far away location.
3.3. The leakage of detonation products

The leakage of detonation products is an interesting phenome-
non in the fragmentation process of metal casing, and the highly
pressurized detonation products escape from the gap of the failing
casing. In this section, the leakage phenomenon is presented in
detail.

In a short while after the charge is detonated, the near end is
broken away from the casing, and the detonation products escape
from the gap, as shown in Fig. 6a. At this moment, the circumfer-
ential cracks appear on the cylinder. However, no explosive parti-
cles escape, and the casing does not reach a high expansion radius
in this situation. As cracks increase, the leakage of detonation prod-
ucts emerges from the cracks on the cylinder, as shown in Fig. 6b
and e, which represent the side view and top view at the same
time, respectively. When the far end is torn, the detonation prod-



(a) t=8.20×10-3ms -2ms (b) t=1.39×10

(c) t=2.75×10-2ms -2ms (d) t=3.01×10

(e) t=3.28×10-2ms -2ms (f) t=3.54×10

(g) t=3.80×10-2ms -2ms (h) t=4.06×10

(i) t=4.31×10-2ms (j) t=4.56×10-2ms 

Fig. 4. Propagation of detonation wave.
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ucts also escape from the gaps. More and more explosive particles
pass through the cracks of the cylinder and the gaps between the
ends and the cylindrical casing. Compared to the expansion speed
of the cylindrical casing, velocities of these explosive particles are
higher. From Fig. 6c, f, d, g, it is found that the gaps between the
ends and the cylindrical casing are the main passages of the deto-
nation products. The continuing leakage of the detonation products
and the volume expansion lead to the dramatic dropping of the in-
ner pressure, thus the acceleration of the casing reduces accord-
ingly and the expansion velocity tends to become stable. As
shown in Figs. 8–10, the expansion velocity of the casing becomes
stable at 0.075 ms, at which the explosive particles escape inces-
santly. It means that under the condition of expansion with stable
velocity the inner pressure does not apply on the casing anymore.
It should be noted that the influence of air is not considered in the
numerical simulation.

3.4. Characteristic of expansion velocity

In the numerical simulation, for the sake of clarity, only some
representative points (gauges) are selected on the metal casing
surface to obtain the characteristic of expansion velocity, as shown
in Fig. 7. Gauges 1–4 are on the near end, gauges 5–8 (5, 6 and 7, 8
are symmetrical in the axial direction) are on the cylindrical casing
and gauges 9–12 are on the far end, respectively. It is noted that
the gauges 1 and 9 are 5 mm off-axis from the centre point of
the ends. Because the velocity on the axis of the cylinder is not rep-
resentative, and zero mass corresponds to these points.

The velocity–time curves of the gauges on the metal casing are
shown in Figs. 8–10. The radial direction is denoted as Y and axial
direction is Z. Fig. 8 shows the velocity history of gauges on the
near end. In Fig. 8, the symbols Yvel�1 and Zvel�1 stand for the Y-
velocity and Z-velocity of gauge 1, respectively. The meanings of
the remaining symbols in the other figures may be deduced by
analogy.

As soon as the charge is detonated, the near end is accelerated
rapidly. The Z-velocity of gauge 1 reaches its maximal value
1323 m/s at 0.05 ms. The Y-velocity of gauge 4 which is located
on the edge of the near end is 598.8 m/s and Z-velocity is only
362.3 m/s. The Y-velocities and Z-velocities of gauges 1–3 are
much lower and larger than those of gauge 4, respectively. The
trend is the same as those of the gauges arranged on the far end,
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(d) t=6.53×10-2ms (e) t=7.77×10-2ms (f) t=9.00×10-2ms

(g) t=1.02×10-1ms (h) t=1.14×10-1ms (i) t=1.27×10-1ms
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(p) t=2.14×10-1ms (q) t=2.27×10-1ms (r) t=4.87×10-1ms 

Fig. 5. The expansion and rupture process of the metal casing.
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(s) Actual scale t=9.00×10-2ms 

(t) Actual scale t=1.64×10-1ms 

(u) Actual scale t=2.02×10-1ms 

(v) Actual scale t=4.87×10-1ms 

Fig. 5. (continued)
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as shown in Fig. 9. However, the velocities of gauges on the far end
increase more rapidly comparing to the gauges on the near end.
The maximal Z-velocity of gauge 9 is 1745.1 m/s, while the
Y-velocity of gauge 12 is 734.3 m/s. The ratio of Zvel�9/Zvel�1 = 1.319,
and Yvel�12/Yvel�4 = 1.226. The expansion velocity of the far end is
higher. As discussed in Section 3.1, the far end is subjected to the
repeated reflection waves. Therefore, the additional driving forces
apply on the far end and moves rapidly. For the cylindrical casing,
under the pressure effect of detonation wave, the gauges’ locations
begin to move in turn along the axis of the cylinder. The Y-velocity
of gauge 5 which is close to the initiation point is lower than those
of other gauges. The final velocities of all gauges in the axial direc-
tion are in the range from�150 m/s to 150 m/s. The changes of axial
velocities of the gauges are mainly due to the influences of the end
and the detonation wave propagation.

From the above discussion in Section 3.2, it is found that for the
cylindrical casing more fragments with smaller length are pro-
duced at the location near to the initiation point, while more mas-
sive fragments with higher velocity are from the far away location.
Grady and Hightower [6] proposed a method to derive the circum-
ferential fracture spacing, and the circumferential strain rate is
_e ¼ de=dt ¼ V=R0 (V and R0 are the expansion velocity and initial
radius of the sample, respectively). According to the expansion
velocities of different locations on the cylinder, there is a signifi-
cant difference between gauges 5 and 6, but the velocities of
gauges 7 and 8 are close to each other. It is inferred that the length
of the fragment is related to the relative expansion strain rate
along the axis of cylinder. The relatively low axial strain rate, espe-
cially in the half part of the cylindrical casing far away from the ini-
tiation point, is probably the reason responsible for the massive
fragments.
3.5. Fragment distribution

The spatial distribution and mass distribution of fragments of
the metal casing are shown in Fig. 11a and b, respectively. In the
numerical simulation, 2356 fragments are produced, mainly from
the cylindrical casing and both ends. The maximum mass of frag-
ments is 36.1 g, produced by the cylindrical casing, with average
speed of 1389.1 m/s. It is found that all fragments with mass more
than 20 g are produced by the two ends and the part of cylinder
approximately 110 mm away from the initiation point (the total
length of the cylinder is 160 mm) in the axial direction. The frag-
ments produced from the far end are more attention-getting, for
they have higher kinetic energy and stronger penetrability to the
target. It has been presented in Section 3.4 that the ratio of veloc-
ities in the Z direction between the far end and the near end is
Zvel�9/Zvel�1 = 1.319.

The predicted mass distribution characteristic of the metal cas-
ing is shown in Fig. 11b. In this, the cumulative mass of fragments
in the range from 1 g to 10 g is 1832.4 g, and the corresponding
values in the range from 10 g to 20 g and from 20 g to 36.1 g are
938.6 g and 606.8 g, respectively. The major part of mass of the



(a) t=4.71×10-2ms (b) t=6.47×10-2ms (c) t=8.82×10-2ms (d) t=2.01×10-1ms 

(e) t=6.47×10-2ms (f) t=8.82×10-2ms (g) t=2.01×10-1ms 

Fig. 6. The leakage of detonation products.

Fig. 7. Representative points selected on the metal casing surface in numerical
simulation.
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metal casing forms the fragments with mass less than 10 g, and the
percentage of the fragments with mass more than 10 g is 40.9%.
4. Experimental comparison

4.1. Comparative analysis

The fragment mass distribution, the initial fragment velocity,
along with the spatial and the shape distributions of fragments
are the main features of explosive fragmentation of metal casing.
In this section, some comparative analysis between the numerical
results and the experimental data are made to validate the applica-
bility of the numerical method in modeling the fragmentation of
metal casing.
4.2. Spatial distribution and characteristic fragment velocity

In order to investigate the spatial distribution and the velocity
characteristic of fragments and compare with the numerical re-
sults, an experiment was conducted. In the experiment, the war-
head model was arranged in a cabin-like structure and initiated
at one end of the center-line, as shown in Fig. 12. This was so the
fragment distribution could be clearly represented by checking
the perforations on the plates of the cabin-like structure. A high-
speed camera was employed to record the experiment process,
and the fragment velocities of different locations of metal casing
have been approximately determined from the camera images, as
will be described later.

The damage and perforations produced by fragments on the
structure are shown in Fig. 13. The perforations caused by the frag-
ments from the cylindrical metal casing are shown in Fig. 13a.
Since the structure is close to the warhead model, the perforations
are concentrated in a narrow band, marked by a red ellipse in
Fig. 13a. On the left of the band, there are several perforations with
scattered plots, while the perforations do not appear on the right.
In the work of Arnold and Rottenkolber [10], this kind of distribu-
tion of the fragments from the cylindrical casing can be better
illustrated, which is in accordance with the numerical results of
the present study. The perforation distributions caused by the near
end and far end are shown in Fig. 13b and c, respectively. By



Fig. 8. Velocity of measuring points on near-end.

Fig. 9. Velocity of measuring points on far-end.

Fig. 10. Velocity of measuring points on cylindrical casing.
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Fig. 11. Fragment distribution.

Fig. 12. Arrangement of warhead model.
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comparing Fig. 13b and c, it is found that there are more humps
appearing on the target plate near to the far end, which are caused
by the small fragments that do not penetrate the plate. In the
numerical simulation, a number of particles emerge at joint loca-
tions between cylindrical casing and two ends. By checking the
perforations on the other plates of the structure, it is found that
there are few perforations. Besides, the perforations caused by
the fragments from two ends are almost concentrated on the
square plate with the side length of 600 mm (the lengths of the
perforated plates in Fig. 13b and c), and the travel distance of these
fragments in the air nearly reaches 2.5 m.

The velocities of fragments are derived from the record of high-
speed camera using the time interval and distance between the
TNT filled metal casing and the target plate. The target plates near
to the ends and cylindrical casing are 2.5 m and 0.9 m away from
the center of the metal casing, respectively. The velocities of the
three parts of the metal casing measured from the experiment
are Vc = 1207 m/s (velocity of fragment from the cylindrical casing),
Vn = 1210 m/s (velocity of fragment from the near end),
Vf = 1613 m/s (velocity of fragment from the far end). They are
smaller than the corresponding numerical results. However, the ra-
tio of velocities of the far end and near end is Vf/Vn = 1.333, which is
close to the numerical result Zvel�9/Zvel�1 = 1.319. This ratio should
be comparable, for in the experiment the travel distances of frag-
ments from near and far end are equal.

The initial velocity of fragment predicted by Gurney is,

V0 ¼
ffiffiffiffiffiffi
2E
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C=M

1þ 0:5C=M

s
ð18Þ

where
ffiffiffiffiffiffi
2E
p

¼ 520þ 0:28De, De = 6860 m/s is the detonation veloc-
ity of TNT. C and M are mass of TNT and metal casing, respectively.

The initial velocity predicted by Eq. (18) is 1383.8 m/s. In the
numerical simulation, the range of expansion velocities along the
cylindrical metal casing is from 1187.3 m/s to 1440.2 m/s. But
the fragments with maximum velocity are from the far end, with
expansion velocity of 1745.1 m/s. It is also observed in the exper-
iment, but cannot be predicted by Gurney formula.

4.3. Mass distribution of fragments

In the experiment mentioned above, the mass distribution of
fragments is not obtained due to the lack of suitable capture med-
ium, such as expanded vermiculite mica. Arnold and Rottenkolber
[10] used a data collection method to study the fragment mass dis-
tribution of four different shells experimentally. In their work, the
cylindrical explosive charges with a diameter of 100 mm and a
height of 200 mm were used for the test samples. Two half shells
with no ends were attached to the charge. The charge was point-
initiated from the top. The comparative analysis of fragment mass
distribution between the results from numerical method in the
present study and the experimental data obtained by Arnold and
Rottenkolber is presented.

The comparison of cumulative mass distributions between the
experiment data and the numerical result is shown in Fig. 14.
The prescribed minimum fragment mass is taken as 1 g for the
comparative analysis, in consideration of the difficulty in the col-
lection of smaller fragments in the experiment. The comparison
indicates that the numerical results of cumulative mass distribu-
tion of the fragments less than 20 g agree well with the experiment
data. However, for the more massive fragments, the numerical re-
sults are higher than the experiment data. It means that there ap-
pear to have been fewer larger fragments produced in the
experiment than in the distribution derived from the numerical
simulation. Predrag and Slobodan [21] found that the fragment
mass distribution of naturally fragmenting warheads could be de-
scribed by the generalized Mott, the generalized Grady and the
Weibull distribution law. Thus, the number and mass of large frag-
ments are relatively limited, which is consistent with the experi-
mental phenomena. The numerical method is capable of
predicting the fragment mass distribution of the metal casing to
a certain extent.



Fig. 13. Perforations produced by fragments.

Fig. 14. Comparison of cumulative mass distributions.
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5. Conclusions

This study makes it possible to simulate the main features of
the explosive fragmentation process of the cylindrical metal casing
with ends. The numerical analysis code AUTODYN with SPH meth-
od is used to model the propagation of detonation wave, the
expansion and rupture process, the expansion velocity of the metal
casing, the leakage of detonation products and the fragment
distribution.

Simulation results show that the propagation and reflection of
the detonation wave has direct relationship to the casing expan-
sion and rupture. The far end has higher velocity in its normal
direction than the near end, and the part of the cylinder far away
from the initiation point expands more rapidly, which are mainly
due to the additive effect of the initial free and reflected detonation
waves.

The size of fragments is related to the circumferential and axial
spacings of the fractures. The axial fracture spacings of the part of
the cylindrical casing closer to the initiation point are smaller, and
more fragments are produced when the expansion radius is rela-
tively small. The part of the cylindrical casing far away from the
initiation point yields less axial fracture in the condition of larger
expansion radius, but more massive fragments are produced.
Meanwhile, there is little difference among the circumferential
fracture spacings along the whole axial direction of the cylinder.
Considering the expansion velocity characteristic of cylindrical
casing, it is evident that the fragment size is related to the relative
axial strain rate. The relatively low axial strain rate, especially in
the half part of the cylindrical casing far away from the initiation
point, is probably the reason responsible for more massive
fragments.

The detonation products escape from the fracture spaces of the
metal casing, thus the inner pressure is reduced. From the results
of numerical simulation, it is found that the detonation product be-
gins to escape from the fracture gaps between the near end and the
cylinder before the leakage from the fracture spacings of the cylin-
der appears. The gaps between the ends and the cylinder are the
main thoroughfares of the detonation products.

When the warhead detonates, a large number of small particles
are produced at the joint parts between the cylindrical casing and
the two ends, and more massive fragments are produced from the
region of the cylinder approximately 110 mm away from the initi-
ation point and the two ends of the metal casing. The fragments
with maximum kinetic energy are from the far end, with velocity
of 1.3 times higher than that of the fragments produced by the near
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end. Numerical results of the fragment velocity and distribution
characteristic are in agreement with the experimental data. Special
attention should be paid to those fragments with more powerful
penetrating capability in the design of protective structures.

The numerical method present in this paper should be further
validated by artfully designed experiments to investigate the influ-
ence of properties of casing materials on fragmentation. In future,
the authors intent to conduct X-ray experiments to obtain the de-
tailed information about the expansion and rupture process of
cylindrical metal casing with ends. Additionally, development of
a soft-recovery method remains a task for future activities.
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